换元法计算三重积分

合集下载

高等数学 重积分的换元法及含参变量的积分

高等数学  重积分的换元法及含参变量的积分
则由积分(3)确定的函数 ( x )在 [a , b]上可微,并且
( x ) f ( x , y ) d ( x) ( x ) ( x ) f ( x , y )dy ( x ) dy dx x f [ x , ( x )] ( x ) f [ x , ( x )] ( x ). (7)
v
柱面坐标 4. 三重积分换元法 球面坐标
(1) 柱面坐标的体积元素
dxdydz rdrd dz
x r cos , y r sin , z z.
x r sin cos , (2) 球面坐标的体积元素 2 dxdydz r sindrdd y r sin sin , z r cos . (3) 广义球面坐标的体积元素 x ar sin cos , 2 dxdydz abcr sindrdd y br sin sin , z cr cos .
当 x 0 时,上式右端最后一个积分的积分限不变,
根据证明定理1时同样的理由,这个积分趋于 零. ( x ) 又 ( x x ) f ( x x , y )dy M ( x x ) ( x ) ,

( x)
( x x )
f ( x x , y )dy M ( x x ) ( x ) .
f ( x , y )dxdy f [ x(u, v ), y(u, v )] J ( u, v ) dudv.
D D
注意:
同时也兼顾被积函数 f ( x , y ) 的形式.
基本要求:变换后定限简便,求积容易.
1.作什么变换主要取决 于积分区域 D 的形状,

高等数学§9.3.2三重积分的计算2

高等数学§9.3.2三重积分的计算2

x c os z
显 然 : y s 。 in
z z
M(x,y,z)
c o s 0 i s n
y J ( ( x , , y , , z z ) ) s i c n 0 o , s O
00 1 x
P(,)
∴ f (x, y, z)dxdydz f ( cos, sin, z) dddz.
z cr cos .
x2 a2
by22
cz22
r2.
r1
I (a x 2 2 b y2 2c z2 2)dx d y r2 d Jd z rd d
Jabcr2sin
I a b c 0 2 d0 s in d0 1 r 4 d r 54abc.
例 1 1 . 求 I ( a x 2 2 b y 2 2 c z 2 2 ) d x d y d z , :a x 2 2 b y 2 2 c z 2 2 1 .
f (rs ic n o ,rss isn i,r n c o )r2 s id n r d d
例 1 1 . 求 I ( a x 2 2 b y 2 2 c z 2 2 ) d x d y d z , :a x 2 2 b y 2 2 c z 2 2 1 .
x ar sin cos , 解: y br sin sin ,
zzu,v,w
( 2 ) 上 面 变 换 中 的 函 数 在 区 域 具 连 续 偏 导 有 数 ;
( 3 ) J u x , , v y , , w z 0 , u , v , w , 则
f (x, y,z)dxdydz
f(xu ,v,w ,yu ,v,w ,z(u ,v,w )Jdudv
z
d
d
dz

重积分的换元法

重积分的换元法
(u,v) (3) 变换 T : D D 是一对一的,则有
f ( x , y )dxdy f [ x ( u , v ), y ( u , v )] J ( u , v ) dudv .
D
D
.
说明: (1) 如果Jacobi行列式J(u,v)只在D内个别 点上或一条曲线上为零,而在其他点上不为零, 则上述换元公式仍成立. (2) 换 元 形 式 的 选 择 ,可 根 据 积 分 区 域 D或 被 积 函 数 f(x,y)选 择 ,使 换 元 后 的 积 分 区 域 D 不 分 块 ,换 元 后 的 被 积 函 数 f(x,y)易 于 积 出 .
一、二重积分的换元法
平面上同一个点 坐, 标直 与角 极坐标
间的关系 xy为 rrscions.,
上式可看成是从 平极 面 r坐 o到 标直角
坐标平x面 oy的一种变即换 对, 于ro平 面上的一M 点(r,),通过上式变换,变 成xoy平面上的一M点(x, y),且这种变 换是一对一的.
.
定理 设 f ( x , y ) 在 xoy 平面上的闭区域 D 上 连续,变换 T : x x ( u , v ), y y ( u , v ) 将 uov 平面上的闭区域 D 变为 xoy 平面上的 D , 且满足 (1) x ( u , v ), y ( u , v ) 在 D 上具有一阶连续偏导数 ; (2) 在 D 上雅可比式 J (u,v ) ( x , y ) 0;
.
例 1计 算 二 重 积 分 x2y2dxdy,其 中 D是 由 双 曲 线 D
xy1和 xy2,直 线 yx和 y4x所 围 成 的 第 一 象
解 限 内 根 的 据 区 积 域 分 . 区 域 D的 特 点 , 令 uxy,vy, x

