1.培养基实罐灭菌及计算

合集下载

《发酵工程实验》教案:发酵培养基的制备和实罐灭菌

《发酵工程实验》教案:发酵培养基的制备和实罐灭菌

一、教案基本信息教案名称:《发酵工程实验》教案:发酵培养基的制备和实罐灭菌课时安排:2课时(90分钟)教学目标:1. 了解发酵培养基的制备方法和步骤。

2. 掌握实罐灭菌的原理和操作技巧。

3. 能够独立完成发酵培养基的制备和实罐灭菌实验。

教学重点:1. 发酵培养基的制备方法。

2. 实罐灭菌的原理和操作技巧。

教学难点:1. 发酵培养基的配比和制备过程。

2. 实罐灭菌的注意事项。

二、教学内容和步骤第一课时:发酵培养基的制备1. 课堂导入(5分钟)介绍发酵培养基的概念和作用,引导学生了解发酵培养基的制备方法和步骤。

2. 讲解发酵培养基的制备方法(15分钟)讲解培养基的配比、称量、溶解和调节pH等步骤。

3. 学生实验操作(45分钟)学生分组,按照发酵培养基的配比和制备方法进行实验操作,教师巡回指导。

4. 实验结果讨论(20分钟)学生展示实验结果,讨论发酵培养基制备过程中的问题和解决方法。

第二课时:实罐灭菌1. 课堂导入(5分钟)介绍实罐灭菌的概念和作用,引导学生了解实罐灭菌的原理和操作技巧。

2. 讲解实罐灭菌原理和操作技巧(15分钟)讲解高压蒸汽灭菌的原理、实罐灭菌的操作步骤和注意事项。

3. 学生实验操作(45分钟)学生分组,按照实罐灭菌的操作步骤进行实验操作,教师巡回指导。

4. 实验结果讨论(20分钟)学生展示实验结果,讨论实罐灭菌过程中的问题和解决方法。

三、教学评价1. 学生实验操作的准确性和熟练度。

2. 学生对发酵培养基制备和实罐灭菌原理的理解程度。

3. 学生在实验过程中解决问题的能力。

四、教学资源1. 实验材料:发酵培养基原料、实验用具、实罐等。

2. 实验仪器:天平、量筒、PH计、高压蒸汽灭菌器等。

五、教学建议1. 提前为学生讲解实验原理和操作步骤,确保学生明白实验目的和意义。

2. 在实验过程中,教师要密切关注学生的操作,及时纠正错误,确保实验安全。

3. 实验结束后,引导学生积极讨论实验结果,提高学生的实验分析和解决问题的能力。

培养基和灭菌

培养基和灭菌

1、无机氮源(快速利用N源):铵盐(如氯化铵、
硫酸铵、硝酸铵、磷酸铵),硝酸盐(如硝酸钠、硝 酸钾)和氨水等。
特点:(1)分解快,能被微生物迅速利用;
(2)引起pH变化。
(NH4)2S04 →2NH3+H2S04
生理酸性物质
NaNO3+4H2→NH3+2H20+NaOH 生理碱性物质
2、有机氮源(慢速利用氮源,多为天然有机 物) :花生饼粉,黄豆饼粉,玉米浆,玉米蛋 白粉,蛋白胨,酵母膏。
2、原理:高温时微生物各种与温度有关的氧化 过程速率增快。
3、特点:时间长、耗热量大,应用不广。一般 用于灭菌后要求保持干燥状态的物料。
(三)湿热灭菌
1、方法: 直接用加压湿蒸汽进行物料或设备容器 的灭菌。用蒸汽将物料升温到115-140℃保持一 定时间,可杀死各种微生物。常用的灭菌条件是 120℃,20-30min。
P、S(可构成细胞物质) Mg、Fe(可作为酶的组成成分或维持酶活性) K、Na(调节细胞渗透压) Cu、Zn、Mn(作为酶的辅基和激活剂)
四、 水:
(1)构成生物体的成分; (2)培养基的组成部分; (3)参与代谢反应; (4)作为代谢反应介质; (5)作为物质传递介质; (6)良好的热导体。
染菌对抗生素生产过程的危害: (1)消耗培养基的营养成分; (2)使培养条件如溶氧、粘度发生变化; (3)有的杂菌会分泌一些对抗生素产生菌有毒或
能使抗生素降解失活的物质,从而造成抗生素产量 大幅度下降; (4)影响后道工序的正常生产、影响产品外观及 内在质量; (5)如果污染了噬菌体,不仅引起产生菌自溶, 而且还会迅速大面积蔓延,严重威胁抗生素的生产。

