铸造金属材料的特性解析
铸造铝合金的物理性能简介

铸造铝合金的物理性能简介铝合金是一种广泛应用于工业生产和日常生活中的材料。
其特点包括轻质、高强度、耐腐蚀、导热性好以及可塑性强等。
本文将简要介绍铸造铝合金的物理性能,帮助读者更好地了解和应用该材料。
1. 密度和重量特性铸造铝合金相对于其他金属材料,具有较低的密度,约为 2.7g/cm³。
它的轻质特性使得铸造铝合金在汽车、飞机等领域中广泛应用,能够减轻整体结构的重量,提高燃油效率。
2. 强度和机械性能铸造铝合金具有较高的强度,能够满足许多工业制造的需求。
铝合金的屈服强度通常在150-380MPa之间,抗拉强度可高达300-550MPa。
此外,铸造铝合金具有良好的抗疲劳性能,在长时间的使用中仍能保持较高的强度。
3. 导热性能铸造铝合金的导热性能优异,远远超过其他常见的金属材料。
这使得铝合金在工业制冷和热交换器等领域得到广泛应用。
铝合金的高导热性能还使得它在制造高速列车和电子设备的散热器时备受青睐。
4. 耐腐蚀性能铸造铝合金具有良好的耐腐蚀性能,能够在潮湿环境中长时间保持表面的光洁和稳定。
这一特性使铝合金成为制造飞机、汽车等需求高耐腐蚀性材料的优选。
5. 可塑性和加工性能铸造铝合金具有良好的可塑性和加工性能,易于进行成型和加工。
它可以通过压铸、锻造、挤压等方法制造成各种复杂形状的零部件。
同时,铝合金也适合进行焊接、切割、钻孔等二次加工操作,能够满足不同应用领域的需求。
6. 磨损和疲劳性能铸造铝合金经过适当处理和合金化可以提高其磨损和疲劳性能。
这使得铝合金在制造高速运动部件、发动机零部件等高磨损和高应力工作环境下的应用更为广泛。
总结:铸造铝合金具有轻质、高强度、耐腐蚀、导热性好以及可塑性强等一系列优良的物理性能。
这些特点使得铝合金在汽车、航空航天、建筑等各个领域得到广泛应用。
同时,针对特定需求,通过合理的合金化和处理方法,铝合金的性能还可以进一步得到改善。
掌握铸造铝合金的物理性能,将有助于更好地应用和发展这一材料,推动创新和进步。
铸造的定义及特点

铸造的定义及特点铸造是一种通过将熔化的金属或合金注入到模具中,并在冷却后使其凝固成所需形状的工艺。
在铸造过程中,金属或合金会经历熔化、注入、凝固和冷却等阶段,最终得到所需的铸件。
铸造是制造业中最常见的一种工艺,被广泛应用于汽车、航空航天、建筑、机械等领域。
铸造的特点主要包括以下几个方面:1. 造型自由度高:铸造工艺可以制造出各种形状复杂的铸件,无论是几何形状还是内部空腔结构,都可以通过合理设计模具来实现。
这使得铸造成为制造大型、复杂铸件的首选工艺。
2. 工艺适应性强:铸造适用于各种金属和合金,包括铁、钢、铝、铜、镁等。
不同的金属和合金有不同的熔点、凝固温度和流动性,铸造工艺可以根据材料的特性进行调整,以得到满足要求的铸件。
3. 生产效率高:铸造是一种批量生产的工艺,通过模具可以同时制造多个相同的铸件,大大提高了生产效率。
同时,铸造工艺可以实现自动化生产,减少了人工操作,提高了生产效率和产品质量。
4. 材料利用率高:铸造过程中,金属或合金是以液态形式注入模具中的,因此可以充分利用金属材料,减少浪费。
同时,铸造还可以回收和再利用废铸件和铸型材料,减少资源消耗和环境污染。