三重积分换元法

三重积分换元法

三重积分换元法三重积分是数学中的一个重要概念,它与物理、工程等领域密切相关。

三重积分中的换元法是其中一个非常重要的技巧,能够帮助我们更加高效地求解三重积分问题。

下面,我们将详细介绍三重积分换元法的相关知识。

1. 三重积分介绍三重积分是指对三维立体空间中的某一区域进行积分,其结果通常为一个实数或者也可能是一个向量值函数。

在三重积分中,我们通常会用到三个自变量,这三个自变量通常被称为 $x, y, z$。

对于三重积分问题,我们通常需要先确定被积函数和积分区域,然后再进行求解。

在实际应用中,三重积分通常被用来求解物理、工程等领域的问题。

2. 三重积分换元法的基本原理在求解三重积分时,有时候我们会发现积分区域的形状比较复杂,这时候我们可以使用换元法来简化计算。

三重积分换元法的基本原理是将三重积分中的自变量替换为新的自变量,使得积分区域转化为简单的坐标轴画图形式,从而将原积分区域直接变换为新的积分区域。

具体来说,我们通常会选取满足一定条件的替换,使得其中至少一个自变量的下限和上限随着新的自变量而发生变化,从而简化原有的计算问题。

3. 三重积分换元法的常用技巧在实际计算中,三重积分换元法有多种常用技巧。

下面我们就来分别介绍一下。

(1)圆柱换元法当积分区域为旋转体时,我们可以使用圆柱换元法。

具体而言,我们可以将三重积分中的自变量替换为极坐标系中的角度和半径,从而将积分区域转化为一个简单得多的圆柱体积分。

(2)球面换元法当积分区域为球体时,我们可以使用球面换元法。

具体而言,我们可以将三重积分中的自变量替换为球面坐标系中的极角、方位角和距离,从而将积分区域转化为一个简单得多的球体积分。

(3)柱坐标换元法当积分区域为柱体时,我们可以使用柱坐标换元法。

具体而言,我们可以将三重积分中的自变量替换为柱坐标系中的高度、极径和极角,从而将积分区域转化为一个简单得多的柱体积分。

4. 总结三重积分是数学中的一个重要概念,而三重积分换元法则是其中的一个重要技巧。

数学分析21.5三重积分(含习题及参考答案)

数学分析21.5三重积分(含习题及参考答案)