培养基的制备和灭菌设备

培养基的制备和灭菌设备
5-培养基出口 6-喷淋冷却 7-冷却水
②.喷射加热-真空冷却连续灭菌流程
流程:喷射加热、管道维持、真空冷却
蒸汽
喷射加热器
真空
生培养液
❖培养基用泵打入喷射加
膨胀阀
热器与蒸汽混合升温
维持管
急聚蒸发室
❖进入管道维持器保温
一定时间
❖进入真空闪急蒸发室 冷却降温
灭菌好的培养液
图2-5 加热-真空冷却连续灭菌流程
膨胀阀 急聚蒸发室
❖ 真空冷却可能造成培养 基重新污染
灭菌好的培养液
图2-5 加热-真空冷却连续灭菌流程
③.板式换热连续灭菌流程 流程:薄板换热器加热、管道维持、薄板换
热器冷却
灭菌好的培养液
蒸汽
水冷 却段
热回 收段
加热 段
冷却水
生培养液
维持段
图2-6 薄板换热器连续灭菌流程
特点
❖ 在一台薄板换热器中完成培养液的预热、加热及 冷却三个过程
(二)灭菌方法
灭菌:射线灭菌、药物灭菌、热灭菌 分离:离心沉淀、介质过滤
(三)加热灭菌方式
培养基→加热升温→维持保温→冷却降温→发酵
分批灭菌:三个过程在一个设备内完成 连续灭菌:三个过程分别在不同的设备内完成
(四)灭菌要求
❖ 达到无菌程度 ❖ 尽量减少营养成分损失 ❖ 降低能量消耗
(五)理论灭菌时间
控制
缺点:需要专门设备,投资较大 设备较多,染菌机会也相应较多
2、要求
①.加热设备:加热均匀, 144℃ 20s 2-3min 20s 快速升温到灭菌温度
(温度一致)
②.维持设备:使培养基按
温 度
顺序流动,维持灭菌
温度达到灭菌时间

生化工程第二章-培养基灭菌(1)

生化工程第二章-培养基灭菌(1)







化 工
N0 40 10 6 2 105 81012
程 N 10 3; K 1.8 min 1

二 章
t 2.303 lg N0
KN
培 养
2.303 lg(81015 ) 20.34 min

1.8


生 化 工 实际上,培养基在加热升温时(即升温阶 程 段)就有部分菌被杀灭,特别是当培养基 第 加热至 100 ℃ 以上,这个作用较为显著。 二 因此,保温灭菌时间实际上比上述计算的 章 时间要短。严格地讲,在降温阶段也有杀
基 灭
灭菌的依据。


化 工
微生物热死灭动力学方程
程 微生物热致死是指微生物受热失活直到
第 死亡,微生物受热死亡主要是由于微生物
二 章 培 养 基
细胞内酶蛋白受热凝固,丧失活力所致。
在一定温度下,微生物受热后,其死活细胞 个数的变化如化学反应的浓度变化一样, 遵循单分子反应速率理论。




工 程 第 二 章
章 表明:ln K 与 1/T 之间呈直线关系,其斜率
培 为 –ΔE/R,在不同 T 时做灭菌试验,求得
养 相应的 K 值,即可求出ΔE。 基


