供热管道补偿器的作用
补偿器

补偿器补偿器习惯也叫膨胀节,或伸缩节。
由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法兰导管等附件组成。
属于一种补偿元件。
利用其工作主体波纹管的有效变形,以吸收管线、导管、容器等由热胀冷缩等原因而产生的尺寸变化,或补偿管线、导管、容器等的轴向、横向和角向位移。
也可用与降噪减振。
在现代工业中用途广泛。
供热上,为了房子供热管道升温时,由于热伸力或温度应力而引起管道变形或破坏,需要在管道上设置补偿器,以补偿管道的热伸长,从而减小管壁的应力和作用在阀件或支架结构上的作用力。
产品分类一、轴向型主要用于补偿向位移,也可以补偿横向位移或轴向与横向的合成位移,具有补偿角位移的能力,但一般不应用通用型补偿器来补偿角位移。
对管架的设计要求1.安装轴向型补偿器的管段,在管道的盲端、弯头、变截面出,装有截止阀或减压阀的部门及侧支管线进入主管线入口处,都要设置主固定管架。
主固定管架要考虑波纹管静压推力及变形弹性力的作用。
推力计算公式如下:Fp=100*P*AFp-补偿器轴向压力推(N),A-对应于波纹平均直径的有效面积(CM2),P-此管段管道最高压力(MPa)。
轴向弹性力的计算公式如下:Fx=f*Kx*X*,Fx-补偿器轴向弹性力(N),KX-补偿器轴向刚度(N/mm);f-系数,当“预变性”(包括预并行量△X=0时,f=1/2,否则f=1。
管道除上述部位外,可设置中间固定管架。
中间固定管架可不考虑压力推力的作用。
)2.在管段的两个固定管架之间,仅能设置一个轴向型补偿器。
3.补偿器一端应靠近固定管架,若过长则要按第一导向架的设置要求设置导向架,其它导向架的最大间距可按下计算LGmax-最大导向间距;E-管道材料弹性模量(N/cm2);i-tp管道断面惯性矩(cm4);KX-补偿器轴向刚度(N/mm),X0-补偿额定位移量(mm)。
当补偿器压缩变形时,符号“+”,拉伸变形时,符合为“-”。
当管道壁厚按标准壁厚设计时,LGmax可按有关标准选取。
供热管道直埋式补偿器安装要求

有图有真相!供热管道直埋式补偿器安装要求固定点,一是在直管段的端部,二是在管道的分支处。
长的无分支的直线管道两补偿器之间可以不设固定点,靠管道自然形成的“驻点”即可发挥固定点的作用。
驻点是两补偿器之间管道的那个不动点,在管径相同,埋深一致时,驻点与两补偿器间的距离相等。
褡补偿器(包括转角处自然补偿器)至固定点之间的距离不得超过管道的最大安装长度Lmax,管道最大安装长度的定义是固定点至自由端(补偿器)的长度,在此长度下产生的摩擦力不得超过管道许用应力下相应的弹性力。
Lmax按下式计算:常用管道的最大安装长度Lmax。
应考虑16kgf/cm2内压力所产生的环向应力的综合影响。
3.2固定支座的设计计算具有2个管道分支并在主干线上有一处转角管道平面,补偿器的布置应满足Ln <Lmax的条件。
驻点G1、G2的推力为零,所以,此点处不必设置固定支座,但为了防止回填土的不均匀,埋深的不一致和预制保温管外壳粗糙度的不规则等可能会造成驻点的漂移,所以,对处于驻点位置的管道分支处G1、G2需设置支座,以G1为例其轴向推力可按下式计算:F1=Pb2+L2f-0.8(Pb3+L2f)式中F1-固定支座G1的水平推力,kgf;f-管道单位长度摩擦力,Kgf/mPb2-B2膨胀节的弹性力,Kg;Pb3-B3膨胀节的弹性力,Kgfk2-B2膨胀节的刚度,Kgf/mm;△L2-B2膨胀节的补偿量,mm;L2-膨胀节至G1的距离,m;假如某一分支如自G2接出的分支带有补偿器B。
那么,G2还受到一侧向推力的作用,如图中的F2(y),当L5很短(实际布置时L5也应很短),那么,侧向力F2(y)的大小为:F2(y)=Pn*A5+Pb5式中Pn-管道工作压力,Kgf/cm2A5-B5膨胀节的有效面积,cm2;Pb5-B5膨胀节的弹性力kgf。
固定支座G3也驻点位置,从管道和土壤的摩擦力来讲,该点也受到大小相等,方向相反的两个时作用,但应注意到该点同时又受到转角处的盲板力的作用,考虑驻点漂移的影响,固定支座G3的推力F3=1.2Pn*A4式中F3-作用在固定支座G3的水平推力,Kgf;Pn-管道工作压力,Kgf/cm2;A4-B4膨胀节的有效面积,cm2。
采暖固定支架及补偿器的选择、设计与计算

