数学建模在处理问题的解决终审稿)
数学建模中的数据处理方法(非常全)

二维插值
在一个长为5个单位,宽为3个单位的金属薄 片上测得15个点的温度值,试求出此薄片的 温度分布,并绘出等温线图。(数据如下表)
yi xi
1
2
3
4
5
1
82
81
80
82
84
2
79
63
61
65
87
3
84
84
82
85
86
二维插值(px_lc21.m)
temps=[82,81,80,82,84;79,63,61,65,87;84,84,82,85,8 6];
微分方程数值解(单摆问题)
再编函数文件(danbai.m) function xdot=danbai(t,x) xdot=zeros(2,1); xdot(1)=x(2);xdot(2)=-9.8/25*sin(x(1));
微分方程数值解(单摆问题)
在命令窗口键入() [t,x]=ode45(‘danbai’,[0:0.1:20],[0.174
想得到更理想的结果,我们可以自己设计 解决问题的方法。(可以编写辛普森数值 计算公式的程序,或用拟合的方法求出被 积函数,再利用MATLAB的命令 quad,quad8)
数值微分
已知20世纪美国人口统计数据如下,根据 数据计算人口增长率。(其实还可以对于 后十年人口进行预测)
年份
人口× 106
微分方程数值解单摆问题二次规划线性规划有约束极小问题fvallinprogfaba1b1lbub线性规划有约束极小问题线性规划有约束极小问题线性规划有约束极小问题把问题极小化并将约束标准化线性规划有约束极小问题z145714最大
【数学建模中的数据处理方法】
数学建模解决问题的思路和方法

数学建模解决问题的思路和方法数学建模是指运用数学方法来解决实际问题的过程。
在当前社会中,数学建模已成为解决许多实际问题的主要手段之一。
本文将探讨数学建模解决问题的思路和方法。
一、问题的建模思路在解决问题时,首先需要确定问题的特征和目标,然后将问题转化为数学模型。
数学模型是基于实际问题建立的描述该问题过程的数学表达式或算法。
建立数学模型的过程包括以下几个步骤:1. 理解问题在解决问题时,我们需要理解问题的背景、特征和目标。
通过深入了解问题,并发现可能存在的规律和联系,进一步确定数学建模方案。
2. 收集数据在建模之前,我们需要收集实际数据,确定问题的各种参数和条件。
数据的准确性和完整性对于建立有效的模型至关重要。
3. 建立数学模型在数据收集完成后,我们可以根据分析和理解所得到的有关规律、特征和目标,选取合适的数学方法和工具建立模型。
建立数学模型可能需要通过实验验证和不断调整来提高模型的准确性。
4. 验证和调整在建立模型后,需要对模型进行验证和调整。
验证模型的准确性能够帮助我们评估建立的模型是否真正解决问题并且具有普适性。
如果模型存在问题,我们需要根据实际情况进行调整。
二、数学建模的常用方法1. 数学模型数学模型是数学建模的核心,也是将实际问题转化为数学问题的关键要素。
数学模型可以是依靠方程来描述的,也可以是基于统计方法的。
在建立数学模型时,需要根据具体问题选择合适的数学方法和工具。
2. 数值计算数值计算可以通过计算机来完成,包括解方程、求解空间和时间分布和优化问题等。
由于实际问题多为复杂系统,数值计算具有便捷、简单的特点,通常是最常用的解决方案之一。
3. 统计分析统计分析是一种描述和分析大量数据的方法。
通常用于根据样本来推断总体数据特征或预测未来趋势。
统计有助于理解和研究实际问题,并构建更准确的预测模型和决策方案。
4. 模拟仿真模拟仿真是一种使用计算机来模拟实际过程的方法。
模拟仿真通过分析物理或机理方程模拟过程,以便更好地理解该过程的运作和性质。
数学建模总结范文

2014年数学建模总结随着2014年全国大学生数学建模竞赛落下帷幕,回顾这一年来点点滴滴的准备和奋斗,校数模组感慨颇多。
在这一年的时间内,学校领导对数学建模竞赛给予了高度的重视,在教务处的直接领导下,理学院相关老师对此进行了全校动员、竞赛选拔、暑期培训等相关工作。
现在把近一年的数学建模工作总结如下:一、对数学建模的认知数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。
例如,我们平时喝酒开车的问题,怎样喝酒,喝酒后要隔多久才能开车,都属于数学建模的范畴;我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案……这些问题和建模都有着很大的联系。
数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习和查阅资料,除了我们要学习许多数学分支问题外,还要了解工厂生产、经济投资、保险事业、航天航空、工程建设等方面的知识,这些知识决不是任何专业中都能涉猎得到的。
它能极大地拓宽和丰富我们的内涵,让我们感到了知识的重要性,也领悟到了“学习是不断发现真理的过程”这句话的真谛所在,这些知识必将为我们将来的学习工作打下坚实的基础。
数学建模的过程如下:(1)问题分析:对所给问题做初步的分析,了解问题的所给的条件及需要解决的问题。
(2)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
(3)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
(4)模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
(5)模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
(6)模型分析:对所得的结果进行数学上的分析。
(7)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
数学建模中的问题拆解与模型构建