第二十一章 重积分5三重积分一、三重积分的概念引例:设一空间立体V 的密度函数为f(x,y,z),为求V 的质量M , 将V 分割成n 个小块V 1,V 2,…,V n . 每个小块V i 上任取一点(ξi ,ηi ,ζi ), 则 M=i ni i i i T V f ∆∑=→10),,(lim ζηξ, 其中△V i 是小块V i 的体积, T =}{max 1的直径i ni V ≤≤.概念:设f(x,y,z)是定义在三维空间可求体积有界区域V 上的有界函数. 用若干光滑曲面所组成的曲面网T 来分割V ,把V 分成n 个小区域 V 1,V 2,…,V n .记V i 的体积为△V i (i=1,2,…,n),T =}{max 1的直径i ni V ≤≤.在每个V i 中任取一点(ξi ,ηi ,ζi ), 作积分和i ni i i i V f ∆∑=1),,(ζηξ.定义1:设f(x,y,z)为定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数. 若对任给的正数ε,总存在某一正数δ,使得对于V 的任何分割T ,只要T <δ,属于分割T 的所有积分和都有J V f i ni iii-∆∑=1),,(ζηξ<ε,则称f(x,y,z)在V 上可积,数J 称为函数f(x,y,z)在V 上的三重积分,记作J=⎰⎰⎰VdV z y x f ),,(或J=⎰⎰⎰Vdxdydz z y x f ),,(,其中f(x,y,z)称为被积函数,x, y, z 称为积分变量,V 称为积分区域.注:当f(x,y,z)=1时,⎰⎰⎰VdV 在几何上表示V 的体积.三积重分的条件与性质:1、有界闭域V 上的连续函数必可积;2、如界有界闭区域V 上的有界函数f(x,y,z)的间断点集中在有限多个零体积的曲面上,则f(x,y,z)在V 上必可积.二、化三重积分为累次积分定理21.15:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意(x,y)∈D=[a,b]×[c,d], g(x,y)=⎰he dz z y xf ),,(存在,则积分⎰⎰Ddxdy y x g ),(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰Dhedz z y x f dxdy ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ].设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界,对任意(ξi ,ηj )∈[x i-1,x i ]×[y j-1,y j ], 有m ijk △z k ≤⎰-kk z z j i dz z f 1),,(ηξ≤M ijk △z k .现按下标k 相加,有∑⎰-kz z j i kk dz z f 1),,(ηξ=⎰he j i dz zf ),,(ηξ=g(ξi ,ηj ),以及∑∆∆∆kj i k j i ijkz y x m,,≤j i ji j i y x g ∆∆∑,),(ηξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴g(x,y)在D 上可积,且⎰⎰⎰Dhedz z y x f dxdy ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:若V={(x,y,z)|(x,y)∈D, z 1(x,y)≤z ≤z 2(x,y)} ⊂[a,b]×[c,d]×[e,h]时,其中D 为V 在Oxy 平面上的投影,z 1(x,y), z 2(x,y)是D 上的连续函数,函数f(x,y,z)在V 上的三重积分存在,且对任意(x,y)∈D, G(x,y)=⎰),(),(21),,(y x z y x z dz z y x f 亦存在,则积分⎰⎰Ddxdy y x G ),(存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰D dxdy y x G ),(=⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.证:记F(x,y,z)=⎩⎨⎧∈∈V V z y x ,Vz y x ,z y x f \),,(0),,(),,(0 , 其中V 0=[a,b]×[c,d]×[e,h].对F(x,y,z)应用定理21.15,(如图)则有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰0),,(V dxdydzz y x F=⎰⎰⎰⨯d][c,b][a,),,(hedz z y x F dxdy =⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.例1:计算⎰⎰⎰+Vy x dxdydz22,其中V 为由平面x=1, x=2, z=0, y=x 与z=y 所围区域(如图).解:设V 在xy 平面上投影为D ,则 V={(x,y,z)|z 1(x,y)≤z ≤z 2(x,y),(x,y)∈D},其中D={(x,y)|0≤y ≤x,1≤x ≤2}, z 1(x,y)=0, z 2(x,y)=y, 于是⎰⎰⎰+V y x dxdydz 22=⎰⎰⎰+D y y x dz dxdy 022=⎰⎰+D dxdy y x y 22=⎰⎰+21022x dy y x y dx=⎰212ln 21dx =2ln 21.例2:计算⎰⎰⎰++Vdxdydz z y x )(22,其中V 是由⎩⎨⎧==0x y z 绕z 轴旋转一周而成的曲面与z=1所围的区域.解:V={(x,y,z)|22y x +≤z ≤1,(x,y)∈D}, 其中D={(x,y)|x 2+y 2≤1},⎰⎰⎰++Vdxdydz z y x )(22=⎰⎰⎰+++Dyx dz z y x dxdy 12222)(=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-+Ddxdy y x y x 2121)(2222=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-πθ201022121rdrr r d=⎰πθ20407d =207π.定理21.16:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意x ∈[a,b], 二重积分I(x)=⎰⎰Ddydz z y x f ),,(存在,则积分⎰⎰⎰baDdydz z y x f dx ),,(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰baDdydz z y x f dx ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ], 记D jk =[y j-1,y j ]×[z k-1,z k ], 设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界, 对任意ξi ∈[x i-1,x i ], 有m ijk △D jk ≤⎰⎰jkD i dydz z y f ),,(ξ≤M ijk △D jk .