三角函数图像变换顺序详解

合集下载

三角函数的图像及其变换规律

三角函数的图像及其变换规律

三角函数的图像及其变换规律三角函数是高中数学中的重要内容之一,也是大学数学和物理的基础。

其中,三角函数与图像变换规律是我们需要深入了解的。

一、初步认识三角函数的图像三角函数是由单位圆上的点的坐标表示的函数,我们称这些点的坐标为正弦和余弦,正弦函数的图像和余弦函数的图像可以通过下面的方式作出:1. 画一个以原点 O 为圆心、1 为半径的单位圆;2. 以非负 x 轴正半轴为起始线,从原点开始按逆时针方向旋转一定角度θ,记作点 A (1,0),A 点纵坐标就是正弦值sinθ;3. 以非负 y 轴正半轴为起始线,从原点开始按逆时针方向旋转一定角度θ,记作点 B (0,1),B 点横坐标就是余弦值cosθ。

4. 相邻两个峰值之间的水平距离称为周期,即正弦函数和余弦函数的周期都是2π。

这样我们就可以画出正弦函数 y = sin x 和余弦函数 y = cos x 的图像了。

在这个图像中,横轴表示角度,纵轴表示函数值。

另外,三角函数中还有一种常见的函数,即 y = tan x(正切函数)和 y = cot x(余切函数),它们的图像可以通过画出正弦函数和余弦函数的图像来得到。

二、三角函数的图像变换规律我们还可以通过对函数公式的系数进行变换,来改变函数图像的期数、振幅、图像的左右平移及上下平移等。

具体变换规律如下:1. 函数 y = A sin(Bx - C) + D,其中 A 为振幅,B 为周期,C 为左右平移,D 为上下平移。

当 A 和 B 变化时,函数图像的振幅和期数也随之发生变化。

其中,若 A > 1,则函数图像沿 y 轴方向压缩;若 A < 1,则函数图像沿 y 轴方向伸长。

当 B > 1 时,函数图像变窄了,其左右的振动次数增多,周期减小;当 B < 1 时,函数图像变宽了,左右振动次数减少,周期增加。

当 C > 0 时,函数图像向右移动;当 C < 0 时,函数图像向左移动。

三角函数图像变换ppt

三角函数图像变换ppt
分析 : ( 1 )由图意知,最大温度差为 30 10 20
( 2 )此图为y A sin( x ) b的图像,求出各个参数即可 .
图中从6时到 时是半个周期的图像 14
2 T 16 , 16 8
又由图意知A 30 10 30 10 10 ,b 20 2 2
与x轴两相邻交点之间的距离为:___________________; 2
π ⑥两相邻最大值之间的距离是:___________________;
最小值与相邻x轴交点之间的距离为:___________________。 4
例1、 已知函数y 2 sin x cosx 2 3 cos2 x 3 ,填空:
①振幅是: 频率是: 初相是: ② 定义域是:
2
1
周期是: 相位是:
π
2x 3
3
x k ( k Z ) 2 ③当x __________ 时 ; 12 _____ ,y max _______
[k
R
值域是: [-2,2]
7 ,k ]( k Z ) 12 12 ④ 递减区间是:_________________ k x (kZ) 12 2 ⑤图像的对称轴方程为:__________________; k ( ,0)(k Z) 图像的对称中心为:__________________; 6 2
( 1) 当函数y取最大值时, 求自变量x的集合; ( 2) 该函数的图像可由 y sin x( x R )的图像经过怎样平移和 伸缩变换得到? 1 3 2 解 : ( 1 )y cos x sin x cos x 1 2 2
1 cos 2x 1 3 sin 2x 1 2 2 4

(完整版)三角函数图像平移变换

(完整版)三角函数图像平移变换

三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量"起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象. 途径二:先周期变换(伸缩变换)再平移变换。

先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin (ωx +ϕ)的图象。

1。

为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A )向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是CA sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像B(A)向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7。

三角函数图像变换

三角函数图像变换

三角函数图象的平移和伸缩函数s i n ()y A x k ωϕ=++的图象与函数s i n y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x kϕ=++的图象.先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x=的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x kωϕ=++的图象.例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πs i n24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2s i n 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2s i n 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭. 对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=-⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数. 解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=-⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=-⎪⎝⎭的图象.练习:1、选择题:已知函数)5sin(3π+=x y 的图象为C 。

高中数学中的三角函数的基本变换规律

高中数学中的三角函数的基本变换规律

高中数学中的三角函数的基本变换规律在高中数学的学习过程中,三角函数是一个重要的内容。

它们在解决几何问题、物理问题以及工程问题中发挥着重要的作用。

而要理解三角函数的性质和应用,我们首先需要掌握它们的基本变换规律。

一、平移变换规律平移是指将函数图像沿着横坐标或纵坐标方向进行平移。

对于三角函数而言,平移变换规律可以用以下形式表示:1. 正弦函数的平移变换规律:y = a*sin(b(x-c)) + d其中,a表示振幅的变化,b表示周期的变化,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的平移变换规律:y = a*cos(b(x-c)) + d同样地,a、b、c、d分别表示振幅、周期、横坐标方向平移量和纵坐标方向平移量。

