第9章 振动学基础答案
大物B课后题09-第九章振动学(1)

习题9-5.在气垫导轨上质量为m 的物体由两个轻弹簧分别固定在气垫导轨的两端,如图所示,试证明物体m 的左右运动为简谐振动,并求其振动周期。
设弹簧的劲度系数为k 1和k2.解:取物体在平衡位置为坐标原点,则物体在任意位置时受的力为 12()F k k x =-+ 根据牛顿第二定律有2122()d xF k k x ma m dt=-+==化简得21220k k d x x dt m++= 令212k k m ω+=则2220d x x dtω+=所以物体做简谐振动,其周期22T πω==9-6 如图所示在电场强度为E 的匀强电场中,放置一电偶极矩P=ql 的电偶极子,+q 和-q 相距l ,且l 不变。
若有一外界扰动使这对电荷偏过一微小角度,扰动消失后,这对电荷会以垂直与电场并通过l 的中心点o 的直线为轴来回摆动。
试证明这种摆动是近似的简谐振动,并求其振动周期。
设电荷的质量皆为m ,重力忽略不计。
解 取逆时针的力矩方向为正方向,当电偶极子在如图所示位置时,点偶极子所受力矩为 sin sin sin 22l lM qE qE qEl θθθ=--=- 点偶极子对中心O 点的转动惯量为2221222l l J m m ml ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭由转动定律知2221sin 2d M qEl J ml dtθθβ=-==∙化简得222sin 0d qEdt mlθθ+=当角度很小时有sin θθ≈,若令22qEmlω=,则上式变为222sin 0d dtθωθ+= 所以电偶极子的微小摆动是简谐振动。
而且其周期为22T πω==9-7 汽车的质量一般支承在固定与轴承的若干根弹簧上,成为一倒置的弹簧振子。
汽车为开动时,上下为自由振动的频率应保持在 1.3v Hz = 附近,与人的步行频率接近,才能使乘客没有不适之感。
问汽车正常载重时,每根弹簧松弛状态下压缩了多少长度?解 汽车正常载重时的质量为m ,振子总劲度系数为k ,则振动的周期为2T =,频率为1v T == 正常载重时弹簧的压缩量为22220.15()44mg T g x g m k vππ====9-8 一根质量为m ,长为l 的均匀细棒,一端悬挂在水平轴O 点,如图所示。
第9章 振动学基础 习题答案

9-1 一竖直弹簧振子,T=0.5s,现将它从平衡位置向下拉 4cm释放,让其振动,则振动方程为
y 4 cos 4t cm
9-2 已知简谐振动方程 x 2 cos 动能 E K 最大;势能 E P
2 最大;E K E P 。
t (cm) ,则t为何值时,
k 2 令 最 大 2 解:E K 2 sin t t 2n 1 2 2 2 2 t 2n 1 , n 0,1,2, k 2 令 最 大 E P 2 cos 2 t t n 2 2 2 t 2n , n 0,1,2,
x 0.12 cost 3
9-10 一质点沿x轴简谐振动,振幅为0.12m,周期2s,当t=0 时,质点的位置在0.06m处,且向x轴正向运动,求(1)质 点振动的运动方程;(2)t=0.5s时质点的位置、速度、加
速度;(3)质点在x=-0.06m处,且向x轴负向运动,再回
解:用旋转矢量法表示两个振动,
A1 4 2 3 j 2 6
A2 2( 56 ) 3 j
A A1 A2 3 j 2 6
表示为振动方程。合振动为
x 2 cost cm 6
9-10 一质点沿x轴简谐振动,振幅为0.12m,周期2s,当t=0 时,质点的位置在0.06m处,且向x轴正向运动,求(1)质 点振动的运动方程;(2)t=0.5s时质点的位置、速度、加
x 0.12cost1 0.06 t1 23 或 43 3 3 v 0.12 sint1 0 t1 23 3 3
令
在平衡位置,x 0.12cos t 0 3
第9章振动学基础习题