现按下标j,k 相加,有∑⎰⎰k j D i jkdydz z y f ,),,(ξ=⎰⎰Di dydz z y f ),,(ξ=I(ξi ),以及∑∆∆∆kj i k j i ijkz y x m,,≤i ii x I ∆∑)(ξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴I(x)在D 上可积,且⎰⎰⎰baDdydz z y x f dx ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:(如图)若V ⊂[a,b]×[c,d]×[e,h], 函数f(x,y,z)在V 上的三重积分存在,且对任意固定的z ∈[e,h], 积分φ(z)=⎰⎰zD dxdy z y x f ),,(存在,其中D z是截面{(x,y)|(x,y,z)∈V}, 则⎰he dz z )(ϕ存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰h edz z )(ϕ=⎰⎰⎰heD zdxdy z y x f dz ),,(.证:证法与定理21.16证明过程同理.例3:计算I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222, 其中V 是椭球体222222c z b y a x ++≤1.解:I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222=⎰⎰⎰V dxdydz a x 22+⎰⎰⎰V dxdydz b y 22+⎰⎰⎰Vdxdydz c z 22.其中⎰⎰⎰V dxdydz a x 22=⎰⎰⎰-a a V xdydz dx a x 22,V x 表示椭圆面2222c z b y +≤1-22ax 或⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-2222222211a x c z a xb y ≤1. 它的面积为π⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-222211a x c a x b =πbc ⎪⎪⎭⎫⎝⎛-221a x. ∴⎰⎰⎰V dxdydz a x 22=⎰-⎪⎪⎭⎫ ⎝⎛-a a dx a x a bcx 22221π=154πabc. 同理可得:⎰⎰⎰V dxdydz b y 22=⎰⎰⎰V dxdydz cz 22=154πabc.∴I=3(154πabc)=54πabc.三、三重积分换元法规则:设变换T :x=x(u,v,w), y=y(u,v,w), z=z(u,v,w),把uvw 空间中的区域V ’一对一地映成xyz 空间中的区域V ,并设函数x=x(u,v,w), y=y(u,v,w), z=z(u,v,w)及它们的一阶偏导数在V ’内连续且函数行列式J(u,v,w)=wz v z uz w yv y u yw x v x u x ∂∂∂∂∂∂∂∂∂≠0, (u,v,w)∈V ’. 则当f(x,y,z)在V 上可积时,有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dudvdw w v u J w v u z w v u y w v u x f |),,(|)),,(),,,(),,,((.常用变换公式: 1、柱面坐标变换:T :⎪⎩⎪⎨⎧+∞<<∞-=≤≤=+∞<≤=z z ,z ,r y r ,r x πθθθ20sin 0cos , J(r,θ,z)=100cos sin 0sin cos θθθθr r -=r, 即有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dz rdrd z r r f θθθ),sin , cos (.V ’为V 在柱面坐标变换下的原象.注:(1)虽然柱面坐标变换并非是一对一的,且当r=0时,J(r,θ,z)=0,但结论仍成立.(2)柱面坐标系中r=常数, θ=常数, z=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以z 轴为中心轴的圆柱面,θ=常数是过z 轴的半平面,z 的常数是垂直于z 轴的平面(如图).例4:计算⎰⎰⎰+Vdxdydz y x )(22, 其中V 是曲面2(x 2+y 2)=z 与z=4为界面的区域.解法一:V={(x,y,z)|2(x 2+y 2)≤z ≤4, (x,y)∈D}, D={(x,y)|x 2+y 2≤2}.⎰⎰⎰+Vdxdydz y x )(22=⎰⎰⎰++4)(22222)(y x Ddzy x dxdy=⎰⎰+-+Ddxdy y x y x )](24)[(2222=⎰⎰-202220)24(rdrr r d πθ=⎰-2053)2(4dr r r π=⎰-2053)2(4dr r r π=38π.解法二:V 在xy 平面上的投影区域D=x 2+y 2≤2. 按柱坐标变换得 V ’={(r,θ,z)|2r 2≤z ≤4, 0≤r ≤2, 0≤θ≤2π}.∴⎰⎰⎰+V dxdydz y x )(22=⎰⎰⎰'V dz drd r θ2=⎰⎰⎰42320202r dz r dr d πθ=38π.2、球坐标变换:T :⎪⎩⎪⎨⎧≤≤=≤≤=+∞<≤=πθϕπϕθϕθϕ20cos 0sin sin 0cos sin ,r z ,r y r ,r x ,J(r,φ,θ)=0sin cos sin sin cos sin sin sin sin cos cos cos sin ϕϕθϕθϕθϕθϕθϕθϕr co r r r r --=r 2sin φ≥0, 即有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V d drd rr r r f θϕϕϕθϕθϕsin )cos ,sin sin , cos sin (2,V ’为V 在球坐标变换T 下的原象.注:(1)球坐标变换并不是一对一的,并且当r=0或φ=0或π时,J=0. 但结论仍成立.(2)球坐标系中r=常数, φ=常数, θ=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以原点为中心的球面, φ=常数是以原点为顶点, z 轴为中心轴的 圆锥面,θ=常数是过z 轴的半平面(如图).例5:求由圆锥体z ≥22y x +cot β和球体x 2+y 2+(z-a)2≤a 2所确定的立体体积,其中β∈⎪⎭⎫⎝⎛2,0π和a(>0)为常数.解:球面方程x 2+y 2+(z-a)2=a 2可表示为r=2acos φ, 锥面方程z=22y x +cot β可表示为φ=β. ∴V ’={(r,φ,θ)|0≤r ≤2acos φ, 0≤φ≤β, 0≤θ≤2π}. ∴⎰⎰⎰VdV =⎰⎰⎰ϕβπϕϕθcos 202020sin a dr r d d =⎰βϕϕϕπ033sin cos 316d a =343a π(1-cos 4β).例6:求I=⎰⎰⎰Vzdxdydz , 其中V 为由222222c z b y a x ++≤1与z ≥0所围区域.解:作广义球坐标变换:T :⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin cr z br y ar x , 则J=abcr 2sin φ. V 的原象为V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π} ∴⎰⎰⎰Vzdxdydz =⎰⎰⎰⋅1022020sin cos dr abcr cr d d ϕϕϕθππ=⎰2022sin 4πϕϕπd abc =42abc π.习题1、计算下列积分:(1)⎰⎰⎰+Vdxdydz z xy )(2, 其中V=[-2,5]×[-3,3]×[0,1];(2)⎰⎰⎰Vzdxdydz y x cos cos , 其中V=[0,1]×[0,2π]×[0,2π];(3)⎰⎰⎰+++Vz y x dxdydz3)1(, 其中V 是由x+y+z=1与三个坐标面所围成的区域; (4)⎰⎰⎰+Vdxdydz z x y )cos(, 其中V 由y=x , y=0, z=0及x+z=2π所围成.解:(1)⎰⎰⎰+VdV z xy )(2=⎰⎰⎰+--1023352)(dz z xy dy dx =⎰⎰--⎪⎭⎫⎝⎛+335231dy xy dx =⎰-522dx =14.