热力管线补偿器的计算

合集下载

采暖管道热补偿计算

采暖管道热补偿计算

采暖立管热补偿计算
热补偿是指补偿供热管道被加热引起的受热伸长量,从而减弱或消除因热胀冷缩力所产生的应力。

主要是利用管道弯曲管段的弹性变形或在管道上设置补偿器。

热力网管道的热补偿设计,应考虑如下各点:
(1)充分利用管道的转角等进行自然补偿。

(2)采用弯管补偿器或轴向波纹管补偿器时,应考虑安装时的冷紧。

(3)采用套筒补偿器时,应计算各种安装温度下的安装长度,保证管道在可能出现的最高和最低温度下,补偿器留有不小于20mm的补偿余量。

(4)采用波纹管轴向补偿器时,管道上安装防止波纹管失稳的导向支座,当采用套筒补偿器、球形补偿器、铰接波纹补偿器,补偿管段过长时,亦应在适当地点设导向支座。

(5)采用球形补偿器、铰接波纹补偿器,且补偿管段较长时,宜采取减小管道摩擦力的措施。

(6)当一条管道直接敷设于另一条管道上时,应考虑两管道在最不利运行状态下热位移不同的影响。

(7)直埋敷设管道,宜采用无补偿敷设方式。

计算方式:
1、高区立管管道顶端采用自然补偿,底端采用L型自然补偿。

中间分两段,两个固定支架间距离为24米,则热补偿量为:
ΔL=0.012∗24∗(50−0)=14.4
选用波纹补偿器,补偿量为14.4m。

2、低区立管管道顶端采用自然补偿,底端采用L型自然补偿。

热力管线补偿器的计算

热力管线补偿器的计算

热力管线补偿器的计算 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】2010-12-0616:401 、固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。

有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。

可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。

2 、设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。

、计算管道热伸长量△X=(t1-t2)L (1)其中:△ X——管道的热伸长量,mm;t1——热媒温度,℃,t2——管道安装时的温度, ℃,一般按-5℃计算.L——计算管道长度m;——钢铁的线膨胀系数,mm/m·℃按t1=95℃简化得:△X= ……(2 )、确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。