5. 产品质量稳定:铸造工艺可以通过控制铸件的组织和性能来满足不同的使用要求。
通过合理的铸造工艺参数和材料选择,可以获得具有一定强度、硬度、耐磨性、耐腐蚀性等特性的铸件。
6. 成本较低:相比其他制造工艺,铸造的设备投资和生产成本较低。
铸造设备简单、易于操作,不需要复杂的加工工艺和设备,可以在较低的成本下完成生产任务。
铸造工艺的发展随着时间的推移和科技的进步,逐渐形成了多种不同的铸造方法和工艺。
例如,根据铸造材料的不同,可以将铸造分为金属铸造、陶瓷铸造和塑料铸造等。
根据铸造方法的不同,可以将铸造分为重力铸造、压力铸造、离心铸造、注射铸造等。
每种铸造方法和工艺都有其适用的范围和特点,可以根据具体的产品要求和生产需求进行选择。
铸造作为一种传统的制造工艺,在现代工业中仍然占据重要地位。
第一章2金属材料的性能特点

四、切削加工性能 用切削后的表面粗糙度 和刀具寿命来表示。
切削加工
金属材料具有适当的硬度(170 HBS~230 HBS) 和足够的脆性时切削性良好。 改变钢的化学成分(加少量铅、磷)和进行适当 的热处理(低碳钢正火,高碳钢球化退火)可提高钢 的切削加工性能。 铜有良好的切削加工性能。
五、热处理工艺性能 钢的热处理工艺性能主要考虑其淬透性, 即钢接受淬火的能力。 含Mn、Cr、Ni等合金元素的合金钢淬透 性比较好, 碳钢的淬透性较差。
断后伸长率
A
A
11.3
δ5 δ10
ψ
%
%
断面收缩率
Z
三、硬度 硬度:材料抵抗另一硬物体压入其内的能力。 即材料受压时抵抗局部塑性变形的能力。 1、布氏硬度 一定直径的硬质合金球(或钢球)在一定载 荷作用下压入试样表面。测量压痕直径, 计算硬 度值。 用钢球压头时硬度 用HBS表示 用硬质合金球时硬 度用HBW表示
布氏硬度计
布氏硬度计的使用
2、洛氏硬度 采用金刚石压头(或硬质合金球压头), 加预载荷F0 ,压入深度h0 。再加主载荷F1 。 卸去主载荷F1,测量其残余压入深度h。 用h与h0之差△h来计算洛氏硬度值。 硬度直接从硬度计表盘上读得。 根据压头的种类和 总载荷的大小洛氏硬度常 用表示方式有: HRA、HRB、HRC
金属材料的强度与其化学成分和工艺有 密切关系。 纯金属的抗拉强度较低; 合金的抗拉强度较高。 纯铜抗拉强度: 60MPa 铜合金抗拉强度:600MPa~700MPa 纯铝抗拉强度: 40MPa 铝合金抗拉强度:400MPa~600MPa
退火状态的三种铁碳合金: 碳质量分数0.2%,抗拉强度为350MPa 碳质量分数0.4%,抗拉强度为500MPa 碳质量分数0.6%,抗拉强度为700MPa
金属铸造性能包括

1.金属铸造性能包括:合金的流动性、凝固特性、收缩性、吸气性。
2.流动性:液态合金本身的流动能力。
3.流动性缺乏产生的缺陷:形成的晶粒将充型的通道堵塞,金属液被迫停止流动,于是铸件将产生浇不到或冷隔等缺陷。
4.提高流动性的措施〔简答〕:浇注温度浇注温度对合金充型能力有着决定性的影响。
浇注温度越高,合金的粘度下降,且因过热度高,合金在铸型中保持流动的时间长,故充型能力强,反之,充型能力差。
充型压力砂型铸造时,提高直浇道高度,使液态合金压力加大,充型能力可改善。
压力铸造、低压铸造和离心铸造时,因充型压力提高甚多,股充型能力强。