(2)⎰⎰⎰VzdV y x cos cos =⎰⎰⎰202010cos cos ππzdz ydy xdx =21.(3)⎰⎰⎰+++Vz y x dxdydz 3)1(=⎰⎰⎰---+++y x x z y x dz dy dx 1031010)1(=⎰⎰-⎥⎦⎤⎢⎣⎡-++x dy y x dx 1021041)1(121=⎰⎪⎭⎫ ⎝⎛-+-+1041211121dx x x =1652ln 21-. (4)⎰⎰⎰+VdV z x y )cos(=⎰⎰⎰-+xxdz z x y dy dx 20020)cos(ππ=⎰⎰-xydydx x 020)sin 1(π=⎰-20)sin 1(21πdx x x =21162-π.2、试改变下列累次积分的顺序: (1)⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(;(2)⎰⎰⎰+220110),,(y x dz z y x f dy dx .解:(1)积分区域V={(x,y,z)|0≤z ≤x+y, 0≤y ≤1-x, 0≤x ≤1}; ∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1-x, 0≤x ≤1} ∴I=⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(=⎰⎰⎰+-yx ydz z y x f dx dy 01010),,(.∵V 在yz 平面上的投影区域D yz ={(y,z)|0≤y ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-yydx z y x f dz dy 10010),,(+⎰⎰⎰--yy z y dx z y x f dz dy 1110),,(=⎰⎰⎰--yy z zdx z y x f dy dz 1010),,(+⎰⎰⎰-yz dx z y x f dy dz 10110),,(.∵V 在xz 平面上的投影区域D yz ={(x,z)|0≤x ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-xxdy z y x f dz dx 10010),,(+⎰⎰⎰--xx z x dy z y x f dz dx 1110),,(=⎰⎰⎰--xx z zdy z y x f dx dz 1010),,(+⎰⎰⎰-xz dy z y x f dx dz 10110),,(.(2)积分区域V={(x,y,z)|0≤z ≤x 2+y 2, 0≤y ≤1, 0≤x ≤1};∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1, 0≤x ≤1}; 在yz 平面上的投影区域D yz ={(x,y)|0≤y ≤1, 0≤z ≤1+y 2}; 在xz 平面上的投影区域D yz ={(x,y)|0≤x ≤1, 0≤z ≤1+x 2}; ∴I=⎰⎰⎰+2201010),,(y x dz z y x f dy dx =⎰⎰⎰+220110),,(y x dz z y x f dx dy=⎰⎰⎰10010),,(2dx z y x f dz dy y +⎰⎰⎰-+1110222),,(y z y ydxz y x f dz dy=⎰⎰⎰10110),,(dx z y x f dy dz z +⎰⎰⎰--111212),,(yz z dx z y x f dy dz .=⎰⎰⎰10010),,(2dy z y x f dz dx x +⎰⎰⎰-+1110222),,(x z x x dyz y x f dz dx=⎰⎰⎰10110),,(dy z y x f dx dz z +⎰⎰⎰--111212),,(x z z dy z y x f dx dz .3、计算下列三重积分与累次积分:(1)⎰⎰⎰Vdxdydz z 2, 其中V 由x 2+y 2+z 2≤r 2和x 2+y 2+z 2≤2rz 所确定;(2)⎰⎰⎰--+-22222221010y x yx x dz z dy dx .解:(1) 由x 2+y 2+z 2≤2rz, 得S: x 2+y 2≤2rz-z 2, 0≤z ≤2r , 又由x 2+y 2+z 2≤r 2, 得Q: x 2+y 2≤r 2-z 2,2r≤z ≤r ∴⎰⎰⎰Vdxdydz z 2=⎰⎰⎰Sr dxdy z dz 220+⎰⎰⎰Qrr dxdyz dz 22=⎰-2022)2(r dz z rz z π+⎰-rr dz z r z 2222)(π=480595r π. (2)应用柱坐标变换:V ’={(r,θ,z)|r ≤z ≤22r -, 0≤r ≤1, 0≤θ≤2π}, ∴⎰⎰⎰--+-22222221010y x yx x dz z dy dx =⎰⎰⎰-2221020r rdz z rdr d πθ=⎰---1322]2)2[(6dr r r r r π.=⎰---10322]2)2[(6dr r r r r π=)122(15-π.4、利用适当的坐标变换,计算下列各曲面所围成的体积. (1)z=x 2+y 2, z=2(x 2+y 2), y=x, y=x 2;(2)2⎪⎭⎫ ⎝⎛+b y a x +2⎪⎭⎫ ⎝⎛c z =1 (x ≥0, y ≥0, z ≥0, a>0, b>0, c>0). 解:(1)V={(x,y,z)|x 2+y 2≤z ≤2(x 2+y 2), (x,y)∈D}, 其中D={(x,y)|0≤x ≤1, x 2≤y ≤x }. ∴⎰⎰⎰V dxdydz =⎰⎰+Ddxdy y x )(22=⎰⎰+xx dyy x dx 2)(2210=⎰⎥⎦⎤⎢⎣⎡-+-1063223)()(dx x x x x x =353. (2)令x=arsin 2φcos θ, y=brcos 2φcos θ, z=crsin θ, 则J=0cos sin cos cos sin 2sin cos cos cos cos cos sin 2sin sin cos sin 2222θθθϕϕθϕθϕθϕϕθϕθϕcr c br br b ar ar a ---=2abcr 2cos φsin φcos θ,又V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π}. ∴⎰⎰⎰Vdxdydz =⎰⎰⎰1022020sin cos cos 2dr r d d abc ππϕϕϕθθ=3abc.5、设球体x 2+y 2+z 2≤2x 上各点的密度等于该点到坐标原点的距离,求这球体的质量.解:依题意,球体的质量M=⎰⎰⎰≤++++xz y x dV z y x 2222222,应用球面变换得V ’={(r,θ,φ)|-2π≤θ≤2π, 0≤φ≤π, 0≤r ≤2sin φcos θ}. ∴M=⎰⎰⎰-θϕπππϕϕθcos sin 203022sin dr r d d =⎰⎰-πππϕϕθθ05224sin cos 4d d =58π.6、证明定理21.16及其推论. 证:证明过程见定理21.16及其推论.7、设V=⎭⎬⎫⎩⎨⎧≤++1),,(222222c z b y a x z y x , 计算下列积分:(1)⎰⎰⎰---Vdxdydz c z b y a x 2222221;(2)⎰⎰⎰++Vc z by ax dxdydz e 222222.解:应用球面变换得V ’={(r,θ,φ)| 0≤θ≤2π, 0≤φ≤π, 0≤r ≤1}. (1)⎰⎰⎰---VdV cz b y a x 2222221=⎰⎰⎰-10220201sin dr r abcr d d ϕϕθππ =42πabc . (2)⎰⎰⎰++Vc z b y ax dV e222222=⎰⎰⎰12020sin dr e abcr d d r ϕϕθππ=)2(4-e abc π.。

