换热器设计方案书校核流程图

合集下载

列管式换热器课程设计(含有CAD格式流程图和换热器图)

列管式换热器课程设计(含有CAD格式流程图和换热器图)

X X X X 大学《材料工程原理B》课程设计设计题目: 5.5×104t/y热水冷却换热器设计专业: -----------------------------班级: -------------学号: ----------- 姓名: ---- 日期: ---------------指导教师: ----------设计成绩:日期:换热器设计任务书目录1.设计方案简介2.工艺流程简介3.工艺计算和主体设备设计4.设计结果概要5.附图6.参考文献1.设计方案简介1.1列管式换热器的类型根据列管式换热器的结构特点,主要分为以下四种。

以下根据本次的设计要求,介绍几种常见的列管式换热器。

(1)固定管板式换热器这类换热器如图1-1所示。

固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。

当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

(2)U型管换热器U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。

管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。

U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。

其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。

此外,其造价比管定管板式高10%左右。

(3)浮头式换热器浮头式换热器的结构如下图1-3所示。

其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。

浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。

换热器课程设计说明书

换热器课程设计说明书

换热器原理与设计课程设计计算说明书设计题目换热器原理与设计课程设计学院(系):机电工程学院专业:能源与动力工程班级:姓名:学号:指导老师:完成日期:新余学院目录第一部分确定设计方案1.1选择换热器的类型两流体温度变化情况:热流体进口温度130℃,出口温度40℃。

冷流体进口温度30℃,出口温度40℃。

从两流体温度来看,估计换热器的管壁温度和壳体壁温之差很大,因此初步确定选用浮头式列管换热器,而且这种型式换热器管束可以拉出,便于清洗;管束的膨胀不受壳体约束。

1.2流动空间及流速的确定由于煤油的粘度比水的大,井水硬度较高,受热后易结垢,因此冷却水走管程,煤油走壳程。

另外,这样的选择可以使煤油通过壳体壁面向空气中散热,提高冷却效果。

同时,在此选择逆流。

选用ф25×2.5的碳钢管,管内流速取u i=0.75m/s。

第二部分确定物性数据定性温度:可取流体进、出口温度的平均值。

壳程煤油的定性温度为: T=(130+40)/2=85℃管程冷却水的定性温度为:t=(30+40)/2=35℃根据定性温度,分别查取壳程和管程流体的有关物性数据。

煤油在90℃下的有关物性数据如下:密度ρo= 810kg/m3定压比热容 cp o=2.3kJ/(kg·℃)导热系数λo=0.13W/(m·℃)粘度μo=0.00091 Pa·s冷却水在32℃下的物性数据:密度ρi=994kg/m3定压比热容 cp i=4.187kJ/(kg·℃)导热系数λi=0.626 W/(m·℃)粘度μi=0.000727 Pa·s第三部分工艺流程图第四部分 计算总传热系数4.1热负荷的计算以煤油为计算标准算它所需要被提走的热量: Q=qc Δt=2.39×108330×24x2.22x (130-40)=7.034x106KJ/h=1953.8KW4.2平均传热温度计算两流体的平均传热温差,暂按单壳程、多管程计算。

化工设计-换热器设计方案书.

化工设计-换热器设计方案书.

闽江学院课程设计题目年处理量6万吨的乙苯冷却器的设计学生姓名张攀学号3131202102系别化学与化学工程系年级2013 级专业应用化学指导教师张燕杰完成日期2016年6月15日目录一前言 (3)1.1 换热器分类 (3)1.2 换热器材质的选择 (5)二换热器设计任务书 (5)三设计过程 (6)3.1设计方案的确定 (6)3.2 确定流体的定性温度、物性数据并选择管壳换热器的型式 (7)3.3工艺计算及主体设备设计 (7)3.4换热器核算 (10)3.5换热器内流体的流动阻力核算: (11)四换热器设计结果一览表 (13)五对本设计的评述 (13)六附图 (14)七参考文献 (14)八主要符号说明 (14)一前言换热器是化工、炼油工业中普遍应用的典型的工艺设备。