生 化 工 程
第 二 章
培 养 基 灭 菌
生 化 工 以上可以看出:ΔE 同 T 一起决定 K 值,即: 程
第 二
K KE,T
章 培 养
将ln K E ln A两边对T求导 RT
基 灭
d ln K dT E RT 2

《发酵工程实验》教案:发酵培养基的制备和实罐灭菌

《发酵工程实验》教案:发酵培养基的制备和实罐灭菌

发酵培养基的制备和实罐灭菌一、实验目的要求学生掌握通风发酵的基本原理及过程,掌握上罐操作技术,掌握流加补料控制技术。

(1)发酵罐及管路、空气过滤器灭菌操作及发酵罐系统管路的熟悉(2)实罐灭菌—培养基灭菌实验二、实验原理2.1 培养基组分的种类和作用:人工按一定比例配制的供微生物生长繁殖和合成各种代谢产物的营养物质。

主要包括:碳源、氮源、无机盐、生长因子、前体2.2 实罐灭菌原理保温温度(℃)加热保温冷却温度(℃)时间(min)三、实验仪器、设备和材料10升发酵罐(PH仪,培养液及酸碱液流加装置,蠕动泵),1台;淀粉水解糖液、尿素等原料。

四、实验内容与方法:酵母菌经扩大培养后,接入10升机械搅拌通风发酵罐培养,根据实际情况选用分批培养或分批补料培养,测定酵母浓度。

主要内容有:试管斜面培养基的配制、面包酵母种子扩大培养基配制、流加用培养基的配制及灭菌。

总流程:斜面培养基配制与灭菌所需仪器物品:灭菌锅、试管、棉塞、培养基原料、培养箱300毫升种子液、500ml三角瓶三只、装液100ml、培养基、培养摇瓶、纱布。

发酵培养基制备,灭菌。

面包酵母菌的培养基组成:酵母斜面培养基:10º麦芽汁固体斜面,PH5.0酵母摇瓶培养基:10º麦芽汁,PH5.0或葡萄糖10%,玉米浆1%,尿素0.2%,PH5.0酵母分批发酵培养基:玉米淀粉经液化、糖化,折合葡萄糖浓度为10%、玉米浆1%,尿素0.2%,PH5.5。

五、实验报告内容和数据处理实验设计原理;发酵系统的结构与操作方法;实罐灭菌工艺。

附:机械搅拌发酵系统介绍:1 技术指标1.1 概述具有温度、转速、氧气流量、空气流量、pH 、DO 、补料、消泡显示及控制功能,并配有机械消泡浆。

1.2指标1.2.1温度:自动控制范围:自来水温+5℃~ 50℃﹙±0.2 ℃﹚显示范围:0 ~150 ℃1.2.2搅拌转速:调速范围50 ~1000±5rpm1.2.3空气流量:显示控制范围0 ~ 10L/min1.2.4pH显示控制:2 ~12pH±0.05﹙酸碱双向﹚1.2.5溶解氧:0 ~150±2℅1.2.6补料、消泡蠕动泵各一台1.2.7 罐体总容积10L,设计压力2.0kg/c㎡、最高工作压力2.0kg/c ㎡,设计工作温度131 ℃1.2.8 灭菌方法:手动控制蒸汽消毒灭菌1.2.9 功率:主机:3kw, 单相220v1.2.10 气源:2 ~4kg/c㎡1.2.11 蒸汽: 2 ~4kg/c㎡2 管路说明该流程图中空气管路阀门的标号为“AXX”,蒸汽管路阀门的标号为“SXX”,冷却水管路阀门标号为“WXX”,冷凝水管路阀门标号为“VXX”,电磁阀标号为“CXX”,物料管路阀门标号为“PXX”,冷冻水管路标号为“CWX”,其它气体管路标号为“NXX”。