(管道伸长量分别为40mm和50mm)。

实际设计时一般每段臂长不大于20~30m,不小于2m。

在自然补偿两臂顶端设置固定支架。

“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。

“Z”型补偿器可以看做两个“г”型补偿器。

表1 г”型补偿器最大允许距离、确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。

热力管线补偿器的计算

热力管线补偿器的计算

热力管线补偿器的计算热力管线补偿器是工业生产中常用的管道连接件,主要用于补偿管道中由于温度变化引起的热胀冷缩应力,以保证管道的正常运行。

本文将从热胀冷缩的基本原理、补偿器的种类和结构特点以及补偿器的计算方法等方面进行详细阐述。

一、热胀冷缩的基本原理热胀冷缩是指物体在温度变化时因热量的增加和减少而导致体积的变化。

对于管道来说,当管道在工作温度下受热胀冷缩引起的应力超过一定限制时,就会产生管道的变形和破裂等严重后果。

因此,为了保证管道的正常运行,必须采取一定的措施,如采用热力管线补偿器来吸收管道的热胀冷缩应力。

二、热力管线补偿器的种类和结构特点热力管线补偿器根据其结构形式可以分为固定式补偿器、游动式补偿器和活动式补偿器三大类,其中又有多种不同的型号。

这些不同类型的补偿器在结构上略有差异,但其共同特点是能够在管道受到热胀冷缩作用时保持一定的相对位移,以吸收管道的应力。

固定式补偿器主要由支座、托座、伸缩节等组成。

它通过固定管道的一端,使另一端能够在一定范围内自由伸缩,以吸收管道的热胀冷缩应力。

游动式补偿器是通过管道各部分的游动连接实现补偿效果的。

它具有较强的自适应能力,能够根据管道的变形情况自动调整自身的形状,以保证管道的正常运行。

活动式补偿器则是通过活动的波纹管、金属软管等实现补偿效果的。

它具有良好的柔性和弹性,能够在管道受到热胀冷缩应力时自由伸缩,有效减少管道的应力。

三、热力管线补偿器的计算方法1.管道的补偿量计算管道的补偿量计算一般根据管道的材质、长度、温度变化和管道支承方式等要素进行综合考虑。

具体计算方法可参考以下公式:△L=α×L×△T其中,△L表示管道的补偿量,α为管道材料的线膨胀系数,L为管道长度,△T为管道工作温度变化量。

2.补偿器的选择计算补偿器的选择计算主要根据管道的补偿量、管道支承方式和环境条件等因素进行综合考虑。

一般需要计算和确定补偿器的安装位置和型号,以保证补偿器的有效工作。

热力管道工程中补偿器的选用与安装

热力管道工程中补偿器的选用与安装

250 204
2 常用管 道补偿 器 的选用及 安装 的注 意事 项
定 补偿 量的一半 ( . A ) . 0 5 L 。d 方形补偿器在 安装时 , 应注意 同时
以确保补偿器 动作时 , 其两侧管道不产生横 向位移。 计算 出管道 的伸长量后 , 根据施 工现场的实 际情况来 考虑热 增补导 向支架 , 2 套管式补偿器 。套管式补偿器 的优点是补偿量 大 、 ) 占地 空 力管道 的补偿方式 , 般有 自然补偿 和补偿器补偿两种 。 一
2 1 ,6 3 ) 121 3 0 0 3 (5 :5 —5 .
1 方形补偿器 。方 形补 偿器 因其工作 可靠 、 ) 补偿 量 大、 必 不
S lc i n a d i sal t n o o p n a o n t e ma o r p p l e e gn e i g ee t n n t l i fc m e s t r i h r lp we i ei n i e rn o a o n
方形补 偿器 安装 时 , 应 注 还 计算工程 中管道 的伸缩量 , 以按下面 的公式进行 : L= × 应 留在 两垂直臂 的 中心位置 。另 外 , 可 A a 等固定支架 和滑 动支架全 部安 装好后 , 安装 在两个 固定 再 ( t) 。其 中 , 为管道的热膨胀伸缩 量 , 为管 材的线 意 :. t ×L 一 △ m; 支架的中问。b 方形补偿器水平设 置时 , . 补偿 器 的坡度 和坡 向应 膨胀系数 , / m ・C) t m( o ; 为管道 运行 时 的介质 温度 , t o 为管 C;
事故 。L形 或 z形补偿器的结构尺寸 , 由设计计算确定 , 以固定 并
支架来 明确界定 , 具体尺寸可以参考 相关 工程设计 手册 。

管道自然补偿

管道自然补偿

3.自然补偿3.1利用管道自然弯曲形状(或设计成L或Z管道)所具有的柔性,补偿其管道自身的热胀和端点的位移称之为自然补偿。

蒸汽直埋管道正是在温度变化时,弯管部分塑性变形和一定量的弹性变形实现管道的自然补偿的。

热力管道热伸长量ΔL=a(t2-t1)L ﻩmma——管道在相应温度范围内的线胀系数 mm/m℃L——管道长度 mt1——管道安装温度℃t2——管道设计使用(介质)温度℃上式计算的管道伸长量ΔL是相对保守的,它没有考虑管道与其接触面(保温材料等)摩擦约束作用、相对位移影响等。

3.2 L型自然补偿文献[8]提出L长≦0.85Lkp或(L长+L短)/2≦0.85LkpL kp ——极限臂长,是L弯管的臂长达到Lkp时热胀和内压作用弯头处引起综合应力达到安定性变形的极限值2σs。

通常Q235,σs取80MPa。

此与L=1.1x[(ΔLDw)/300]1/2计算结果基本一致。

对于绝大多数蒸汽直埋保温管多采用钢外套或玻璃钢/钢外套管形式,这不同于架空软质外套保温,要求工作管除自身应力满足安全需要外,外护管还必须有足够空间,保证工作管道的膨胀或位移不受外套管的阻碍、限制,同时保证绝热效果良好。

这就在某些工况下,要求设有补偿直管段(较通常管径扩大的直管段)或补偿弯头(偏心补偿驼背弯头)等。

3.3 Z型自然补偿文献[8]提出最小短臂长度Lmin概念Lmin=0.8x0.65(ΔLDw) 1/2 mﻩﻩL长≦0.85lkpﻩL短≧1.15 Lmin同时满足上两式要求,才能保证管道塑性变形不超过安定范围。

即短臂不过短,刚度不过大,不引起强度破坏或疲劳破坏。

Z型也可按两个L型进行补偿计算。

3.4 图解L型补偿随着科技进步,蒸汽直埋保温管设计结构有新的发展,可位移固定墩问世应用(1998)。

文献[5]介绍了在不考虑弯管柔性系数和应力加强系数情况下,利用经验绘制的图表可迅速的对L管道进行柔性补偿判断,确定长、短臂尺寸。

管道补偿器参数表

管道补偿器参数表

波纹补偿器产品目录一、单式轴向型(DZ)波纹补偿器二、外压单式型(WZ )补偿器三、无约束(WY )波纹补偿器四、复式自由型(FZ )补偿器五、复式铰链(FJ )、万向铰链(FW )型补偿器六、复式拉杆型(FL )横向补偿器七、单式铰链型(DJ )补偿器八、单式万向铰链型(DW )补偿器九、内外压平衡式(NP )波纹补偿器十、弯管压力平衡型(WP )补偿器十一、直管压力平衡型(ZP )补偿器十二、矩形(JX )波纹补偿器十三、直埋式(ZM )波纹补偿器轴向型单式波纹补偿器轴向型复式波纹补偿器 轴向型外压式波纹补偿器补偿器简介[1]补偿器的功能及工作原理 波纹管补偿器习惯上也叫膨胀节、伸缩节,由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法 兰、导管等附件组成。