在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。

换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。

因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。

在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

1.1 换热器分类换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。

其中间壁式换热器应用最广泛,如表2-1所示。

表2-1 传热器的结构分类1.管壳式换热器管壳式换热器又称列管式换热器,是一种通用的标准换热设备,它具有结构简单,坚固耐用,造价低廉,用材广泛,清洗方便,适应性强等优点,应用最为广泛。

管壳式换热器根据结构特点分为以下几种:(1)固定管板式换热器固定管板式换热器两端的管板与壳体连在一起,这类换热器结构简单,价格低廉,但管外清洗困难,宜处理两流体温差小于50℃且壳方流体较清洁及不易结垢的物料。

带有膨胀节的固定管板式换热器,其膨胀节的弹性变形可减小温差应力,这种补偿方法适用于两流体温差小于70℃且壳方流体压强不高于600Kpa的情况。

《换热器说明书》word版

《换热器说明书》word版

* 化工原课程设计 *换热器工艺初步设计学生姓名:学号:专业:环境工程班级:成绩:指导教师:设计时间:2012年12月20日至2013 年1月6日环境与生命科学系列管式换热器设计任务书一、设计任务及操作条件(1)处理能力:正戊烷23760kg/h;(2)设备型式:立式列管式换热器;(3)操作条件:①混合气体:入口温度51.7℃;②冷却介质:循环水,流量为70000kg/h入口温度32℃,出口温度35.67℃;③允许压强降:不大于5000000Pa;④每年按300天计算,每天24小时连续运行。

二、设计项目1.设计方案简介:设计工艺流程图;2.换热器的工艺计算:确定换热器的传热面积;3.换热器的主要结构尺寸设计;4.主要辅助设备选型;5.绘制换热器总装配图。

三、设计时间2012年12 月20 日~2013 年1 月6日四、设计内容1.目录;2.设计题目及原始数据(任务书);3.论述换热器总体结构(换热器型式、主要结构)的选择;4.换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直径等);5.设计结果概要(主要设备尺寸、衡算结果等);6.主体设备设计计算及说明;7.参考文献。

目录1.简述 (4)2.方案设计和拟定 (5)3.换热器类型的选择 (6)3.1流动空间及流速的测定 (6)3.2确定物性数据 (7)3.3计算总传热系数 (7)3.3.1 热流量 (7)3.3.2平均传热温差 (7)3.3.3平均传热温差校正 (7)3.4估算传热面积 (8)3.5换热器结构尺寸的 (8)3.5.1 管径和管内流速 (8)3.5.2 管程数和传热管数 (8)3.5.3 传热管排列和分程方法 (9)3.5.4 壳体内径 (10)3.5.5 折流板 (11)3.5.6 接管 (11)3.5.6.1壳程进口接管: (11)3.5.6.2壳程出口接管: (11)3.5.6.3管程接管 (12)3.6换热器核算 (12)3.6.1 热量核算 (12)3.6.1.1 壳程对流传热系数 (12)3.6.1.2 管程对流传热系数 (12)3.6.1.3污垢系数 (13)3.6.1.4 传热系数K (13)A (13)3.6.1.5换热器的实际传热面积p3.6.2核算管壁温度w t (14)3.6.3 换热器内流体的流动阻力 (14)3.6.3.1计算压强降 (14)4. 换热器主要结构尺寸和计算结果 (16)附录 (17)参考文献 (18)列管式换热器设计书1.简述根据列管式换热器的结构特点,常将其分为固定管板式、浮头式、U形管式填料函式、滑动管板式、双管板式、薄管板式等类型。