第四章 灭菌技术-第2次课(前45分钟)-改后

第四章 灭菌技术-第2次课(前45分钟)-改后
培养基先加热到80 培养基先加热到80~ 80~ 90℃, 90℃,然后再导入蒸汽 升温到120 180℃. 120~ 升温到120~180℃. 预热的目的? ①预热的目的? 预热的方法? ②预热的方法?
(2)培养基灭菌
方法: 方法: 将蒸汽从进气口, 将蒸汽从进气口,排 料口, 料口,取样口直接导入 罐内,所谓的" 罐内,所谓的"三路进 气".使罐温上升到 120~130℃, 120~130℃,罐压维持 Pa(表压 左右, 表压) 在1×l05Pa(表压)左右, 并保温30min 30min. 并保温30min.
(5)要考虑物料体积对升温过程的影响. 要考虑物料体积对升温过程的影响. 物料体积对升温过程的影响
(6)空罐的准备
① 发酵罐空罐严密度的检查 发酵罐空罐严密度 空罐严密度的检查
往往被忽略,但教训深刻. 往往被忽略, 教训深刻.
② 罐内,罐外设备的检查 罐内,罐外设备的检查
搅拌传动系统,罐内管路, 搅拌传动系统,罐内管路, 冷却设备蛇管和夹层 罐外各管路,支管路, 罐外各管路,支管路,阀门 的严密度及畅通情况 取样阀门被菌丝焦化物堵塞 倒罐的教训. 倒罐的教训.
③ 死角的清除 死角的清除
死角指的是在灭菌过程中蒸汽的高温所达不到, 死角指的是在灭菌过程中蒸汽的高温所达不到, 消不透的角落. 消不透的角落.
④ 空罐的预消
有些厂家. 有些厂家.
(7)原材料中颗粒及杂物的干扰 (8)搅拌在实罐灭菌中的作用
(9)加热和保温
间接加热升温 直接进汽
(10)假压力的形成与防止 10) 11) (11)泡沫的产生与消除
加热的主要作用?温度l26 132℃;停留时间20 l26~ 20~ 加热的主要作用?温度l26~132℃;停留时间20~30s

1培养基灭菌和空气除菌技术

1培养基灭菌和空气除菌技术
因此工业上常采用高温快速方法进行灭菌,以保 留更多的营养成分。


工业上实际使用的蒸汽灭菌方法有 两种:

(1)实罐灭菌(即分批灭菌) 将配制好的培养基放入发酵罐,连同发酵罐进行灭菌。开 始时蒸汽先通过夹套或蛇管间接加热,以免过多的冷凝水 稀释培养基。待罐温达80~90℃时,可直接将蒸汽通入 培养基直至到达灭菌温度(一般为121℃,即表压为 0.1MPa)后,维持此温度20~30分钟。此时有关排汽 阀门仍应适当开启,以使蒸汽流动通畅,并同时对附属管 道灭菌。灭菌完毕后,应及时通入无菌空气使罐内维持正 压,然后通过夹套或蛇管将培养基尽快冷却。
热灭菌法,因其中有血清、氨基酸等易受
热破坏的成分。这种培养基应采用孔径小
于0.2微米的滤膜来除菌。
2. 空气的除菌技术

在生物生产过程中,特别是在好气发酵过程和进行
无菌操作的工作室中,都需要使用大量无菌空气。

工业上大规模的无菌空气是用过滤方法获得的。用 于空气除菌的过滤器有两大类,即早期采用的深层 过滤法和后来发展起来的绝对过滤法。
全和合理的。
扩散作用是指小于1微米的颗粒所产生的布朗运动而形成的扩散,当 颗粒遇到介质后被去除。 静电作用是指当颗粒与介质间具有不同电荷时的静电吸引作用,细菌 表面常带负电荷。 介质除菌是上述四种作用的综合作用,也可说总除菌效率是这四种除 菌效率之和。


在以上四种除菌作用中,惯性和拦截作用
随气流速度增大而加强,而扩散和静电作

由于微孔很易被堵塞,因此在微孔膜的外
表应用孔径较大的过滤材料覆盖,并串联
前过滤器,以免空气中的较大颗粒尘埃或
夹带的铁锈等杂物对微孔的损害。使用一
段时间后,可反吹再生,以延长使用寿命。