通过平移变换规律,我们可以将函数图像在平面上进行移动,从而观察到函数图像的变化。

二、伸缩变换规律伸缩是指将函数图像沿着横坐标或纵坐标方向进行拉伸或压缩。

对于三角函数而言,伸缩变换规律可以用以下形式表示:1. 正弦函数的伸缩变换规律:y = a*sin(b(x-c)) + d其中,a表示纵坐标方向的伸缩倍数,b表示横坐标方向的伸缩倍数,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的伸缩变换规律:y = a*cos(b(x-c)) + d同样地,a、b、c、d分别表示纵坐标方向的伸缩倍数、横坐标方向的伸缩倍数、横坐标方向平移量和纵坐标方向平移量。

通过伸缩变换规律,我们可以观察到函数图像在平面上的形状发生变化,从而更好地理解函数的性质。

三、反射变换规律反射是指将函数图像沿着横坐标或纵坐标方向进行镜像。

对于三角函数而言,反射变换规律可以用以下形式表示:1. 正弦函数的反射变换规律:y = -a*sin(b(x-c)) + d其中,a表示振幅的变化,b表示周期的变化,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的反射变换规律:y = -a*cos(b(x-c)) + d同样地,a、b、c、d分别表示振幅、周期、横坐标方向平移量和纵坐标方向平移量。

三角函数图形的变换

三角函数图形的变换

三角函数图形的变换1、正弦与余弦函数图象的变换2、由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换):先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。

途径二:先周期变换(伸缩变换)再平移变换:先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。

作y =sin x (长度为2π的某闭区间)的图象 得y =sin(x +φ) 的图象得y =sin ωx 的图象 得y =sin(ωx +φ) 的图象 得y =sin(ωx +φ) 的图象 得y =Asin(ωx +φ)的图象,先在一个周期闭区间上再扩充到R 上沿x 轴平 移|φ|个单位 横坐标 伸长或缩短 横坐标伸 长或缩短沿x 轴平 移|ωϕ|个单位 纵坐标伸 长或缩短纵坐标伸 长或缩短【经典例题】图像变换一:左右平移1、把函数R x x y ∈=,sin 图像上所有的点向左平移4π个单位,所得函数的解析式为 _________2、把函数R x x y ∈=,cos 图像上所有的点向右平移5π个单位,所得函数的解析式为 _________图像变换二:纵向伸缩3、对于函数R x x y ∈=,s i n 3的图像是将R x x y ∈=,sin 的图像上所有点的______(“横”或”纵”)坐标______(伸长或缩短)为原来的______而得到的图像。

最全三角函数的图像与性质知识点总结

最全三角函数的图像与性质知识点总结

三角函数的图像与性质一、正弦函数、余弦函数的图像与性质
(
二、正切函数的图象与性质
三、三角函数图像的平移变换和伸缩变换
1. 由x y sin =的图象得到)sin(ϕω+=x A y (0,0A ω>>)的图象
注意:图象时一定要注意平移与伸缩的先后顺序,否则会出现错误。

2. )sin(ϕω+=x A y (0,0A ω>>)的性质
(1)定义域、值域、单调性、最值、对称性:
将ϕω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当ϕ取特殊值时,这些复合函数才具备奇偶性:
)sin(ϕω+=x A y ,当πϕk =时为奇函数,当2
ππϕ±=k 时为偶函数;
(3)最小正周期:ω
π2=T
3. y =A sin(ωx +φ), x ∈[0,+∞) (0,0A ω>>)中各量的物理意义
(1) A 称为振幅; (2)2T πω
=称为周期;
(3)1f
T
=
称为频率;
(4)x ωϕ+称为相位;
(5)ϕ称为初相 (6)ω称为圆频率.。

三角函数的图象及其变换.

三角函数的图象及其变换.
7 D. y sin(10 x ) 4
1 变式:先将横坐标缩短为原来的 2 倍,再向右平移 4
个单位呢?
( A
)
3.要得到 y 3sin(2 x ) 的图象,只需将 y 3cos 2 x 的图象( D )
4

A.左移 个单位 4 C.左移 个单位 8
D.右移
B.右移 个单位 4
8
个单位
典型例题启示
例1. (05全国)设函数 f ( x) sin(2 x ) ,
y f ( x) 图象的一条对称轴是直线 x