第9章振动学基础习题9.1 质量为10×10-3kg的小球与轻弹簧组成的系统,按x=0.1cos(8πt+2π/3)(SI)的规律振动,求:(1)振动的圆频率、周期、振幅、初相以及速度与加速度的最大值;(2)最大回复力、振动能量、平均动能和平均势能;(3)t=1、2、5、10s等各时刻的相位;(4)分别画出振动的x-t图线,v-t图线和a-t图线;(5)画出这些振动的转动矢量图示,并在图中指明t=1、2、5、10s时矢量的位置。
9.2 一个弹簧振子m=0.5kg,k=50N/m,振幅A=0.04m,求:(1)振动的圆频率,最大速度和最大加速度;(2)当振子对平衡位置的位移为x=0.02m时的瞬时速度、加速度和回复力;(3)以速度具有正的最大值时为计时起点,写出振动的表达式。
9.3 一质点在x=0附近沿x轴作简谐振动。
在t=0时位置为x=0.37cm,速度为零,振动频率为0.25Hz。
试求:(1)周期、圆频率、振幅;(2)在时刻t的位置和速度;(3)最大速度和最大加速度的值;(4)在t=3.0s时的位置和速率。
9.4 作简谐振动的小球,速度最大值为v m=3cm/s,振幅A=2cm,若从速度为正的最大值时开始计算时间,求:(1)振动的周期;(2)加速度的最大值;(3)振动表达式。
9.5 如图,两轻弹簧与小球串联在一直线上,将两弹簧拉长后系在固定点A、B之间,整个系统放在水平面上。
设弹簧的原长为l1、l2,倔强系数为k1、k1,A、B间距离为L,小球的质量为m。
(1)试确定小球的平衡位置。
(2)使小球沿弹簧长度的方向作一微小位移后放手,小球将作振动,这一振动是否是简谐振动?振动的周期为多少?9.6 一轻弹簧的倔强系数为k,其下悬有一质量为m的盘子。
现有一质量为M的物体从离盘h高度处自由下落到盘中并和盘子粘在一起,盘子开始振动起来。
(1)此时振动周期与空盘振动的周期各为多少?(2)此时振动的振幅。
力学答案第九章

第九章一、选择题1、弹簧振子作简谐运动时,如果振幅增加为原来的两倍,则它的总能量是[ ](A) 原来总能量的2倍 (B) 原来总能量的4倍(C) 原来总能量的一半 (D) 不发生变化2、关于共振,下列说法正确的是:[ ](A) 当振子作无阻尼受迫振动时,共振时振幅为无限大(B) 当振子作无阻尼受迫振动时,共振的振幅很大,但不会无限大(C) 受迫振动是一个稳定的简谐振动(D) 共振不是受迫振动3、弹簧振子作简谐运动时,如果振幅增加为原来的两倍,而频率减小为原来的一半,则它的总能量是[ ](A)原来总能量的2倍(B)原来总能量的4倍(C)原来总能量的一半(D)不发生变化4、对一个作简谐振动的物体,下面哪种说法是正确的?[ ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零(C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零(D) 物体处在负方向的端点时,速度最大,加速度为零5、以下关于简谐振动的合成,说法正确的是[ ](A)两个同方向、同频率简谐振动合成后还是一个简谐振动,频率发生了改变(B)两个同方向、同频率简谐振动合成后还是一个简谐振动,频率不发生改变(C)两个同方向、同频率简谐振动合成后不是一个简谐振动,频率不发生改变(D)两个同方向、同频率简谐振动合成后不是一个简谐振动,频率发生了改变6、以下关于驻波的说法错误的是[ ](A)驻波是入射波和反射波叠加的结果(B)驻波中,除了节点外,各点均做同频率的简谐振动(C)驻波中,波腹和波节等距离交互排列(D )两相邻波节间各点的振动位相相同,一波节两侧的点的振动位相也相同7、一质点同时参与两个同方向的简谐振动,振动方程分别为)45cos(05.01π+=t x ,250.05cos(5)4x t π=+,则合振动方程为[ ] (A) 0 (B) 30.05cos(5)2x t π=+ (C) 30.1cos(5)2x t π=+ (D)30.1cos(10)2x t π=+8、同一个弹簧振子,使它分别在光滑水平面上,竖直方向上,光滑的斜面上以相同的振幅作简谐振动,则:[ ](A )它们的频率不同 (B )通过平衡位置时的动能不同(C )到达平衡位置时弹簧形变相同 (D )它们的周期相同9、竖直弹簧振子系统谐振周期为T ,将小球放入水中,水的浮力恒定,粘滞阻力及弹簧质量不计,若使振子沿铅直方向振动起来,则:[ ](A) 振子仍作简谐振动,但周期<T (B) 振子仍作简谐振动,但周期>T(C) 振子仍作简谐振动,且周期仍为T (D) 振子不再作简谐振动10、一质点的振动方程为:)3/2cos(2.0ππ+=t x ,则在t=0.3 (s )时:[ ](A) 质点在平衡位置右方,沿x 轴负向运动(B) 质点在平衡位置左方,沿x 轴正向运动(C) 质点在平衡位置右方,沿x 轴正向运动(D) 质点在平衡位置左方,沿x 轴负向运动11、弹簧振子作简谐振动时的总能量为E ,如果振幅增大为原来的两倍,振动质量减少为原来的一半,则总能量E’为:[ ](A )E’=E (B )E’=2E (C )E’=0.5E (D )E’=4E12、质量为m 的物体作简谐振动,振幅为A ,最大加速度为a ,则通过平衡位置时的动能为:[ ](A )0.5maA 2 (B) 0.5ma 2A 2 (C) ma 2A 2 (D) 0.5maA二、填空题1、两个同方向同频率的简谐振动合成后的运动是 。
第9章 振动学基础答案

第9章 振动学基础答案9.4 一个运动质点的位置与时间的关系为 m t x ⎪⎭⎫ ⎝⎛+=325cos 1.0ππ , 其中x 的单位是m , t 的单位是s .试求:(1)周期、角频率、频率、振幅和初相位; (2)t =2s 时质点的位移、速度和加速度.解:(1)由题中质点位置与时间的关系便知,振幅A =0.1m ,初相位3πϕ=,角频率s rad /25πω=,频率Hz 45=ν,周期s f T 8.0541===(2)⎪⎭⎫ ⎝⎛+-==325sin 41πππυt dt dx ;⎪⎭⎫ ⎝⎛+-==325cos 85222πππt dt x d a 则当t=2s 时,质点的位移,速度和加速度分别为m x 05.03cos 1.03225cos 1.0-=-=⎪⎭⎫ ⎝⎛+⨯=πππ;s m /68.0833sin 413225sin 41===⎪⎭⎫ ⎝⎛+⨯-=ππππππυ222/1.33cos 853225cos 85s m a ==⎪⎭⎫ ⎝⎛+⨯-=πππππ9.5 一个质量为2.5kg 的物体,系于水平放置的轻弹簧的一端,弹簧的另一端被固定.若弹簧受10N 的拉力,其伸长量为5.0cm,求物体的振动周期.解:由kx f =可得弹簧的经度系数为 m N x f k /1021051022⨯=⨯==- 弹簧振子的周期 s k m T 70.01025.2222=⨯==ππ9.6 如图9.27图所示 ,求振动装置的振动频率,已知物体的质量为m ,两个轻弹簧的劲度系数为1k 和2k 。
解:设物体离开平衡位置的位移是x ,此时物体所受合力x k k f )(21+-=作为线性回复力,则有021=++x m k k x故m k k 21+=ω mk k 2121+=πν9.7 如图9.28所示 , 求振动装置的振动频率,已知物体的质量为m ,两个轻弹簧的径度系数为1k 和2k 。
解:设物体m 离开平衡位置的位移为x ,所受线性回复力为f 则有)(12211x k x k f -=-= )2(21xx x =+(1)、(2)联立解之得 212121/1/11k k k k x k k f +-=+-=所以有振动方程0)(12121=++x k k k k m x,则 )(21,)(21212121k k m k k k k m k k +=+=πνω9.8 仿照式(9.15)的推导过程,导出在单摆系统中物体的速度与角位移的关系式.