换热器工艺流程图电子教案

换热器工艺流程图电子教案

折弯、预装
蒸发器
检查翅片外观
充高压空气 注意充气时间
自动焊接
检查 焊接质量
冷 凝 器
焊工艺
检查焊接质 量及尺寸
充氮气
蒸发器


不合格品
注意冲 气时间
冷凝器
折弯 检查折弯尺 寸
检查封 口质量
终检 检查整体 外观及质
包装
检查包装质量及数 量
入库
成品抽检
检查整 体外观
关键工序
特殊工序
一般工序
全检
注: 检 生产中途
编制:李际春
审核: 廖中华
核准: 梁鑫
四川同达博尔空调有限公司 两器车间换热器工艺和检验流程图
冲翅片 检验翅片 外观及片
弯长U 管
检验U管 外观及质
烘干 检查 烘 干质量
穿片 检验翅片 及铜

拆接气头、吹水 注意翅片外观
胀管 检胀高和外观
焊进出液管 检查焊 接质量
水检 检Байду номын сангаас冲气压
力及焊点
脱脂 检查油污、温度线速
吹油气
插短U管、 充氮气
检查插管 是否正确

换热器设计校核流程图

换热器设计校核流程图

换热器计算方法1.平均温压法(1)设计计算流程(2)校核计算流程(缺点:dψ/dP大→查图误差大,影响计算精度)2. 效能——传热单元数法(ε——NTU )(1) 原理:定义:换热器效能()21maxt t t t '-'''-'=ε (11-27)(实际最大温升与最大可能温升之比)冷热流体换热量相同,大温升对应于小热容:()()()()21min max min t t c q t t c q m m '-'⋅⋅=''-'=Φ⇒ε (11-28) 对顺流式换热可导得(参见参考文献[1]P334~335):()()[]B B NTU ++--=11exp 1ε (11-29) 对逆流式换热可导得: ()()[]()()[]B NTU B B NTU ------=1ex p 11ex p 1ε (11-30) 上述两式皆为无量纲方程:()B NTU f ,=ε式中:()m inc q kA NTU m = (11-31) ——传热单元数,表征换热能力大小(一般情况下,k ↑→运行费用上升,A ↑→初投资上升)。

()()m a x m i n c q c q B m m =——两种流体水当量比 (11-32)当有一侧发生相变时,()0max =⇒∞→B c q m ()N T U --=e xp1ε (11-33) 当两侧水当量相等时,B=1顺流:()[]NTU 2exp 121--=ε (11-34) 逆流:(不定型→分子分母同时对B 求导) NTU NTU +=1ε (11-35) 查参考文献[1]图9-22~9-27计算时要注意参变量的定义和适用的换热器形式。

(2)设计计算(与平均温压法相比,由于不计及ψ的大小,不能反映流动形式与逆流之间的差距)(3)校核计算。

甲苯式列管换热器设计流程

甲苯式列管换热器设计流程

甲苯式列管换热器设计流程换热器是进行热交换操作的通用工艺设备,广泛应用于化工、石油、石油化工、动力、冶金等工业部门,特别是在石油炼制和化学加工装置中,占有重要地位。

换热器的操作技术培训在整个操作培训中尤为重要。

本单元设计采用列管式换热器。

将来自界外的冷物流由泵送至换热器的壳程被流经管程的热物流加热至指定温度。

冷物流流量由自动控制阀控制。

来自另一设备的高温物流经泵送至换热器与经冷物流进行热交换,热物流出口温度由自动控制阀,控制在指定温度。

某厂用循环冷却水甲苯从80°冷却到50°C,甲苯年处理能力为18000t/a,压力为6.5MPa,循环冷却水的入口温度为25°C,出口温度为35°C,要求冷凝器允许压降不大于500000Pa,试设计一台管壳式卧式换热器完成该生产任务。

每年按330天计算,每天按24小时连续运行。

设计要求(1)换热器工艺设计计算(2)换热器工艺流程图(3)换热器设备结构图(4)设计说明目录一、标题页 (3)二、方案设计 (4)三、确定设计方案 (4)四、确定物性数据 (4)五、计算总传热系数 (4)六、计算传热面积 (5)七、工艺结构尺寸计算 (5)八、换热器核算 (7)九换热器主要结构参数和设计结果一览表 (10)十、对本设计的评价 (11)十一、自设计使用该换热器的工艺流程图 (12)12 ·························································十二、参考文献·.二、方案设计某厂在生产过程中,需将甲苯从80℃冷却到50℃。