采暖固定支架及补偿器的选择、设计与计算1、固定支架及热补偿的重要性在暖通空调设计中,固定支架是一个不可避免的技术节点。
特别是在北方冬季的热水采暖管道、冬季空调冷冻水供回水管道以及生活热水管道中,管道在“热胀冷缩”的情况下必然产生巨大的自然推力。
如果不按照预先的设计方案来泄掉这部分巨大的自然推力,其产生的后果将是毁灭性的。
例如,前段时间某商业广场项目地库车位上方的热水管道瞬间脱离,管道支吊架等根本支撑不住瞬间的巨大推力。
许多非专业人员基本都会认为是施工技术差,或者认为施工方偷工减料,其实首先应该检查的是热水系统管道是否做了冷热补偿和合理的固定支架。
2、补偿器的分类在大面积的地库平面图中,如何做热水管道冷热补偿和合理的固定支架是有规律和技巧的。
但这些规律和技巧对于刚刚入职设计院的暖通设计师来说根本不掌握,或者说根本引起不了设计人员的注意。
在“三边工程”盛行的今天,出事的概率是非常高的。
首先,热水管道的托架和吊架跟固定支架并非一个意思。
只有把管道固定不动的吊架才叫“固定支架”,而普通支吊架是允许管道在其内顺着管道敷设方向自由移动的。
因为热膨胀产生多余的管道长度必须在此处让其释放、延申,吸收此多余长度的管件就是“补偿器”。
所以采暖系统中必须设置固定支架限定其只向一个预想的方向延申,而设置固定支架就必须配合使用补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。
在本文中,我们首推“自然补偿器”。
管道的自然补偿是利用管道本身自然弯曲来补偿管道的热伸长。
自然补偿常用的有L形补偿器、Z字形补偿器及“几”字型补偿器。
与自然补偿相对应的是人工补偿器,常用的人工补偿器有波纹补偿器、套筒补偿器、球形补偿器、方形补偿器及填料式补偿器等。
自然补偿器相对于人工补偿器来说优点颇多,比如减少初投资、节省施工工期、系统安全不漏水以及补偿能力不会随着时间的推移而打折扣等。
当供回水系统为大口径管道时,人工煨弯也存在一定难度。
3、自然补偿器的设计步骤自然补偿器的设计步骤主要包括以下几个方面:1)确定管道的自由长度,即管道在不受限制的情况下,由于热胀冷缩而产生的长度变化。
蒸汽管道热补偿工作原理及特点

蒸汽管道热补偿工作原理及特点摘要本文主要对蒸汽热力管道补偿形式进行分析探讨,对不同的补偿器的原理进行简单描述,通过实例论述在不同情况下补偿器的组合使用的方式。
关键词补偿器原理补偿器布置形式多种补偿器结合使用方式1.概述蒸汽管道因受外界温度变化或内部介质温度变化,由于管材的热胀冷缩特性,会引起管道的热胀冷缩,不同的管道,由于其管道的线型膨胀系数不同,管道的热膨胀量也不相同,为满足在不同状态下管道的安全运行,蒸汽管道需使用不同方式进行补偿。
蒸汽管网布置时,可采用自然补偿进行吸收,当自然补偿无法吸收热位移量时,就需要采用补偿器进行补偿。
目前多种补偿器相结合的形式使用案例也日趋增多。
1.自然补偿的原理及特点自然补偿时通过管道自身的布置形式来吸收热位移。
其优点是装置简单、可靠,安装方便;其缺点是管道变形时产生横向或纵向位移,长期启停、运行会导致管托脱空或掉落。
一般用于厂区内、厂房内的高温高压管道。
1.方(矩)形补偿器的原理及特点方形补偿器是用无缝钢管煨弯或弯头焊接制成,一般采用4个90°弯头制作而成。
方形补偿器应尽可能布置在两固定支架之间的中心点上。
方形补偿器安装时需进行预拉伸。
具体实践应用中一般用于大管径、长距离输送系统中,具有非常好的补偿性能,但是占地面积较大,需布置在宽阔的位置上,且要同时考虑高点放气,低点放水装置。
具体应用中还要根据系统的补偿需要详细计算补偿器的臂长和弯曲半径,合理布置支撑点。
1.旋转补偿器的原理及特点旋转补偿器是通过旋转筒自身的旋转的来吸收管道的热位移。
当管道布置要求双向补偿时,补偿器尽量布置在中间位置,使其形成大小相等、方向相反的一对力偶,围绕L臂中心线旋转。
旋转补偿器常用安装形式主要为为Π型和Ω型,可有两个补偿器或三个补偿器组成一组进行补偿。
旋转补偿器对固定点推力较小,不产生盲板力;补偿距离远;密封性能好,长期运行不需维护;大量节约投资和提高运行安全性。
旋转补偿器可用于不同温度工况下的管道,密封效果寿命问题是高温高压旋转补偿器的最大问题,当管道温度过高,紧固螺栓、内管与外套管长期处于高温下受热膨胀,螺栓不能提供足够的压力使密封填料实现自密封,从而管件之间产生间隙,出现泄漏。
热力管道补偿器