是用以利用波纹管补偿器的弹性元件的有效伸缩变形来吸收管线、导管或容器由热胀冷缩等原因而产生的尺寸变化的一种补偿装置,属于一种 补偿元件。

可对轴向,横向,和角向位移的的吸收,用于在管道、设备及系统的加热位移、机械位移吸收振动、降低噪音等.在现代工业中用途广泛。

2.补偿器执行标准:金属波纹管采用GB/T12777-2008并参照美国""EJMA ""标准,优化设计,结构合理,性能稳定,强度大,弹性好、抗疲劳度高等优点,材料采用1Cr18Ni9Ti,OCr19Ni9奥氏体不锈钢,两端接管或法兰采用低碳钢或低合金钢。

金属波纹管----补偿器选用U形波,分单层和多层制成,有较大的补偿量,耐压可高达4Mpa,使用温度----1960C一≤450度,结构紧凑,使用成本低,耐腐蚀,弹性好,钢度值低,允许疲劳度寿命1000次,解决了管道热胀冷缩,位移和机械高频振动与管道之间的柔性联接,广泛用于石油、热力、电力、煤气、化工等管路上安装。

3.补偿器连接方式:补偿器连接方式分为法兰连接和焊接两种。

直埋管道补偿器一般采用焊接方式(地沟安装除外)4.补偿器类型:补偿器分为轴向型、横向型、角向型三大类型二十多个品种。

热力管道安装及补偿器的预拉伸

热力管道安装及补偿器的预拉伸

热力管道安装及补偿器的预拉伸【摘要】随着国家不断加大对能源领域的投资力度,全国各地不断上马的大型化工项目越来越多,我单位在国内外承接了煤化工、石油化工等领域的多个大型化工项目,其中有装置工程也有系统管廊工程。

系统管廊工程在整个化工项目中主要负责各装置间物料介质及公用工程介质的传送。

输送蒸汽等高温媒介的管道通常被称作热力管道,热力管道内的媒介温度一般都比较高,最低的操作温度也能达到200℃,开车运行后会引起管道的热膨胀。

管内媒介的温度越高,管道的热膨胀量就越大,热位移就越大。

因此,热力管道的施工要求往往比较严格。

那么施工单位如何才能以超高的水平完成热力管道的施工,一是要理解和掌握热力管道安装中应注意的问题,采取措施解决好施工技术要求;二是要充分考虑热力管道的热膨胀因素,依据设计文件和施工规范对热力管道上的补偿装置进行安装和预拉伸。

【关键词】热力管道安装补偿器预拉伸1 热力管道安装应注意哪些问题(1)热力管道在预制时,要充分考虑预制管段的预留位置和预制管段的吊装措施,热力管道上的放净、放空开孔均应在地面预制时完成。

管线在吊装之前应完成管托的安装,预留焊口位置不得刷油。

由于热力管道对管内清洁度要求较高,所以上管前作业组需利用吊车将管段倾斜45~60度左右用木方轻轻敲打一端管口,使管内杂物尘土等倒出,对特殊管道的重要部位用抹布进行清理,且对接焊缝底层采用氩弧焊打底。

(2)热力管道的支架必须严格按照设计规定的位置进行安装,两个膨胀节之间必须设置一个固定支架,固定支架应焊接牢固。

导向支架或滑动支架的滑动面应洁净平整,不得有歪斜和卡涩现象,滑动底板和钢结构之间要焊死,防止底板发生位移;导向支架或滑动支架的安装位置应从支撑面中心向位移反方向偏移,偏移量应为位移值的1/2。