三重积分的计算

三重积分的计算

方法2. 切片法 (“先二后一”)
设空间闭区域 ( x, y, z ) ( x, y ) D( z ), c1 z c2 ,
z
其中 D ( z ) 是用平面 z=z 截闭区域
所得的平面闭区域,则有
c2 dz c1
c2

z
c1
Dz
c1
f ( x, y, z)dv

D( z )
f ( x, y, z)dxdy.
o
x
y
(先二后一法) (切片法)
例1.计算 xdxdydz , 其中为三个坐标面

及平面x y z 1所围成的闭区域。
z
1
o
1
1
y
x
2 2 2 2 求由两个旋转抛物面 z 3 x y 和 z 5 x y 例2 的 x 0, y 0 部分所围成的立体区域 的体积.
2 2
点到 z 轴的距离 成正比,求其 质量 m 。
解:密度函数 ( x, y, z ) k x 2 y 2 (k 0) ,则
m k x 2 y 2 dxdydz 。

z
y z 4
x y 16
在 xoy 平面上的投影区域为
2
2
4
o x
Dxy {( x, y) x 2 y 2 16} ,
z1 ( x, y ) z z 2 ( x, y ) : ( x, y ) D 细长柱体微元的质量为
z2 ( x, y ) z ( x, y ) f ( x, y, z )d z d xd y 1 该物体的质量为
z z2 ( x, y )

三重积分的换元法(北工大)

三重积分的换元法(北工大)
2 2 V
23
例6
计算密度函数 ( x, y, z ) 1 的均匀上
V : x 2 y 2 z 2 a 2 ( z 0) 的重心. 半球体
例7
计算密度函数 ( x, y, z ) 1 的均匀上 半球体 V : x y z 1
2 2 2
关于三个坐标轴的转动惯量.
4
2.柱面坐标变换 x r cos , 设 y r sin , z z,
cos ( x, y, z ) sin ( r , , z ) 0
其中 0
r , 0 2 , z .
0 0 r, 1
r sin r cos 0
f ( x , y , z )dxdydz
V
f ( r cos , r sin , z ) ቤተ መጻሕፍቲ ባይዱ dr d dz .
V
5
dV = dxdydz
z
rdrddz
f ( x , y, z )dxdydz

dV
dz
f ( r cos , r sin , z )
dv r 2 sin drdd
14
例 4 求区域 x y z 2a 与 z 的公共部分的体积.
2 2 2 2
x y
2
2
解 由锥面和球面围成,采用球面坐标,
由x
2
y z 2a
2 2
2
r 2a,
z x y
2 2
, 4
: 0 r 2a ,
2 2
2. 积分区域Ω是由柱面、锥面、旋转 抛物面、平面或球面所围成. 常用柱面坐标计算. 例1 计算抛物面 x 2 y 2 az(a 0), 柱面 x y 2ax(a 0) 与平面