化工设计-换热器设计方案书讲解

化工设计-换热器设计方案书讲解

闽江学院课程设计题目年处理量6万吨的乙苯冷却器的设计学生姓名张攀学号3131202102系别化学与化学工程系年级2013 级专业应用化学指导教师张燕杰完成日期2016年6月15日目录一前言 (3)1.1 换热器分类 (3)1.2 换热器材质的选择 (5)二换热器设计任务书 (5)三设计过程 (6)3.1设计方案的确定 (6)3.2 确定流体的定性温度、物性数据并选择管壳换热器的型式 (7)3.3工艺计算及主体设备设计 (7)3.4换热器核算 (10)3.5换热器内流体的流动阻力核算: (11)四换热器设计结果一览表 (13)五对本设计的评述 (13)六附图 (14)七参考文献 (14)八主要符号说明 (14)一前言换热器是化工、炼油工业中普遍应用的典型的工艺设备。

在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。

换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。

因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。

在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

1.1 换热器分类换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。

其中间壁式换热器应用最广泛,如表2-1所示。

表2-1 传热器的结构分类1.管壳式换热器管壳式换热器又称列管式换热器,是一种通用的标准换热设备,它具有结构简单,坚固耐用,造价低廉,用材广泛,清洗方便,适应性强等优点,应用最为广泛。

管壳式换热器根据结构特点分为以下几种:(1)固定管板式换热器固定管板式换热器两端的管板与壳体连在一起,这类换热器结构简单,价格低廉,但管外清洗困难,宜处理两流体温差小于50℃且壳方流体较清洁及不易结垢的物料。

带有膨胀节的固定管板式换热器,其膨胀节的弹性变形可减小温差应力,这种补偿方法适用于两流体温差小于70℃且壳方流体压强不高于600Kpa的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(11-35)
查参考文献[1]图9-22~9-27计算时要注意参变量的定义和适用的换热器形式。
(2)设计计算(与平均温压法相比,由于不计及ψ的大小,不能反映流动形式与逆流之间的差距)
已知确定
冷热流体参数换热器形式
结构
传热面尺寸
布置
ε,B k
查图
NTU
A
不合适
流动阻力
正常
结束
(3)校核计算
假设已知
出口参数冷热流体换热器
结构
面积
传热系数k
平均温压Δtm
流动阻力
传热量
N
Y
结束
2.效能——传热单元数法(ε——NTU)
(1)原理:
定义:换热器效能 (11-27)
(实际最大温升与最大可能温升之比)
冷热流体换热量相同,大温升对应于小热容:
(11-28)
对顺流式换热可导得(参见参考文献[1]P334~335):
(11-29)
对逆流式换热可导得:
换热器计算方法
1.平均温压法
(1)设计计算流程
已知确定
传冷热流体参数换热器形式
热 结构
量 传热面尺寸
Φ布置
流体特性流动状态
Δtm逆
N
传热系数k
Y
传热面积A传热温压Δtm
不合适
流动阻力
正常
结束
(2)校核计算流程(缺点:dψ/dP大→查图误差Байду номын сангаас,影响计算精度)
假设已知
出口参数传热量冷热流体换热器
进口参数型式
(11-30)
上述两式皆为无量纲方程:
式中: (11-31)
——传热单元数,表征换热能力大小(一般情况下,k↑→运行费用上升,A↑→初投资上升)。
——两种流体水当量比(11-32)
当有一侧发生相变时,
(11-33)
当两侧水当量相等时,B=1
顺流: (11-34)
逆流:(不定型→分子分母同时对B求导)
k进口参数型式
结构
面积
NTU B
ε
查图
Φ
不符
验算出口参数
符合假设
结束
相关文档
最新文档