(3)蒸汽热力管道安装时的坡度值应符合设计要求,当设计未规定时,取0.002~0.003之间,坡度应流向管道的疏水点。

(4)蒸汽系统管道应在低点加置放净阀或疏水阀,吹扫时应对所有的疏水器性能进行检验,疏水器的疏水性能应良好。

浅析热力管道中补偿器的应用

浅析热力管道中补偿器的应用

浅析热力管道中补偿器的应用p1、管道热补偿必要性分析管道的热补偿是为了防止管道因温度升高引起热伸长产生应力而遭到破坏所采取的措施。

在管道设计中,应充分利用管道的自然补偿,当利用管段的自然补偿不能满足要求时,应设置补偿器,以保证系统有足够的伸缩余量,减少管道产生的热应力。

1.1 热力管道膨胀长度分析热力管道投入运行后,常因温度升高而引起热膨胀。

管道热膨胀长度可用如下公式计算:△L=a△t L式中:△L———管道膨胀长度(mm);a———管材的线膨胀系数(mm/m·℃),一般钢管道取a=0.012mm/m·℃;△t ———管道工作温度与安装时温度之差(℃);L———需补偿管道长度(m),即所需补偿管道固定支架间的距离;1.2 热膨胀应力分析在未考虑热补偿的状态下,如同将受热膨胀的管道两端固定,限制其自由膨胀伸缩,这时受热管道内将产生很大的热膨胀应力,依据虎克定律,热膨胀应力计算公式如下:σ=εE (kg/cm2)式中:σ———热膨胀应力;ε———相对压缩量,ε=△L/L;E———钢材的弹性模数,常用钢材的弹性模数为2×106。

上式表明,热膨胀应力的大小与相对压缩量和弹性模数成正比,而与管道的长度无关。

将管道热膨胀长度计算公式△L=a△tL代入,上式变为:σ=Ea△t (kg/cm2)对于常用的钢管,其线膨胀系数通常取12×10-6,弹性模数常取2×106,热膨胀应力公式可简化为:σ=24△t kg/cm2。

此公式更方便计算钢管道热膨胀受到限制时产生的热胀应力。

以常用的热力管道Φ219×8为例,当工作介质温度为100℃,安装时的温度为20℃时,则:热膨胀应力σ=24△t=24×(100-20)=1920kg/cm2截面积A=π[(D/2)2-(d/2)2]=3.142×[(21.9/2)2-(20.3/2)2]=53cm2则管道产生的轴向推力为F=Aσ=1920×53=101760kg。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

采暖补偿器的经验计算2010-12-06 16:40
1 、固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。

有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。

可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。

2 、设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。

2.1 、计算管道热伸长量
△X=0.012(t1-t2)L (1)
其中:△ X——管道的热伸长量,mm;
t1——热媒温度,℃,
t2——管道安装时的温度, ℃,一般按-5℃计算.
L——计算管道长度m;
0.012——钢铁的线膨胀系数,mm/m·℃
按t1=95℃简化得:
△X=1.2L ……(2 )
2.2 、确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段
对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。

(管道伸长量分别为40mm和50mm)。

实际设计时一般每段臂长不大于20~30m,不小于2m。

在自然补偿两臂顶端设置固定支架。

“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。

“Z”型补偿器可以看做两个“г”型补偿器。

表1 г”型补偿器最大允许距离
2.3 、确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器
能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。

计算这部分伸长量,如果较长要设置多个补偿器,应注意均匀设置;并在两个补偿器中间设置固定支架。

选择时注意套筒补偿器容易漏水漏气,适合安装在地沟内,不适宜安装在建筑物上部;波纹管补偿器能力大耐腐蚀,但造价高并且需要设置导向支架;方形补偿器需要的安装空间较大,但运行可靠应用广泛。

设计时可以根据工程具体情况选用。

3 、例题[已知] 如图1所示,某民用建筑95/70℃热媒供热管道a-b段长度为32m,b-c 段长度为24m,c-d段长度为63m,d-e段长度为48m,管径如图所示。

[求] 计算管道热伸长量,设置补偿器和固定支架。

[解] 首先按照公式(2)计算可得
a-b段管道热伸长量=38.4mm
b-c段管道热伸长量=28.8mm
c-d段管道热伸长量=75.6mm
d-e段管道热伸长量=57.6mm
图1 供热干管示意图干管示意图
由以上计算可知,
a-b段和b-c段伸长量不超过规定值,可不设补偿器,但应在管段中部(点f、g)设一固定支架,使管道可以有固定点向两侧自由伸缩。

d-e段可以从e点开始向d点量33m的p处设一固定支架。

p-d段长15m.。

c-d段上设h和k点,这样g-c和c-h形成“г”型补偿器, k-d和d-p形成另一“г”型补偿器。

根据管径查表1知c-h长度介于2.5m到18m之间,本系统定为15m; k-d长度介于3m到20m之间,本系统定为15m.。

h-k长度为33m设置一个方形补偿器,详见国标图N106,本不再赘述。

设定好固定支架和补偿器的系统如图2所示。

图2 供热干管补偿器和固定支架设置示意图
4、固定支架和补偿器的设置应按照一定的步骤精心设计,并密切配合施工单位施工才能获得较好的效果。

对此我们应充分重视,不能草草了事。

相关文档
最新文档