解:对于单摆系统中的物体m ,其振动动能 2222121θυ ml m E k == 系统的势能(重力势能)221)cos 1(θθmgl mgl mgh E p ≈-== 而系统的总能量 201θm gl E E E p k =+= 所以20212212221θθθmglmglml =+ 由此得:)()(22022202θθωθθθ-=-=lg )220θθωθ-±= 9.9 与轻弹簧的一端相接的小球沿x 轴作简谐振动,振幅为A ,位移与时间的关系可以用余弦函数表示.若在t =0时,小球的运动状态分别为(1)x = - A ;(2)过平衡位置,向x 轴正向运动;(3)过x =A /2处,向x 轴负向运动;(4)过2/A x =处,向x 轴正向运动.试确定上述状态的初相位. 解:位移x 与时间t 的一般关系可表为 )cos(ϕω+=t A x(1)t =0时,A x -=, 则有ϕcos A A =-, 即1cos -=ϕ。
大学物理复习题(附答案)

第9章 振动学基础 复习题1.已知质点的振动方程为)cos(ϕω+=t A x ,当时间4Tt =时 (T 为周期),质点的振动速度为:(A )ϕωsin A v -= (B )ϕωsin A v =(C )ϕωcos A v = (D )ϕωcos A v -=2.两个分振动的位相差为2π时,合振动的振幅是:A.A 1+A 2;B.| A 1-A 2|C.在.A 1+A 2和| A 1-A 2|之间D.无法确定3.一个做简谐运动的物体,在水平方向运动,振幅为8cm ,周期为0.50s 。
t =0时,物体位于离平衡位置4cm 处向正方向运动,则简谐运动方程为 . 4.一质点沿x 轴作简谐振动,振动方程为 )32cos(1042ππ+⨯=-t x m 。
从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 .5.一个简谐振动在t=0时位于离平衡位置6cm 处,速度v =0,振动的周期为2s ,则简谐振动的振动方程为 .6.一质点作谐振动,周期为T ,当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 .7.一个质量为0.20kg 的物体作简谐振动,其振动方程为)25cos(6.0π-=t x m ,当振动动能和势能相等时振动物体的位置在A .3.0±mB .35.0± mC .42.0±mD .0 8.某质点参与)43cos(41ππ+=t x cm 和)43cos(32ππ-=t x cm 两个同方向振动的简谐振动,其合振动的振幅为 9. 某质点参与)22cos(101ππ+=t x cm 和)22cos(41ππ-=t x cm 两个同方向振动的简谐运动,其合振动的振幅为 ;10.一个作简谐振动的物体的振动方程为cm t s )3cos(12ππ-=,当此物体由cm s 12-=处回到平衡位置所需要的最短时间为 。
9-振动学基础

,初位相2=___________.
答案:4cm 2π/3 提示:运用旋转矢量法,如图。
y
A
A2
A1
O
x
解答 12 题
-7-
二、选择题
1、下列说法正确的是: (A) 简谐振动的运动周期与初始条件无关;(B) 一个质点在返回平衡位置的力作用下,一定做简谐振 动;(C) 已知一个谐振子在 t =0 时刻处在平衡位置,则其振动初相为π/2;(D) 因为简谐振动机械能守恒, 所以机械能守恒的运动一定是简谐振动。
周期 T;2)当速度是 12cm/s 时的位移。
9-S 简谐振动的运动规律
4、如图,一质点在一直线上作简谐振动,选取该质点向右运动通过 A 点时作为计时起点(t=0),经
2 秒后质点第一次经过 B 点,再经过 2 秒后第 2 次经过 B 点,若己知该质点在 A,B 两点具有相同的速率,
AB=10cm,求:1)质点的振动方程;2)质点在 A 点(或 B 点)处的速率。
计算 5 题
mF
7、有两个振动方向相同的简谐振动,其振动方程分别为
x1
10 cos(2t
)
cm,
x2
10 cos(2t
)
2
cm,
O
计算 6 题
1) 求它们的合振动方程;
2) 另有一同方向的简谐振动 x3 2 cos(2t 3 ) cm,问当3 为何值时, x1 x3 的振幅为最大值?