热力系统补偿类型和方式热力系统管道的补偿方式有两种:自然补偿和补偿器补偿.1.自然补偿自然补偿就是利用管道本身自然弯曲所具有的弹性,来吸收管道的热变形。
管道弹性,是指管道在应力作用下产生弹性变形,几何形状发生改变,应力消失后,又能恢复原状的能力。
实践证明,当弯管角度大于30°时,能用作自然补偿,管子弯曲角度小于30°时,不能用作自然补偿。
自然补偿的管道长度一般为15~25m,弯曲应力бbw不应超过80MPa。
管道工程中常用的自然补偿有:L型补偿和Z型补偿。
2.补偿器补偿热力管道自然补偿不能满足,应在管路上加设补偿器来补偿管道的热变形量。
补偿器是设置在管道上吸收管道热胀冷缩和其他位移的元件。
常用的补偿器有方形补偿器、波纹管补偿器、套筒补偿器和球形补偿器。
(1)方形补偿器。
方形补偿器是采用专门加工成U型的连续弯管来吸收管道热变形的元件。
这种补偿器是利用弯管的弹性来吸收管道的热变形,从其工作原理看,方形补偿器补偿属于管道弹性热补偿。
方形补偿器由水平臂、伸缩臂和自由臂构成.方形补偿器是由4个90°弯头组成,其优点是:制作简单,安装方便,热补偿量大工作安全可靠,一般不需要维修;缺点是:外形尺寸大,安装占用空间大,不太美观。
方形补偿器按其外形可分为Ⅰ型-标准式(c=2h),Ⅱ型-等边式(c=h),Ⅲ型-长臂式(c=0.5h),Ⅳ型-小顶式(c=0),其中Ⅱ型、Ⅲ型最为常用。
制作方形补偿器必须选用质量好的无缝钢管揻制而成,整个补偿器最好用一根管子揻成,如果制作大规格的补偿器也可用两根弯管或三根弯管焊制,方形补偿器不宜用冲压弯头焊制而成。
焊制方形补偿器的焊接点应放在外伸臂的中点处,因为此处的弯矩最小,严禁在补偿器的水平臂上焊接。
焊制方形补偿器时,当DN≤200mm时,焊缝与外伸臂垂直,当DN>200mm时,焊缝与轴线成45°角。
(2)波纹管补偿器。
波纹管补偿器又称波纹管膨胀节,由一个或几个波纹管及结构件组成,用来吸收由于热胀冷缩等原因引起的管道或设备尺寸变化的装置.波纹管补偿器具有结构紧凑、承压能力高、工作性能好,配管简单、耐腐蚀、维修方便等优点。
《市政》黄金考点:经典案例82问