5.既然提高浇注温度可改善充型能力,为什么又要防止浇注温度过高?答:浇注温度过高,铸件容易产生缩孔、缩松、粘砂、析出性气孔、粗晶等缺陷,故在保证充型能力足够的前提下,浇注温度不宜过高。
6.合金收缩经历的3个阶段:液态收缩凝固收缩固态收缩。
液态收缩和凝固收缩是体收缩,体积减小,产生孔洞、缩孔、缩松。
固态收缩是线收缩,三维方向尺寸减小,产生应力。
7.缩孔:〔1〕位置:它是集中在逐渐上部或最后凝固部位容积较大的孔洞。
〔2〕判断热接位置:画等温线、画最大接圆、用计算机凝固模拟法。
〔3〕如何消除缩孔:顺序凝固,顺序凝固是在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口部位凝固,最后才是冒口本身的凝固。
8.热应力:〔1〕热应力使铸件的厚壁或心部受拉伸,薄壁或表层受压缩。
铸件的壁厚差异越大,合金线收缩率越高,弹性模量越大,产生的热应力越大。
〔2〕去除热应力的方法:采用同时凝那么可减少铸造应力,防止铸件的变形和裂纹缺陷,又可免设冒口而省工省料。
9.时效处理:对于不允许发生形变的重要件必须进展时效处理。
自然时效是将铸件置于露天场地半年以上使缓慢的发生变形,使应力消除。
人工时效是将铸件加热到550~650摄氏度进展去应力退火。
10.以下铸件宜选用哪类铸造合金?(1)车窗车身〔2〕摩托车汽缸体〔3〕火车轮〔4〕压气机曲轴〔5〕汽缸套〔6〕自来水管道弯头〔7〕减速器涡轮(1)灰口铸铁〔灰铁300 灰铁350〕(2)铸造铝合金(不能产生溢漏,质量要轻)(3)铸钢〔耐磨性〕(4)球墨铸铁、可锻铸铁、孕育铸铁(5)孕育铸铁、球墨铸铁(6)黑心可锻铸铁(7)铸造锡锌铜11.型砂必备四个性能:〔1〕一定的强度〔缺陷:冲砂、磨砂、砂眼、塌箱、涨箱〕〔2〕一定的透气性〔气孔〕〔3〕较高的耐火性〔粘砂〕〔4〕一定的退让性〔应力、变形、形裂〕12.防治措施:添加锯木屑、草木灰、煤粉。
1.5 铸造金属材料的特性

20
机械制造工艺基础----铸造工艺
1.5.2 铸钢及其熔炼: 单击以编辑母版标题样式
• • • • • • •
1.铸钢的分类、性能及应用: 性能:综合力学性能好,强度高,且塑、 单击以编辑母版文本样式 韧性好;焊接性能好,可采用铸 -焊联合 第二级 结构制造重型机器。 第三级 分类: 第四级 低碳钢:≤0.25%,易氧化热裂,电机零件. 第五级 铸造碳钢 中碳钢:0.25~0.5%
2
机械制造工艺基础----铸造工艺
二、灰口铸铁: 单击以编辑母版标题样式
• • • • •• • (1)石墨对灰铸铁性能的影响:灰口铸 单击以编辑母版文本样式 铁的显微组织由金属基体与石墨片所组 第二级 成,相当于在钢的基体中嵌入了大量石 墨片。 第三级 机械性能: σb=120~250MPa,σ压≈钢 第四级 塑性、韧性近于零,属于脆性材料。 第五级 石墨强度极低,塑性近于零,3%的石墨 占10%的体积,所以灰口铸铁可视为充 满裂纹的钢。基体强度利用率仅30~50%。
坯件易损坏。 蠕墨铸铁件 1.铸造性能接近灰铸铁; 2.综合机械性能比灰铸铁高, 壁厚敏感性比灰铸铁小得多。 或工字形,避免十字形,局部 突出部分可用肋加强。 大截面复杂铸件。
19
机械制造工艺基础----铸造工艺
五、铸铁的熔炼: 单击以编辑母版标题样式