8
.
(1)若 0, 求 ; 并求函数 y f ( x) 的零点;
(2)画出函数 y f ( x) 在区间 0, 上的图象.
对函数图像变化的影响.
要点
1.y=sinx、y=cosx、y=tanx的图象
2. y=Asin(ωx+φ)的图象及作法 ① 五点法 ②图象变换法
3.三角函数的图象变换 ①振幅变换:y=sinx→y =Asinx 将 y=sinx 的图象上各点的纵坐标变为原来的 A 倍 f ( x) Af ( x) (横坐标不变); (纵向伸缩 ) ②相位变换:y=Asinx→y=Asin(x+φ) 将 y=Asinx 的图象上所有点向左 ( φ>0) 或向右 ( φ <0)平移|φ|个单位; (左右平移f)( x) f ( x a) ③周期变换:y=Asin(x+φ)→y=Asin(ωx+φ) 将 y=Asin(x+φ) 图象上各点的横坐标变为原来的 1/ω 倍 (ω>0) (纵坐标不变).(横向伸缩) f ( x) f (ax)
试求h关于t的函数关系式并画出简图.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《图象变换的顺序寻根》
题根研究
一、图象变换的四种类型
从函数y = f (x)到函数y = A f ()+m,其间经过4种变换:
1.纵向平移——m 变换
2.纵向伸缩——A变换
3.横向平移——变换
4.横向伸缩——变换
一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样.
以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题.
【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到
【解法1】第1步,横向平移:
将y = sin x向右平移,得
第2步,横向伸缩:
将的横坐标缩短倍,得
第3步:纵向伸缩:
将的纵坐标扩大3倍,得
第4步:纵向平移:
将向上平移1,得
【解法2】第1步,横向伸缩:
将y = sin x的横坐标缩短倍,得y = sin 2x
第2步,横向平移:
将y = sin 2x向右平移,得
第3步,纵向平移:
将向上平移,得
第4步,纵向伸缩:
将的纵坐标扩大3倍,得
【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变
换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大.
【质疑】对以上变换,提出如下疑问:
(1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变
(2)在横向平移和纵向平移中,为什么它们增减方向相反——
如当<0时对应右移(增方向),而m < 0时对应下移(减方向)(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反——
如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”
【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式
(y+) = f (),则x、y在形式上就“地位平等”了.
如将例1中的变成
它们的变换“方向”就“统一”了.
对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”这是因为在“一次”替代:x→中,平移是对x进行的.
故先平移(x→)对后伸缩(→)没有影响;
但先收缩(x→)对后平移(→)却存在着“平移”相关. 这就是为什么(在例1的解法2中)后平移时,有的原因.
【说明】为了使得4种变换量与4个参数(A,,,m)对应,降低“解题风险”,在由sin x变到A sin () (> 0) 的途中,采用如下顺序:
(1)横向平移:x→
(2)横向伸缩:x+→
(3)纵向伸缩:sin () →A sin ()
(4)纵向平移:A sin () →A sin () + m
这正是例1中解法1的顺序.
二、正向变换与逆向变换
如果把由sin x 到A sin ()+m的变换称作正向变换,那么反过来,由A sin ()+m到sin x变换则称逆向变换.显然,逆向变换的“顺序”是正向变换的“逆”.
因为正向变换的一般顺序是:
(1)横向平移,(2)横向伸缩,(3)纵向伸缩,(4)纵向平移.
所以逆向变换的一般顺序则是:
(1)纵向平移,(2)纵向伸缩,(3)横向伸缩,(4)横向平移.
如将函数y= 2sin (2-) +1的图像下移1个单位得y=2sin (2x-),再将纵坐标缩小
一半得y=sin(2 x-),再将横坐标扩大2倍得y=sin(x-),最后将图象左移得函数y= sin x.
【例2】将y= f (x)·cos x的图象向右平移, 再向上平移1, 所得的函数为y=2sin2 x. 试求f (x)的表达式.
【分析】这是图象变换的逆变换问题:已知函数的变换结果,求“原函数”. 我们考虑将“正向变换”的过程倒逆回去而得“逆向变换”的顺序.
【解析】将y = 2sin2 x下移1个单位(与正向变换上移1个单位相反),
得y = 2sin2 x-1,再将 2sin2x-1左移(与正向变换右移相反)

令f (x)·cos x = 2sin x cos x 得f (x) = 2sin x
【说明】由此得原函数为y=f(x)cos x=2sin x cos x=sin2x. 正向变换为sin 2x→2sin2x,其逆变换为2sin2x→sin2x.
因为2sin2x=1+sin(2 x-),所以下移1个单位得sin(2 x-),左移得sin2x.
三、翻折变换使> 0
平移变换x→是“对x而言”,由于x过于简单而易被忽略.
强调一下,这里x的系数是+1. 千万不要误以为是由sin(- x)左移而得.
其实,x或y的系数变 -1,也对应着两种不同的图象变换:由x→ - x对应着关于y 轴的对称变换,即沿y轴的翻折变换;由f (x) → - f (x)对应着关于x轴的对称变换,即沿x轴的翻折变换.
【例3】求函数的单调减区间.
【分析】先变换 -3x→3x,即沿y轴的翻折变换.
【解析1】,转化为求g(x)=sin(3x-)的增区间
令≤≤
≤x ≤(f(x)减区间主解)
又函数的f(x)周期为,故函数f(x)减区间的通解为
≤x ≤
【解析2】的减区间为
≤≤
即是≤x ≤
【说明】从图象变换的角度看问题,比较解析1和解析2可知,求f(x)的减区间,实际上分两步进行:
(1)先求得f(x)减区间的主解≤x ≤
(2)再利用主解进行横向平移(的整数倍)即得f(x)减区间的通解.
【思考】本解先将“正数化”,使>0是本解成功的关键. 否则,如果去解不等式组
将会使你陷入歧途,不防试试!。

相关文档
最新文档