数学建模中的问题拆解与模型构建引言:数学建模是一门综合性强、应用广泛的学科,它通过数学方法和技巧,将实际问题抽象为数学模型,并通过模型的分析和求解,为问题提供合理的解决方案。
而问题拆解和模型构建是数学建模的重要环节,本文将从这两个方面展开讨论。
一、问题拆解问题拆解是指将一个复杂的实际问题拆解为若干个相对简单的子问题,从而更好地理解和解决问题。
在数学建模中,问题拆解是解决复杂问题的关键步骤,它能够帮助我们深入分析问题的本质,找到问题的关键因素。
问题拆解的方法多种多样,下面以一个实际例子进行说明。
假设我们要解决一个城市交通拥堵问题,我们可以将问题拆解为以下几个子问题:交通流量分析、道路网络优化、交通信号控制等。
这样一来,我们可以分别对每个子问题进行研究和分析,然后再将各个子问题的解决方案综合起来,从而得到整体的解决方案。
问题拆解的好处是明确化问题的目标和约束条件,有助于我们更加系统地思考问题,并且能够将问题分解为更小的部分,使得问题的求解更加可行和有效。
二、模型构建模型构建是指根据实际问题的特点和需求,选择合适的数学模型来描述问题,并进行模型的建立和求解。
模型构建是数学建模的核心环节,它直接决定了问题的求解效果和可行性。
在模型构建中,我们需要考虑以下几个方面:问题的目标函数、约束条件、变量的定义和取值范围等。
通过合理地选择和定义这些要素,我们可以建立起一个合理、准确的数学模型。
模型的选择和建立涉及到数学知识的应用,需要根据实际问题的特点和需求,选择合适的数学方法和技巧。
常见的数学方法包括线性规划、非线性规划、动态规划、图论等,我们需要根据具体情况选择最适合的方法来构建模型。
模型的求解是模型构建的最后一步,通过数学方法和计算机技术,我们可以对模型进行求解,得到问题的最优解或者近似解。
模型的求解可以使用数值方法、符号计算方法、优化算法等,我们需要根据模型的特点和求解的要求选择合适的方法。
三、问题拆解与模型构建的关系问题拆解和模型构建是紧密相关的,它们相互依赖、相互促进。
数学建模污水处理最终 文档

污 水 处 理 问 题 模 型夏春乐(095 09213136)【摘要】随着经济的快速发展,环保问题已经成为一个不容忽视的问题,而水资源更是关系着每个居民的日常生活,因此对于污水处理这一特殊的问题我们在解决时就应该本着高效的原则去实施,在这个污水处理问题中,我们先建立了一般情况下的模型,然后将该模型应用到实际问题中从而解决了实际问题。
在模型的建立中我们要考虑工厂的净化能力,江水的自净能力,在保证江水经这一系列的处理后在到达下一个居民点后要达到国家标准,还要花费最少,对该问题进行全面的分析后可知这是一个运筹学方面关于线性规划的最优解问题,在该模型的建立中我们针对江水污水浓度在每个居民点之前小于国家标准这一条件对其建立线性约束条件,然后综合考虑费用最小,在结合三个处理厂各自的情况后关于费用抽象数模型的目标函数,然后应用LINGO 软件求解该问题得到当三个处理厂排出的污水浓度分别为40 mg/l ,20 mg/l ,50 mg/l 时,此时我们得到使江面上所有地段的水污染达到国家标准,最少需要花费费用为489.5万元,当从三个处理厂出来的污水浓度分别为 62.222225mg/l ,60mg/l ,50mg/l,时,此时如果只要求三个居民点上游的水污染达到国家标准最少需要花费费用为206.3333万元。
问题的叙述上游江水流量为1000(min /1012L ),污水浓度为0.8(mg/L )。
江水下方3个工厂,它们分别产生定量的污水,3个工厂的污水流量均为5(min /1012L ),从上到小下,浓度分别为100,60,50(mg/L )。
已知国家标准规定水的污染浓度不超过1(mg/L )。
所以3个工厂要对其污水进行处理,处理系数均为1)))/(min)/10/(((12L mg L 万元。
在3个工厂之间,江水有自净作用,可减少污水的含量,两段江面的自净系数分别为0.9和0.6。
求1、为了使江面上所有地段的水污染达到国家标准,最少需要花费多少费用?2、如果只要求3个居民点上游的水污染达到国家标准,最少需要花多少钱?此题为最优化问题,我们考虑每个工厂在将其污水注入江水前,应分别对其污水进行处理,在处理过程后,各工厂处理后的污水浓度要符合国家污水浓度规定,所以我们的任务就是在满足国家污水规定的同时,使3个工厂的花费最少。
全国大学生数学建模竞赛赛题基本解法