• • • • •
冲天炉熔炼过程。 单击以编辑母版文本样式 第二级 第三级 第四级 第五级
机械制造工艺基础----铸造工艺
(2)球铁的铸造工艺: 单击以编辑母版标题样式
球墨铸铁易产生缩孔、缩松、皮下气孔、夹渣等 缺陷。 • 单击以编辑母版文本样式 •缩孔、缩松倾向大(石墨化膨胀),应采用如 • 第二级 下工艺措施: • 第三级 ① 增加铸型刚度。 ② 安放冒口、冷铁,对铸件进行补缩 • 第四级 • •皮下气孔: 第五级 Mg+H2O→MgO+H2↑ MgS+H2O→MgO+H2S↑ 工艺措施:降低S含量和残余Mg量,限制型砂 水分或采用干型。
热处理对铸造铝合金材料的晶界特性和耐蚀性能的影响

热处理对铸造铝合金材料的晶界特性和耐蚀性能的影响热处理是一种常用的金属加工方法,可以改善材料的力学性能和耐腐蚀性。
在铸造铝合金材料中,热处理也被广泛应用。
本文将探讨热处理对铸造铝合金材料晶界特性和耐蚀性能的影响。
一、热处理对晶界特性的影响晶界是材料中各个晶体之间的交界面,对材料的性能起着重要的作用。
热处理可以改变晶界的结构和性质,进而影响材料的力学性能和耐蚀性。
1. 晶界结构的改变热处理过程中的加热和冷却可以引起晶界结构的变化。
例如,固溶热处理可以使溶质在晶界区域的浓度得到调整,从而改善晶界的结构。
此外,热处理还可以促使晶界清晰化和去除一些晶格缺陷,提高晶界的强度。
2. 晶界位错的行为晶界中的位错是晶界强度的重要因素。
热处理过程中,晶界位错的行为可以被改变。
通过适当的热处理,可以增加晶界位错的密度和移动性,从而提高晶界的强度和塑性。
3. 晶界扩散和再结晶热处理还能促进晶界扩散和晶界再结晶。
晶界扩散可以导致溶质在晶界区域的聚集和分布均匀,从而提高晶界的强度和韧性。
晶界再结晶是指在高温下,原本的晶粒被新的晶粒所取代,更加细小的晶粒有利于提高材料的强度和韧性。
二、热处理对耐蚀性能的影响铸造铝合金材料在暴露于大气、水和化学介质中时,会出现腐蚀现象。
热处理可以改变铝合金材料的晶界特性和晶粒尺寸,从而影响其耐蚀性能。
1. 晶界腐蚀晶界是金属腐蚀的薄弱环节之一。
晶界中的异质相或溶质偏聚可能会引发晶界腐蚀。
适当的热处理可以改善晶界结构,减少晶界的偏聚现象,提高晶界的抗腐蚀能力。
2. 晶粒尺寸和耐蚀性热处理可以影响铸造铝合金材料的晶粒尺寸。
通常情况下,细小的晶粒比大晶粒具有更好的耐蚀性能。
热处理过程中,晶界的清晰化和晶界的再结晶可以使晶粒尺寸细化,从而提高材料的耐蚀性。
3. 化学成分和相变热处理还可以改变铝合金材料的化学成分和相变行为,进而影响其耐蚀性。
例如,固溶热处理可以调整合金中的溶质含量,进而影响材料的耐蚀性。
铸造黄铜粘度-概述说明以及解释

铸造黄铜粘度1.引言1.1 概述黄铜是一种常见的合金,由铜和锌组成。
它具有许多优良的特性,如高耐腐蚀性、良好的导电性和导热性,因此广泛应用于各个领域,包括建筑、工程、电子、汽车和航空等。
然而,黄铜的流动性和粘度也是决定其加工性能和应用范围的重要因素之一。
粘度是指液体流动的阻力,它直接影响到黄铜在铸造、挤压、冲压等工艺过程中的可塑性和流动性。
黄铜的粘度主要受到温度和成分的影响。
高温会降低黄铜的粘度,使其更容易在加工过程中流动和变形。