1第一章 培养基灭菌

1第一章 培养基灭菌

4.工程实践要求使培养基中残存的杂菌孢子数为() A.10-1 B.10-2 C.10-3 D.10-4 5.其他条件相同的条件下,活化能△E对灭菌的影响是 △E越小,则 ( ) A.比热死亡速率值越大 B.微生物越容易死亡 C.微生 物较不容易死亡 D.灭菌所需时间越短 E.灭菌所 需温度越高 6.其他条件相同的条件下,活化能△E对灭菌的影响是 △E越大,则( ) A 比热死亡速率值越大 B 微生物越容易死亡 C 微生物 较不容易死亡 D 灭菌所需要时间越短 E 灭菌所需时间越高 7.微生物的比热死灭速率常数K受哪些因素影响? ( ) A.微生物抗热性 B.微生物数量 C.灭菌时间 D.灭菌方式 E.灭菌温度
k h t 2 t1
t3 E / RT t2
A e
dt
2、保证间歇灭 菌成功的要素
The microscopic worms infect snails, which in
turn lay infected eggs. Humans become infected when they enter fresh water where the snails live. The worms dig through skin to enter the body. They move into blood vessels that supply the intestinal and urinary systems. Then, if worm eggs in human waste enter fresh water, more snails and people become infected.
复习
1.灭菌彻底与否的标准是( ) A 是否杀灭酵母 B 能否杀灭细菌 C 能否杀灭霉菌孢子 D 能否杀灭细菌芽孢 2.在对数残留方程式中,设计上常采用( ) A.N=0.1 B. N=0.01 C.N=0.001 D.N=0.0001 3.一定温度下,微生物营养细胞的均相热死灭动力 学符合化学反应的 ( ) A.零级反应动力学 B.一级反应动力学 C.二 级反应动力学 D.多级反应动力学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培养基实罐灭菌及计算---例题
①间接加热过程的时间及蒸汽量
G ⋅ C tS − t1 τ= ln K ⋅ F t S − t2 28000 × 4.18 132.9 − 25 = ln 132.9 − 90 1674 × 30 = 2.14(h )
培养基实罐灭菌及计算---例题
G ⋅ C (t2 − t1 ) ' (1 + Q ) S= r 28000 × 4.18 × (90 − 65) = × (1 + 0.05) 2169 = 3638.3( kg )
培养基实罐灭菌及计算---例题
已知: G=28000 kg,F=30 m2 ts=132.9℃ (查196kPa表压蒸汽温度) t2s=10℃, t1s=120℃,t1f=30℃ t1=25℃,t2=90℃ K=1674 kJ/m2·h·℃ C=4.18 kJ /kg·℃,v蒸汽=0.613kg/m3 r=2169 kJ /kg, i=2728 kJ /kg ℃
3.实罐灭菌的传热操作时间的计算
• 保温阶段传热及操作时间的计算
加热蒸汽用量
S=(30-50%)·S(直接加热蒸汽用量)
保温时间的计算
N0 ⎛ 2.303 ⎞ τ =⎜ ⎟ ⋅ lg NS ⎝ K ⎠
3.实罐灭菌的传热操作时间的计算
• 冷却阶段传热及操作时间的计算
冷却时间的计算
G ⋅ C1 τ= W ⋅ C2