《市政》堇金考点:经典案例82问《市政》黄金考点《经典案例82问,附速记口诀!》51•问题:分节预制沉井的施工要点是怎样的?答案:(1)每节制作高度应符合施工方案要求且第一节制作高度必须高于刃脚部分;井内设有底梁或支撑梁时应与刃脚部分整体浇捣:(2)设计无要求时,混凝土强度应达到设计强度等级75% 后,方可拆除模板或浇筑后节混凝土;(3)混凝土施工缝处理应采用凹凸缝或设置钢板止水带,施工缝应凿毛并清理干净;内外模板采用对拉螺栓固定时,其对拉螺栓的中间应设置防渗止水片;(4)后续各节的模板不应支撑于地面上,模板底部应距地面不小于lm;搭设外排脚手架应与模板脱开。
52•问题:沉井辅助法下沉方法有哪些?答案:(1)沉井采用阶梯形外壁+井壁外灌入黄砂;(2)釆用触变泥浆套助沉;(3)采用空气幕助沉;(4)沉井釆用爆破方法开挖下沉。
53•问题:水池无抗浮设计时,雨汛期施工过程必须采取的抗浮措施有哪些?答案:(1)施工中常釆用的抗浮措施如下:①基坑四周设防汛墙,防止外来水进入基坑;建立防汛组织,强化防汛工作。
②构筑物下及基坑内四周埋设排水盲管(盲沟)和抽水设备,一旦发生基坑内积水随即排除。
③备有应急供电和排水设施并保证其可靠性。
(2)第勺筑物的自重小于其承受的浮力时,会导致构筑物浮起;应考虑因地制宜措施:引入地下水和地表水等外来水进入构筑物,使构筑物内、外无水位差,以减小其浮力,使构筑物结构免于破坏。
54•问题:给排水管道不开槽施工法与选择。
答案:55•问题:简述排水管道闭水试验的管段抽取原则。
答案:(1)试验管段应按井趴分隔,带井试验;若条件允许可一次试验不超过5个连续井段。
(2)当管道内径大于700mm时,可按管道井段数量抽样选取1/3进行试验;试验不合格时,抽样井段数量应在原抽样基础上加倍进行试验。
56•问题:热力管道的补偿器作用是什么?答案:补偿因供热管道升温导致的管道热伸长,从而释放温度变形,消除温度应力,避免因热伸长或温度应力的作用而引起管道变形或破坏,以确保管网运行安全。
供暖管道补偿器有哪几种

供热管道补偿器主要有自然补偿器、方形补偿器、波纹管补偿器、套筒补偿器和球形补偿器等,前三种利用补偿材料的变形来吸收热伸长,后两种利用管道的位移来吸收热伸长。
具体介绍如下:
1.自然补偿
热力管道敷设时,会形成自然弯曲(L型或者Z型),利用管道这些自然弯曲来吸收热力管道的热伸长量被称为自然补偿。
2.方形补偿器
通常是由四个90°无缝钢管煨弯或机制弯头构成的U型补偿器,依靠弯管的变形来补偿管段的热伸长。
形补偿器制造、安装方便,不需要经常维修,补偿能力大。
3.套筒补偿器
它是由填料密封的套管和外壳管组成的,两者同心套装并可轴向补偿,有单向和双向两种形式。
4.波纹管补偿器
它是用多层或单层薄壁金属管制成的具有轴向波纹的管状补偿设备。
这种补偿器
体积小,重量轻,占地面积和占用空间小,易于布置,安装方便。
5.球形补偿器
具有很好的耐压和耐温性能,能适应230°C的高温和0.4MPa的压力。
使用寿命长,运行可靠,占地面积小,基本上无需维修,补偿能力大。
工作时变形应力小,减少了对支座的要求。
中泰管道设备有限公司是一家专注于管道构件产品研究,生产以及销售为一体的创新企业。
主营产品有:金属软管、防水套管、补偿器、伸缩器、传力接头、双法兰传力接头等管道设备。
采暖补偿器

1 引言固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。
有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。
可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,本文根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。
由于成文比较仓促,文中定有许多不足之处,望各位指正。
2 设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。
2.1 计算管道热伸长量(1)△X——管道的热伸长量,mm;t1——热媒温度,℃,t2——管道安装时的温度, ℃,一般按-5℃计算.L——计算管道长度m;0.012——钢铁的线膨胀系数,mm/m·℃按t1=95℃简化得(2 )2.2 确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。
(管道伸长量分别为40mm和50mm)。
实际设计时一般每段臂长不大于20~30m,不小于2m。
在自然补偿两臂顶端设置固定支架。
“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。
“Z”型补偿器可以看做两个“г”型补偿器。
表1 г”型补偿器最大允许距离补偿器形式敷设方式管径DN(mm)25 32 40 50 70 80 100 125 150г型长边最大间距L2(m)15 18 20 24 24 30 30 30 30短边最小间距L1(m)2 2.5 3 3.5 4 5 5.5 6 62.3 确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。