同时,不同成分的黄铜具有不同的粘度特性。
锌含量的增加会降低黄铜的粘度,使其更适合用于某些特定的加工工艺和应用领域。
为了准确评估和控制黄铜的粘度,测试方法变得至关重要。
目前常用的测试方法包括黏度计测试和流动试验。
通过这些测试方法,我们可以得到黄铜的粘度数值,进而指导生产和加工过程的优化。
黄铜的粘度对于实际应用和制造业具有重要意义。
通过控制和调整黄铜的粘度,我们可以确保产品在加工过程中的质量和性能,同时提高生产效率和降低生产成本。
此外,对黄铜粘度的深入研究还有助于开发新的黄铜合金和改进黄铜加工技术,推动黄铜行业的发展。
综上所述,黄铜的粘度是决定其加工性能和应用范围的重要因素之一。
通过准确评估和控制黄铜的粘度,我们可以优化加工过程、改进产品性能,并促进黄铜行业的发展。
在接下来的内容中,我们将详细介绍黄铜的特性、粘度及其影响因素、测试方法以及实际应用与意义。
1.2 文章结构本文分为引言、正文和结论三部分。
引言部分包括概述、文章结构和目的。
在引言的概述部分,将简要介绍黄铜粘度的重要性和研究的必要性。
文章结构部分将对整篇文章的组织结构做出说明,阐述各个章节之间的逻辑关系。
目的部分将明确本文的目标和研究内容,以及研究结果的意义和应用。
正文部分分为四个章节。
2.1 黄铜的特性和应用将介绍黄铜的基本特性、组成以及在不同领域的广泛应用。
2.2 黄铜的粘度及其影响因素将探讨黄铜粘度的定义、影响因素(例如温度、压力、成分)以及这些因素对黄铜粘度的影响机理。
铝合金的分类与性能特征

铝合金的分类与性能特征铝合金是指铝为基体的合金,通过与其他金属元素的合金化来提高其性能特征。
根据合金中其他金属元素的不同,铝合金可以分为几个不同的分类,每种分类具有不同的性能特征。
下面将对铝合金的分类及其性能特征进行详细介绍。
一、铸造铝合金铸造铝合金又称为铝铸造合金,是以铝为基体,添加其他金属元素如铜、锌、镁、铝硅等制成的合金。
铸造铝合金具有良好的流动性和铸造性能。
根据其成分的不同,铸造铝合金可以分为铝硅合金、铜铝合金、铝镁合金等。
1.铝硅合金铝硅合金是以铝为基体,添加硅元素制成的合金。
铝硅合金具有良好的耐高温性能和耐热性,能承受高温环境下的长时间使用。
此外,铝硅合金还具有高强度、耐腐蚀性好等特点,适用于制造发动机零部件、火花塞和电线电缆等用途。
2.铜铝合金铜铝合金是以铝为基体,添加铜元素制成的合金。
铜铝合金具有较高的强度和硬度,耐磨性能好,可以用于制造轴承和齿轮等高强度和耐磨损的零部件。
3.铝镁合金铝镁合金是以铝为基体,添加镁元素制成的合金。
铝镁合金具有较低的密度和良好的抗腐蚀性能,具有较高的强度和刚性,适用于制造航空器、航天器等需要轻量化和耐腐蚀性的结构件。
二、变形铝合金变形铝合金是指通过变形加工(如轧制、挤压、拉伸等)而制成的铝合金材料。
变形铝合金具有较高的强度、耐腐蚀性和良好的加工性能。
根据变形铝合金的不同成分,可以将其分为铝锰合金、铝镁合金、铝铜合金等。
1.铝锰合金铝锰合金是以铝为基体,添加锰元素制成的合金。
铝锰合金具有良好的耐腐蚀性和可焊性能,适用于制造汽车车身、罐体、航空航天用材料等。
2.铝镁合金铝镁合金是以铝为基体,添加镁元素制成的合金。
铝镁合金具有良好的强度和刚性,抗腐蚀性能好,并具有较低的密度,适用于制造汽车车轮、航空航天器件等。