8、一个沿 x 轴作简谐振动的弹簧振子,振幅为 A,周期为 T,其振动方程用余弦
(A) Asin ;
(B) Asin ; (C) A cos ; (D) A cos
y
Hale Waihona Puke 4、如图所示质点的简谐振动曲线所对应的振动方程是:
大学物理答案第九章

振幅A与初相位 三、振幅 与初相位φ 的确定
ψ = Acos(ωt +φ)
dψ = − Asin ω +φ) ω ( t dt
简谐振动的振幅和初相位由振动的初始状态决定。 简谐振动的振幅和初相位由振动的初始状态决定。 初始状态决定
已知t=0时,振动量Ψ的振动状态为 ψ0, dψ
ψ0 = Acosφ
− 1
dΨ dt 0 2 A= Ψ0 + ω
2
dΨ dt φ = tan−1 0 ω 0 Ψ
说明: (1) 一般来说φ 的取值在 - π和π(或0和2π)之间; (2) 在应用上面的式子求φ 时,一般来说有两个值, 还要由初始条件来判断应该取哪个值; (3)常用方法:先求A,然后由 Ψ0=Acosφ 、 (dΨ /dt)0=-Aωsinφ 两者的共同部分求φ 。
1 2 Ekmax = kA 2
Ekmin = 0
势 能
Ep = 1 kx2 2
1 2 2 = kA cos (ω +φ0) t 2
1 2 Epmax = kA 2
Epmin = 0
机械能
1 2 E = Ek + Ep = kA 2
简谐振动系统机械能守恒
E
E (1/2)kA2
Ep
o
Ek
Ep = Ek
t
T
x t
由起始能量求振幅
1 2 E = kA 2
2E0 2E A= = k k
LC振荡电路中,电容器上的电 量q和电路中的电流I分别为:
q =Q cos(ωt +φ) 0 I = −ωQ sin ωt +φ) ( 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 振动学基础答案9.4 一个运动质点的位置与时间的关系为 m t x ⎪⎭⎫ ⎝⎛+=325cos 1.0ππ , 其中x 的单位是m , t 的单位是s .试求:(1)周期、角频率、频率、振幅和初相位; (2)t =2s 时质点的位移、速度和加速度.解:(1)由题中质点位置与时间的关系便知,振幅A =0.1m ,初相位3πϕ=,角频率s rad /25πω=,频率Hz 45=ν,周期s f T 8.0541===(2)⎪⎭⎫ ⎝⎛+-==325sin 41πππυt dt dx ;⎪⎭⎫ ⎝⎛+-==325cos 85222πππt dt x d a 则当t=2s 时,质点的位移,速度和加速度分别为m x 05.03cos 1.03225cos 1.0-=-=⎪⎭⎫ ⎝⎛+⨯=πππ;s m /68.0833sin 413225sin 41===⎪⎭⎫ ⎝⎛+⨯-=ππππππυ222/1.33cos 853225cos 85s m a ==⎪⎭⎫ ⎝⎛+⨯-=πππππ9.5 一个质量为2.5kg 的物体,系于水平放置的轻弹簧的一端,弹簧的另一端被固定.若弹簧受10N 的拉力,其伸长量为5.0cm,求物体的振动周期.解:由kx f =可得弹簧的经度系数为 m N x f k /1021051022⨯=⨯==- 弹簧振子的周期 s k m T 70.01025.2222=⨯==ππ9.6 如图9.27图所示 ,求振动装置的振动频率,已知物体的质量为m ,两个轻弹簧的劲度系数为1k 和2k 。
解:设物体离开平衡位置的位移是x ,此时物体所受合力x k k f )(21+-=作为线性回复力,则有021=++x m k k x故m k k 21+=ω mk k 2121+=πν9.7 如图9.28所示 , 求振动装置的振动频率,已知物体的质量为m ,两个轻弹簧的径度系数为1k 和2k 。
解:设物体m 离开平衡位置的位移为x ,所受线性回复力为f 则有)(12211x k x k f -=-= )2(21xx x =+(1)、(2)联立解之得 212121/1/11k k k k x k k f +-=+-=所以有振动方程0)(12121=++x k k k k m x,则 )(21,)(21212121k k m k k k k m k k +=+=πνω9.8 仿照式(9.15)的推导过程,导出在单摆系统中物体的速度与角位移的关系式.解:对于单摆系统中的物体m ,其振动动能 2222121θυ ml m E k == 系统的势能(重力势能)221)cos 1(θθmgl mgl mgh E p ≈-== 而系统的总能量 201θm gl E E E p k =+= 所以20212212221θθθmglmglml =+ 由此得:)()(22022202θθωθθθ-=-=lg )220θθωθ-±= 9.9 与轻弹簧的一端相接的小球沿x 轴作简谐振动,振幅为A ,位移与时间的关系可以用余弦函数表示.若在t =0时,小球的运动状态分别为(1)x = - A ;(2)过平衡位置,向x 轴正向运动;(3)过x =A /2处,向x 轴负向运动;(4)过2/A x =处,向x 轴正向运动.试确定上述状态的初相位. 解:位移x 与时间t 的一般关系可表为 )cos(ϕω+=t A x(1)t =0时,A x -=, 则有ϕcos A A =-, 即1cos -=ϕ。