三重积分

三重积分
中值定理. 3) 中值定理. 上连续, 在有界闭域 上连续,V 为 的 体积, 体积, 则存在 (ξ,η,ζ ) ∈, 使得
∫∫∫ f (x, y, z)dv = f (ξ,η,ζ )V
二、利用直角坐标系计算三重积分
定理21. 定理21.15 设f ( x, y, z )在长方体 = [ a, b] × [c, d ] × [e, h]上 21 三重积分存在, 且对每个x ∈ [a, b], 二重积分 I ( x) = ∫∫D f ( x, y, z )dydz
2 2
x 2 ≤ y ≤ 1, 1 ≤ x ≤ 1.
I = ∫1 dx ∫x 2 dy ∫0
1
1
x2 + y2
f ( x , y , z )dz .
练习1 练习 将 I = ∫∫∫ f (x, y, z) d v用三次积分表示,其中由
六个平面 x = 0, x = 2, y =1, x + 2y = 4, z = x, z = 2 所 围成 , f (x, y, z) ∈C().
微元线密度≈
记作
∫∫Ddxdy∫z (x, y)
1
z2 ( x, y)
f (x, y, z) dxdy
f (x, y, z)dz
方法3. 方法 三次积分法 设区域 :
z
z = z2 ( x , y )
z2 S 2
z1(x, y) ≤ z ≤ z2 (x, y)
y1(x) ≤ y ≤ y2 (x) (x, y) ∈D: o a ≤ x ≤b a
0 ≤ z ≤ 1 x 2y
z
1
1 2
解: V :
1 0 ≤ y ≤ 2 (1 x)
0 ≤ x ≤1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例5. 计算三重积分
2 2

( x 2 y 2 z 2 )d xd yd z , 其中
2 2 2 2
为锥面 z x y 与球面 x y z R 所围立体.
解: 在球面坐标系下
0r R : 0 4 0 2

z

rR

2 0

V
当 f ( x, y, z ) f ( x, y, z ) 即被积函数关于z为偶函数时 , f ( x, y, z )dxdydz 2 f ( x, y, z )dxdydz
V

V1
其中 V1 是V 位于 xoy平面上侧的部分.
yoz , zox 对称,且被积 积分区域关于其它坐标平面:
积和式” 极限 下列“乘
0 k 1
lim f ( k ,k , k )vk
n
记作
f ( x, y, z)dv
存在, 则称此极限为函数 f ( x, y, z ) 在上的三重积分.
dv称为体积元素, 在直角坐标系下常写作 dxd ydz.
1. 利用直角坐标计算三重积分 先假设连续函数 f ( x, y, z ) 0 , 并将它看作某物体 的密度函数 , 通过计算该物体的质量引出下列各计算 方法: 方法1 . 投影法 (“先一后二”)
z x 2 y 2 d xd yd z
成半圆柱体.
0 2 cos 解: 在柱面坐标系下 : 0 2 先二后一 0 za
原式 z d d d z
2
z a
o
y
zd z
0
a

0
2 d
0
2 cos
2 d
2 2 cos x
2 2 2

4
利用对称性
(x 2 y 2 z 2 ) dv

o x
y
用球坐标

2 0
d sin d
4 0

2 4 r dr 0
64 2 1 5 2
2 2 2 2 其中 I ( x 5 xy sin x y ) d x d y d z , 2. 计算
关于 x为奇函 数 ( x2 y2 ) d x d y d z
z
4 1 o
Dz
y
x
f ( x, y, z)dv
d xd y
D z2 ( x , y ) z1 ( x , y )
f ( x, y, z )d z
方法2. 截面法 (“先二后一”)
( x, y ) Dz : czd
z
d
z
以 Dz 为底, d z 为高的柱形薄片质量为
Dz