3.铝铜合金铝铜合金是以铝为基体,添加铜元素制成的合金。
铝铜合金具有较高的强度和硬度,耐磨性好,适用于制造汽车发动机零部件、电子设备外壳等。
三、特种铝合金特种铝合金是指在铝合金中添加一些特殊元素,如锌、锆、银、锆、钴、镍等,以改变铝合金的特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3页/共28页
机械制造工艺基础----铸造工艺
单击以编辑母版标题样式
• 单击以编辑母版文本样式 • 第二级 • 第三级 • 第四级 • 第五级
4
第4页/共28页
机械制造工艺基础----铸造工艺
• 影响单铸铁击石以墨化编的辑因素母:版标题样式
• ①化学成份:
•• •
a单)碳击和以硅编:辑碳母愈版多文,可本样式 能硅第析 越二出 多级的 ,石 碳墨 石量墨愈化多的;可
• 第 剂三占级铁水重量的0.25%~0ቤተ መጻሕፍቲ ባይዱ6%。
•• 第 孕四育级剂一般为含Si75%的硅铁(有时也用
• 第 硅五钙级)。经孕育处理后的铸铁称为孕育铸
铁,它的强度、硬度显著提高。
• 冷却速度对孕育铸铁组织和性能影响很 小。
8
第8页/共28页
机械制造工艺基础----铸造工艺
(3) 灰单铸击铁件以的编生辑产特母点版及标牌号题选样用式
920~980℃
700℃
11
第11页/共28页
机械制造工艺基础----铸造工艺
(2).机可械单锻性铸击能铁:以σ的b=编性30能0辑~4、0母0牌M版号Pa及,δ标≤应12题用%,:样ακ≤式30J/cm2。
•使用性能:
•①单耐击热性以:编可辑锻母铸版铁文的本耐热样性式优于灰铸铁和碳钢。 •②第耐二蚀级性:耐蚀性优于碳钢。黑心可锻铸铁的耐 蚀性• 优第于三珠级光体可锻铸铁。 .铸•造第性四能:级 当提•①高第流浇五动注级性温:度流。动性差,宜增大浇道尺寸,薄件宜适
占10%的体积,所以灰口铸铁可视为充 满裂纹的钢。基体强度利用率仅30~50%。
2
第2页/共28页
机械制造工艺基础----铸造工艺
• 吸震单性击:吸以震编能力辑为母钢的版5~1标0倍题,是样制式造机床 床身、机座的好材料。
•• 单 耐也磨 是击性 良以: 好编石 的辑墨润母凹滑版坑剂文可。以本储样存式润滑油,石墨本身 •• 第 缺口二敏级感性低:零件工作可靠。 • 第 灰口三铸级铁基体类别:P基体、P-F混合基体、F • 第 基体四。级 • 第五级
• ① 灰铸铁件的生产特点:
• 单击一般以在编冲辑天母炉版中文熔本炼样,成式本低廉。
• •
第一二般级不需冒口补缩,也较少应用冷铁,通常 第 采用三一同般级时不凝通固过。热处理来提高其机械性能。
•• 第 ② 四灰铸级铁牌号的选用:
• 第五用级"HT"表示,其数值表示其最低抗拉强度。
HT250~350是经过孕育处理后的的孕育铸 铁,用于要求更高的重要件。
② 收缩大:铸件易产生应力和开裂,应改善砂型及 型芯的退让性。铸件易产生缩孔、缩松。在铸造工艺上 多采用冒口和冷铁等措施来防治。
12
第12页/共28页
机械制造工艺基础----铸造工艺
• 可单锻铸击铁以可分编为辑黑母心可版锻标铸题铁、样珠式光体
高(390~520HB)。
• 利于提高铸铁的耐磨性,故耐磨铸铁件的
含磷量可高达0.5%~0.7%。