则初相πϕ=(2)t =0时,过平衡位置,向x 轴正向运动,即 0cos ==ϕA x ,0sin >-=ϕωA dtdx由此可知初相2/πϕ-=.图9.27 题9.6示图 图9.28 题9.7示图(3)过2/A x =处,向x 轴负向运动,即t =0时2A x =,0<dtdx ∴有21cos 2cos =→=ϕϕA A 及 0s i n <-ϕωA 由此得初相3πϕ=(4)过2/A x =处,向x 轴正向运动,即t =0,2A x =,0>dt dx∴有 22c o s 2c o s =→=ϕϕA A 及0sin >-ϕωA .由此得初相4πϕ-=. 9.10 长度为l 的弹簧,上端被固定,下端挂一重物后长度变为l +s ,并仍在弹簧限度之内.若将重物向上托起,使弹簧缩回到原来的长度,然后放手,重物将做上下运动.(1)证明重物的运动是简谐振动;(2)求简谐振动的振幅、角频率和频率; (3)若从放手时开始计时,求此振动的位移与时间的关系(向下为正). 解:(1)以平衡位置为坐标原点,向下为x 轴正向,则在位移为x 处,重物所受之力为)(s x k mg F +-= 在平衡位置x =0,F =0。
则mg=ks 。
所以kx F -=,即合力为线性回复力,则重物的运动是简谐振动。
(2)简谐振动的振幅A =s.角频率 m k =ω 频率mk ππων212/==(3)设)cos(ϕω+=t A x t =0时,s x -= 则得πϕ=∴振动的位移与时间的关系为)cos(π+=t mk s x9.11 一个物体放在一块水平木板上,此板在水平方向上以频率v 作简谐振动.若物体与木板之间的静摩擦系数为0μ ,试求使物体随木板一起振动的最大振幅.解:设简谐运动的位移与时间的关系为 )c o s (ϕω+=t A x则加速度)cos(2ϕωω+-==t A x a ,那么物体所受的最大力为m A mA F m 2224νπω== 而这力要靠静摩擦力来充当。
故有mg A m 0224μνπ≤ 由此得物体随木版一起振动的最大振幅为220max 4νπμgA =9.12 一个物体放在一块水平木板上,此板在竖直方向上以频率v 作简谐振动.试求使物体随木板一起振动的最大振幅.解:同题9.11,这里物体要做简谐振动,重力和支持力之和充当回复力,所以有:N mg A m +<224νπ.当N 刚要为0时,振幅达到最大。
由此得22max 4νπgA =9.13 一个系统作简谐振动,周期为T ,初相位为零.问在哪些时刻物体的动能与势能相等? 解:由初相为零则简谐振动可表为 )cos(t A x ω= 简谐振动的动能 t A m m E k ωωυ2222s i n 2121==,势能 t A m kx E p ωω2222cos 2121== 动能与势能相等,即p k E E = t t ωω22cos sin =∴有,那么24ππωnt +±= ),2,1,0( =n ,由此得在下式表示的时刻动能和势能相等: 8/)12(4/2/T n n t +=±=ωππ9.14 质量为10g 的物体作简谐振动,其振幅为24cm,周期为1.0s,当t =0时,位移为+24cm,求:(1) t =1/ 8 s 时物体的位置以及所受力的大小和方向;(2)由起始位置运动到x =12cm 处所需要的最少时间;(3)在x =12cm 处物体的速度、动能、势能和总能量。
解:A =24cm=0.24m ,s rad T /2/22πππνω===由t =0时x =0.24m 得初相0=ϕ. 所以简谐振动为 t x π2c o s 24.0=(1)s t 8/1=时,位移为 m x 17.02/224.08/12cos 24.0=⨯=⨯=π所受力N x m f 22107.68/2cos 24.0)2(01.0-⨯-=⨯⨯-==ππ . 负号代表方向与位移的方向相反。