全国大学生数学建模竞赛赛题基本解法全国大学生数学建模竞赛是中国高校中最具权威和影响力的学科竞赛之一。
该竞赛由教育部、中共中央组织部、中国科学院及其他部门共同主办。
该竞赛旨在促进青年学生对于数学和工程的综合应用,培养学生的创新能力和实践能力。
竞赛模式全国大学生数学建模竞赛一般分为两个阶段:第一阶段为选拔赛,第二阶段为决赛。
选拔赛一般在当年11月份进行,由各高校数学系作为考场。
每个参赛队伍由3名学生组成,比赛时间为两天。
选手可以使用任何工具,比如计算器、软件、读者,但是不得使用互联网。
决赛一般在翌年1月份或2月份举行,由主办单位确定比赛地点。
决赛选手数量有限制,根据各省市选手数量的比例确定。
赛题解法全国大学生数学建模竞赛的赛题涵盖的面非常广,包括应用数学、工程数学、运筹学、优化理论等多个领域。
以下是该竞赛可能出现的赛题及其基本解法:1. 背包问题背包问题是计算机科学和数学中的一个经典问题,指在给定约束条件下,从若干种物品中选择若干件物品装入背包,使得背包能够承载的重量最大或体积最大。
解法:背包问题可以用动态规划、贪心算法、分支定界等算法解决。
2. 最优路径问题最优路径问题也就是指在一个有向加权图中,找到从起点到终点的最短路径或者最长路径。
解法:最优路径问题通常可以用Dijkstra算法、Bellman-Ford算法、Floyd算法等解决。
3. 线性规划问题线性规划问题是运筹学中的一个重要问题,由一个线性目标函数和多个约束条件组成,目的是找出一组变量,使得目标函数最大或最小,并同时满足全部的约束条件。
解法:线性规划问题可以使用单纯性算法、内点法等算法进行解决。
4. 工程优化问题工程优化问题是指如何在给定资源的限制之下,设计和生产最符合要求的产品或系统。
工程优化问题常常包含多个目标和多个变量,并且这些变量之间具有复杂的相关性。
解法:工程优化问题可以使用遗传算法、蚁群算法、模拟退火等高级优化算法进行解决。
全国数学建模大赛中问题重述的要求

全国数学建模大赛中问题重述的要求
在数学建模大赛中,问题重述的要求通常包括以下几点:
明确题目背景:需要清晰地阐述题目的背景、条件和要求。
这包括对问题的定义、问题的现实背景、已知条件和需要解决的核心问题的明确描述。
保持完整性:问题重述部分需要保持全文的完整性,同时也要根据题目的要求进行适当的组织和重构。
改写题目:对于题目中给出的信息,包括数据、图表等,都应进行适当的改写和整理,以使问题更清晰、更易于理解。
避免抄袭:问题重述应当避免直接复制粘贴题目原文,需要用自己的语言重新阐述题目内容,以避免被查出抄袭。
重视细节:在重述问题的过程中,需要注意细节,例如对题目的具体描述、相关的图表和数据的解释等,都需要细致入微地进行分析和阐述。
以上就是数学建模大赛中问题重述的一些基本要求,希望对你有所帮助。
解题技巧如何利用数学建模解决实际问题