D f ( x, y, z ) d x d y
球面坐标系 r 2 sin dr d d 变量可分离. * 说明: 三重积分也有类似二重积分的换元积分公式:
适用情况 积分区域多由坐标面 围成 ; 被积函数形式简洁, 或
f ( x, y, z ) d xd yd z * F (u, v, w) J
对应雅可比行列式为 J ( x, y, z ) (u , v, w)
原式 =
[(1 4h) ln(1 4h) 4h] 4
h d d z d 2 0 0 1 2 2 h 2 (h ) d 2 0 4 1
1 x
D
1
2
0 2
y
2
d xd y r 2 dz
4
r2 4
函数分别是 x, y, 的奇、偶函数,也有上述类似的结论
(2)若空间区域具有轮换对称性,即
( x, y, z) V , ( y, z, x),( z, x, y) V ,
也就是三字母轮换积分区域不改变,

f ( x, y, z) f1 ( x, y, z) f1( y, z, x) f1( z, x, y)
坐标面分别为
0 r 0 2 0
球面
半平面 锥面
M ( r , , )
z z
r o x
M
y
r 常数
常数 常数
r sin z r cos
如图所示, 在球面坐标系中体积元素为
z
d
o y ( x, y,0) x
如图所示, 在柱面坐标系中体积元素为,在二重积分的时候我 们讲过极坐标的转化 面积微元为 d d d
体积微元 d v d d d z
z
d
因此
f ( x, y, z)dxd ydz F ( , , z ) d d d z
3. 利用球坐标计算三重积分
设 M ( x, y, z ) R 3 , 其柱坐标为 ( , , z ), 令 OM r , ZOM , 则(r , , ) 就称为点M 的球坐标.
直角坐标与球面坐标的关系
x rsin cos y r sin sin z r cos
f ( x, y, z )dxdydz 3 f ( x, y, z )dxdydz.
1 V V1
2 2 2 4. 设由锥面 z x y 和球面 x y z 4 z 2 所围成 , 计算 I (x y z ) dv . 2 提示:
2
2
I (x y z 2 x y 2 yz 2 xz ) dv
就称为点M 的柱坐标. 直角坐标与柱面坐标的关系:
x cos y sin zz
坐标面分别为
0 0 2 z
圆柱面 半平面 平面
z
z
M ( x, y , z )
常数
常数
z 常数
1 2 由 z ( x y 2 ), z 1, z 4 围成 . 2
2 2 2 解: I x d x d y d z 5 x y sin x y d xd yd z
2


利用对称性
1 2 1 4 2 2 d z ( x y ) d x d y Dz 2 1 2 2z 3 1 4 d z d r d r 21 0 0 2 1
rR

2 0
( x 2 y 2 z 2 )d xd yd z
4

d
1 R 5 (2 2) 5

R 2 0
dr
R2 2
( z ) d z
2 2
x
o
y
注:这个式子虽容易写出,但是要 求积分结果非常难,我们能不能找 到更加简便的方法来研究这道题目 呢?
dudvdw
一、利用空间区域的对称性或被积函数的奇偶性
计算三重积分
(1)若空间闭区域关于平面 xoy 对称, 即
( x, y, z ) V , ( x, y, z ) V , 则当 f ( x, y, z ) f ( x, y, z )
即被积函数关于z 为奇函数时, f ( x, y, z )dxdydz 0
lim M 0
( k ,k , k )vk
k 1
n
v k
( k , k , k )
定义. 设 f ( x, y, z ) , ( x, y, z ) , 若对 作任意分割: vk ( k 1 , 2 , , n), 任意取点 ( k ,k , k ) vk ,
方法2 . 截面法 (“先二后一”)
最后, 推广到一般可积函数的积分计算.
方法1 . 投影法 (“先一后二”) z 找 及在 xoy面投影区域D。过D上一点 ( x, y ) “穿线”确定
的积分上下限,完成了“先一”这一步(定积分);进而按照 二重积分的计算步骤计算投影区域D上的二重积分,完成”后 二“这一步。
第三节
三重积分
换元法计算三重积分
一、柱面坐标求三重积分
二、球面坐标求三重积分
回顾 三重积分的概念
引例: 设在空间有限闭区域 内分布着某种不均匀的
物质, 密度函数为 ( x, y, z ) C ,求分布在 内的物质的
质量 M . 解决方法: 类似二重积分解决问题的思想, 采用 “分割, 近似, 求和, 取极限” 可得
z

o x d d
d dz
y
其中 F ( , , z ) f ( cos , sin , z ) 适用范围:
1) 积分域表面用柱面坐标表示时方程简单 ;
2) 被积函数用柱面坐标表示时变量互相分离.
其中为由 例1. 计算三重积分 柱面 x 2 y 2 2 x 及平面 z 0, z a (a 0), y 0 所围
d v r 2 sin d r d d
因此有
dr

r
o
d

d
f ( x, y, z )d xd yd z
x

y
F (r , , ) r 2 sin d r d d
适用范围:
其中 F (r , , ) f (r sin cos , r sin sin , r cos ) 1) 积分域表面用球面坐标表示时方程简单; 2) 被积函数用球面坐标表示时变量互相分离.
h
x
o
y
2
2 h
例3. 计算三重积分
2 2

( x 2 y 2 z 2 )d xd yd z , 其中
2 2பைடு நூலகம்2 2
相关文档
最新文档