2.实罐灭菌时间计算
温度
时间
2.实罐灭菌时间计算
温度
1代表连续灭菌 2代表分批灭菌(小罐) 3代表分批灭菌(大罐)
时间
2.实罐灭菌时间计算
温度由 T1 至 T2,灭菌速度常数K是一变值
Km
∫ =
T2
K m ⋅τ P
NP = e
2.实罐灭菌时间计算
• 保温段灭菌时间
第2节 培养基实罐灭菌及计算
1.实罐灭菌的操作 2.实罐灭菌时间计算 3.实罐灭菌的传热及操作时间的计算 4.实罐灭菌操作及阀门、管材的选择
1.实罐灭菌的操作
温 度 Ⅰ Ⅱ ⅢⅣ
τ1 τ2 τ3 τ4
τ时间
1.实罐灭菌的操作
Ⅰ——间接加热阶段,培养基由室温加热至80-90℃ Ⅱ——直接蒸汽加热阶段,培养基由80-90 121℃ Ⅲ——保温阶段,121℃ Ⅳ——冷却阶段,121℃ 培养温度
(2)直接蒸汽加热传热及操作时间的计算 加热蒸汽用量
G ⋅ C (t2 − t1 ) ' (1 + Q ) S= i − t2 ⋅ C i − t2 ⋅ C = r
(Q′热损失为5%-15%)
3.实罐灭菌的传热操作时间的计算
(2)直接蒸汽加热传热及操作时间的计算 加热时间的计算
S ⋅ν τ= 2 2 2 0.785 d1 + d 2 + d 3 ⋅ ω S ⋅ 3600
生物工程设备
华东理工大学
生物工程系
第1章 培养基及培养基灭菌设备
本章重点: 1.热灭菌原理 2.理论灭菌时间的计算对数残留定理 3.实罐灭菌及计算 4.连续灭菌设备及流程设计
第1章 培养基及培养基灭菌设备
第1节 第2节 第3节 第4节 培养基灭菌方法 培养基实罐灭菌及计算 培养基连续灭菌的设备及计算 培养基灭菌的工程要求
t1 S − t 2 S ⎛ A ⎞ ⎟ ⋅ ln ⎜ t1 f − t 2 S ⎝ A −1⎠
A=e
K ⋅F W ⋅C 2
t1 − t 2 S = t1 − t 2
3.实罐灭菌的传热操作时间的计算
τ:冷却所需时间(h) W: 冷却水的流量(kg/h) C1:培养基比热( kJ/kg℃ or kcal/kg℃ ) C2:冷却水比热(kcal/kg℃ or kJ/kg℃ ) t1S:培养基开始冷却时的温度(℃) t1f:培养基冷却结束时的温度(℃) t2S:冷却水进口温度(℃) t1:培养基冷却过程中的任一温度(℃) t2:培养基在t1温度时冷却水的出口温度(℃)
Np ⎛ 2.303 ⎞ τ =⎜ ⎟ ⋅ lg NS ⎝ K ⎠
3.实罐灭菌的传热操作时间的计算
• 升温阶段传热及操作时间的计算
(1)间接加热传热及操作时间的计算 加热蒸汽用量
G ⋅ C (t2 − t1 ) ' (1 + Q ) S= i − t2 ⋅ C i − t2 ⋅ C = r
(Q′热损失为加热蒸汽用量的 5%-15%)
1.实罐灭菌的操作 课件演示
1.实罐灭菌的操作
培养基实罐灭菌操作的关键: • 液面以下与培养基接触的管道都要进蒸汽 • 液面以上不与培养基接触的管道都要排汽
1.实罐灭菌的操作
培养基实罐灭菌的质量评判标准: • 培养基无菌 • 营养成分破坏少 • 培养基灭菌后体积与进料体积相符 • 泡沫少。
2.实罐灭菌时间计算
培养基实罐灭菌及计算---例题
③冷却水用量及冷却时间
G ⋅ C1 ⎛ A ⎞ t1S − t2 S τ= ⎟ ⋅ ln ⎜ W ⋅ C2 ⎝ A − 1 ⎠ t1 f − t2 S 28000 × 4.18 ⎛ 1.4 ⎞ 120 − 10 = ×⎜ ⎟ × ln 35673 × 4.18 ⎝ 1.4 − 1 ⎠ 30 − 10 = 4.68( h )
培养基实罐灭菌及计算---例题
[例1-3]