(2)由t π2cos 24.012.0= 得最少时间s 61=t (3)在)s 6/112==t cm x 处(即物体的速度 m /s 31.13/sin 24.022sin 24.02-=⨯-=⨯-==ππππυt x动能 J m E k 322106.8)31.1(01.02121-⨯=-⨯⨯==υ势能 J A m kx E p 3222222108.241)24.0()2(01.0213cos 2121-⨯=⨯⨯⨯⨯===ππω 则总能量 J E E E p k 231014.110)8.26.8(--⨯=⨯+=+=9.15 质量为0.10kg 的物体以m 2100.2-⨯ 的振幅作简谐振动,其最大加速度为20.4-ms ,求:(1) 振动周期;(2) 通过平衡位置的动能;(3) 总能量.解:由题知,最大的加速度 22m a x 0.4-==ms A a ω 由此得角频率为 r a d /s 14.14100.20.42max =⨯==-A a ω(1)振动周期 s 45.014.14221====πωπνT (2)通过平衡位置的动能J A m m E k 322222max 100.4)100.2(2001.0212121--⨯=⨯⨯⨯⨯===ωυ(3)总能量 J A m E 322100.421-⨯==ω 9.16一个质点同时参与两个在同一直线上的简谐振动:()3/2cos 05.01π+=t x 和 ()3/22cos 06.02π-=t x (式中x 的单位是m ,t 的单位是s ),求合振动的振幅和初相位.解:πππφφφ-=--=-=∆3/3/212 1c o s -=∆φ则由合振动的振幅和初相公式得:m A A A A A A A 01.006.005.0cos 221212221=-=-=∆++=ϕ323arctan )3/2cos(06.03/cos 05.0)3/2sin(06.03/sin 05.0arctan cos cos sin sin arctan22112211πππππφφφφφ-==-+-+=++=A A A A9.17 有两个在同一直线上的简谐振动:()m t x 4/310cos 05.01π+=和()m t x 4/10cos 06.02π-=,试问:(1)它们合振动的振幅和初相位各为多大?(2)若另有一简谐振动 ()m t x φ+=10cos 07.03 ,分别与上两个振动叠加,φ为何值时, 31x x + 的振幅最大?φ为何值时, 32x x +的振幅最小?解(1) m A A A A A A A A A A A 01.02)cos(22121222112212221=-=-+=-++=ϕϕ4/2πϕϕ-==(2)若31x x +振幅最大,则),2,1,(24/31 o k k =±=-=-ππφϕφ ,),2,1,0(24/3 =±=k k ππφ若32x x +振幅最小,则ππφϕφ)12(4/2+±=+=-k ,),2,1,0(4/324/)12( =+±=-+±=k k k ππππφ9.18 在同一直线上的两个同频率的简谐振动的振幅分别为0.04m 和0.03m,当它们的合振动振幅为0.06m 时,两个分振动的相位差为多大?解:φ∆++=cos 22122212A A A A A24/1103.004.0203.004.006.02cos 2222122212=⨯⨯--=--=∆A A A A A φ,相位差 '42627.6200==∆φ.9.19 一个质量为5.00kg 的物体悬挂在弹簧下端让它在竖直方向上自由振动.在无阻尼的情况下,其振动周期为s 3/1π=T ;在阻尼振动的情况下,其振动周期为s 2/2π=T .求阻力系数.解:当无阻尼时 3201πωπ==T 由此得rad/s 60=ω阻尼振动的周期为 222202πβωπ=-=T ,由此可求得阻尼常量1s rad 47.420-⋅==β阻力系数 kg/s 7.4447.400.522=⨯⨯==βγm9.20 试证明受迫振动的共振频率和共振时振幅的峰值分别为2202βωω-=r 和)2/(220βωβ-=h A r ,式中ω0是振动系统的固有角频率,β是阻尼常量.证明:受迫振动的振幅 )1('4)'(22222ωβωω+-=hA其中m F h /=,'ω是策动力的角频率,0ω是固有频率,共振频率就是使振幅A 取极大值的策动力频率,由0'=ωd dA得 [][]0'4)'('8'2)'(2212/32222202220=+-+---ωβωωωβωωωh 由此可求得 2202'βωω-= ,即共振角频率 2202βωω-=r (2)共振时对应的振幅值为2202202222020222222)2(4)2(4)(βωββωββωωωβωω-=-++-=+-=h hhA rr9.21 容量为10微法的电容器充电至100伏,再通过100欧的电阻和0.4亨的电感串联放电。