6
第6页/共28页
机械制造工艺基础----铸造工艺
• ②单冷却击速以度编: 辑母版标题样式
• 冷却速度越慢,石墨片越粗大。冷却速度很大
• 单 时,击产以生编白辑口母组版织文。 本样式
••
•
••
第 冷却二速级度主要受铸型及铸件壁厚的影响:
选择牌号时要考虑壁厚。
9
第9页/共28页
机械制造工艺基础----铸造工艺
三、单可击锻以铸编铁辑:母版标题样式
• 定义:白口铁经石墨化退火、得到团絮 • 单状击石以墨编铸辑铁母,版因文其本有样一式定的塑性,故称 • 第可二锻级铸铁。 • 第三级 • 第四级 • 第五级
10
第10页/共28页
机械制造工艺基础----铸造工艺
机械制造工艺基础----铸造工艺
铸铁单的分击类以:编辑母版标题样式 白口铸铁:Fe3C,硬脆,难加工,应用很少。
• 单击麻以口编铸辑铁母:版文本样普式通灰口铸铁:片状
• 第二灰级口铸铁:石墨 可锻铸铁:团絮状
• 第三级
球墨铸铁:球状
• 第四级
蠕墨铸铁:蠕虫状
• 第五级
此外,还有合金铸铁。
1
第1页/共28页
(• 1低)碳单可、击锻硅量铸以的铁编铁的水辑,生母通产常版特为点C标2:.4题%~样2.8式%、
Si0.4%~1.4%,以获得完全的白口组织。
• 单 壁厚击不以得编太辑厚母,版尺文寸不本宜样太式大。 •• 第 可锻二铸级铁件的石墨化退火工艺是,缓慢加热到 • 第 9室20温三~。级980 ℃,保温10~20小时,再按规范冷到 •• 第 石墨四化级退火的总周期一般为40~70小时,生产 • 第 过程五复级杂且周期长、能耗大、铸件的成本高。
机械制造工艺基础----铸造工艺
二、单灰击口以铸编铁辑:母版标题样式
• (1)石墨对灰铸铁性能的影响:灰口铸 • 铁单的击显以微编组辑织母由版金文属本基样体式与石墨片所组 • 成第,二相级当于在钢的基体中嵌入了大量石 • 墨第片三。级 •• 机第械四性级能:σb=120~250MPa,σ压≈钢 • 塑 石第性 墨五、强级韧度性极近低于 ,零 塑, 性属 近于 于脆 零性 ,材3%料的。石墨
• 能第性三越级大;
•• 含第碳四量级高,而含硅量少 • 时的第, 白五只 口级能 铁得 。到含化合碳
• 控制铸铁中碳、硅含量 的不同配比,将得到不 同组织与性能的铸铁。
5
第5页/共28页
机械制造工艺基础----铸造工艺
• b)单硫击和锰以:编硫辑是强母烈版的标反石题墨样化元式素。
• 锰具有稳定珠光体的作用,能提高铸铁的 • 单 强击度以和编硬辑度母。版文本样式 •• 第 锰二与级硫形成熔点高(1600℃)、密度小的 • 第 Mn三S级,进入熔渣而排出炉外。 •• 第 锰四在级0.6%~1.2%时是铸铁中有益的元素。 •• 第 c晶)五体磷级。:呈含网磷状量分超布过于0晶.3%界时、,低形熔成点、Fe硬3P度共
铸型材料:砂型与金属型。
第 铸件三壁级厚:
• 第四级
• 第五级
7
第7页/共28页
机械制造工艺基础----铸造工艺
• (单2)击灰以铸编铁的辑孕母育版处标理:题样式
• 孕育处理是先熔炼出低碳、硅含量
• •
单 (击C2以.7%编辑~母3.3版%文、本Si样1.0式%~2.0%)的高 第 温 入二铁少级水量(细14颗00粒~状14或50℃粉)末;状然孕后育向剂铁。水孕中育冲