有一个40 m3发酵罐内装培养基28 m3,不 锈钢蛇管传热面积30 m2,采用实罐灭菌。 培养基原始温度25℃,用196kPa(表压) 蒸汽通过蛇管间接加热培养基至90℃。
培养基实罐灭菌及计算---例题
[例1-3]
①求加热时间和蒸汽用量各为多少? ②若直接用蒸汽把培养基由25℃加热到90℃ 需用蒸汽量和时间? ③若用10℃冷却水冷却灭菌后的培养基,将 其从120℃冷却到30℃,求冷却水用量及 冷却时间各为多少?(实测当培养基t1为 80℃,此时冷却水出口温度为30℃)
[
(
)
]
d1、d2、d3:分别为各进气管直径(m) ν:加热蒸汽比容(m3/kg) ωS:蒸汽在管内的流速(m/s)
3.实罐灭菌的传热操作时间的计算
• 保温阶段传热及操作时间的计算
加热蒸汽用量
S = 1.19 F ⋅ τ
P
ν
F:蒸汽排出口的总面积(cm2) τ:蒸汽排出的时间(min) P:罐内蒸汽的绝对压力(kg/m·s2) ν:加热蒸汽比容(m3/kg)
培养基实罐灭菌及计算---例题
②直接加热过程的时间及蒸汽量 • 40m3发酵罐的出料管与进空气管108×4 由此二根管道同时引入蒸汽
4 • ω=25m/s(蒸汽管道中的流速) F = 2×
π
d 2 = 2 × 0.785 × 0.12 = 0.0157( m 2 )
培养基实罐灭菌及计算--例题
G ⋅ C (t2 − t1 ) (1 + Q ' ) S= i − t2 ⋅ C
28000 × 4.18 × (90 − 25) × (1 + 0.05) = 2728 − 4.18 × 90 = 3044.8( kg )
培养基实罐灭菌及计算--例题
S ⋅ V 3044.8 × 0.613 = τ= F ⋅ω 0.0157 × 25 = 4755.3( s ) = 1.32( h )
问题1
实罐灭菌如要缩短冷却时间,采用何 种方式比较经济合理 1、降低冷却水温度? 2、增加冷却面积? 3、增加冷却水流量?
3.实罐灭菌的传热操作时间的计算
加热时间的计算
G ⋅ C tS − t1 τ= ln K ⋅ F t S − t2
τ:加热所需的时间(h) K:加热过程中的平均传热系数 ( kJ/m2·h·℃ or kcal/m2·h·℃ ) F:夹套或盘管的传热面积(m2) tS:加热蒸汽温度(℃)
3.实罐灭菌的传热操作时间的计算
培养基实罐灭菌及计算---例题
③冷却水用量及冷却时间
A=e
K ⋅F W ⋅C2
t1 − t2 S = t1 − t2
80 − 10 = 1 .4 = 80 − 30
实测当培养基t1为80℃,此 时冷却水出口温度t2为30℃
培养基实罐灭菌及计算---例题
③冷却水用量及冷却时间
K ⋅F W= ln A ⋅ C2 1674 × 30 = ln 1.4 × 4.18 = 35673( kg / h )
3.实罐灭菌的传热操作时间的计算
G:培养基重量(kg) C:培养基比热(kJ/kg· ℃ or kcal/kg℃ ) S:蒸汽耗量(kg) i:蒸汽的热热焓量( kJ/kg or kcal/kg ) r:蒸汽的汽化潜热( kJ/kg or kcal/kg ) t1:开始加热时培养基的温度(℃) t2:加热结束时培养基的温度(℃)
N0 ⎛ 2.303 ⎞ τ =⎜ ⎟ ⋅ lg NS ⎝ K ⎠
• 在实罐灭菌中维持时间一般等于对 数残留定律计算的灭菌时间
2.实罐灭菌时间计算
N0 ⎛ 2.303 ⎞ τ =⎜ ⎟ ⋅ lg NS ⎝ K ⎠
• 严格说在预热100℃-121℃,冷却 121℃-100℃都有部分菌被杀死,当实 罐灭菌的罐越大从100℃预热到121℃ 时间越长被杀灭的菌越多,保温阶段 时间就可以减少
相关文档
最新文档