解题技巧如何利用数学建模解决实际问题数学建模是一种将实际问题转化为数学问题,并通过建立数学模型分析问题的方法。
它在解决实际问题中起着重要的作用。
本文将介绍一些解题技巧,以及如何利用数学建模来解决实际问题。
一、解题技巧1. 理清问题的关键在解决实际问题时,首先需要理清问题的关键点。
仔细阅读问题描述,找出问题中最重要的因素和需要解决的目标。
通过将问题抽象为一个数学模型,更好地理解问题的本质。
2. 将问题转化为数学语言一旦理清问题的关键,我们就可以将问题转化为数学语言。
通过对问题要素进行量化,将其转化为数学表达式或方程式。
这样,问题就可以通过数学模型进行分析和求解。
3. 利用已有的数学工具解决实际问题时,往往可以借助已有的数学工具。
例如,线性规划、最优化理论、微积分等。
熟练掌握这些数学工具,可以更高效地解决问题。
二、利用数学建模解决实际问题的步骤1. 问题理解和分析首先,我们需要仔细理解和分析实际问题。
了解问题的背景、目标和限制条件。
通过与问题相关的人员交流,获取更多的细节和信息。
2. 建立数学模型在理解和分析问题的基础上,我们可以开始建立数学模型。
根据问题的性质和要求,选择合适的数学方法和工具。
将问题转化为数学表达式或方程组。
3. 求解数学模型一旦建立了数学模型,我们就可以开始求解。
利用数学工具和计算机软件,对模型进行求解和优化。
根据求解结果,得出对实际问题的结论和解决方案。
4. 模型验证和应用完成数学模型的求解后,需要对模型进行验证。
将模型的结果与实际问题进行比对,看是否符合问题的要求。
如果模型的结果与实际情况相符,就可以将模型应用到实际问题中。
三、案例分析为了更好地理解利用数学建模解决实际问题的过程,我们以一个经典案例作为例子。
例:面包配送路线规划假设一个面包配送员需要在城市的多个区域间进行配送。
每个区域的面包需求量不同,而配送员需要尽量减少配送距离和时间。
我们可以利用数学建模来解决这个问题。
首先,我们需要理解问题的背景和要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模在处理问题的
解决
文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
数学建模通过竞赛解决了生活中的问题,应加以推广!
(1)校车安排问题
许多学校都建有新校区,常常需要将老校区的教师和工作人员用校车送到新校区。
由于每天到新校区的教师和工作人员很多,往往需要安排许多车辆。
如何有效的安排车辆及让教师和工作人员尽量满意是个十分重要的问题。
现有如下问题请你设计解决。
假设老校区的教师和工作人员分布在50个区,各区的距离见表1。
各区人员分布见表2。
问题1:如要建立个乘车点,为使各区人员到最近乘车点的距离最小,该将校车乘车点应建立在哪个点。
建立一般模型,并给出时的结果。
问题2:若考虑每个区的乘车人数,为使教师和工作人员满意度最大,该将校车乘车点应建立在哪个点。
建立一般模型,并给出时的结果。
问题3:若建立3个乘车点,为使教师和工作人员尽量满意,至少需要安排多少辆车?给出每个乘车点的位置和车辆数。
设每辆车最多载客47人。
问题4;关于校车安排问题,你还有什么好的建议和考虑。
可以提高乘车人员的满意度,又可节省运行成本。
(2)一家保姆公司专门向雇主提供保姆服务,据估计,下一年的需求是:春季6000人日,夏季7500人日,秋季5500人日,冬季9000人日。
公司新招聘的保姆必须经过5天的培训才能上岗,每个保姆每季度工作(新保姆包括培训)65天。
保姆从该公司而不是从雇主那里得到报酬,没人每月工资800元。
春季开始时,公司拥有120名保姆,在每个季度结束后,将有15%的保姆自动离职。
(1)如果公司不允许解雇保姆,请你为公司制定下一年的招聘计划。
(2)如果公司允许解雇保姆,请你为公司制定下一年的招聘计划。
解决方案:
(1)设四个季度开始时,公司新招聘的保姆数为x1,x2,x3,x4四个季度开始时,保姆的数量为s1,s2,s3,s4
以本年度付出的报酬最少为目标函数:Min s1+s2+s3+s4
s.t 65s1>=6000+5X1
65s2>=7500+5X2
65s3>=5500+5X3
65s4>=9000+5X4
s1=120+X1
s2=0.85s1+X2
s3=0.85s2+X3
s4=0.85s3+X4
x1,x2,x3,x4>=0
s1,s2,s3,s4>=0 (1)
(2)设四个季度开始时,公司新招聘的保姆数为x1,x2,x3,x4四个季度开始时,保姆的数量为s1,s2,s3,s4
四个季度结束时解雇的保姆数量为y1,y2,y3,y4
以本年度付出的报酬最少为目标函数:Min s1+s2+s3+s4
s.t 65s1>=6000+5X1
65s2>=7500+5X2
65s3>=5500+5X3
65s4>=9000+5X4
s1=120+X1
s2=0.85s1+X2
s3=0.85s2+X3-y2
s4=0.85s3+X4-y3
x1,x2,x3,x4>=0
s1,s2,s3,s4>=0(2)
3。