圆与方程知识点整理教学提纲

圆与方程知识点整理教学提纲
圆与方程知识点整理教学提纲

关于圆与方程的知识点整理

一、标准方程()()22

2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,②利用平面几何性质

相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式

圆心在原点 ()2220x y r r +=≠ 过原点 ()()()2

2

2

2

2

20x a y b a b

a

b -+-=++≠

圆心在x 轴上 ()()2

22

0x a y r

r -+=≠ 圆心在y 轴上

()()2

220x y b r r +-=≠

圆心在x 轴上且过原点 ()()2

2

2

0x a y a a -+=≠ 圆心在y 轴上且过原点

()()2

220x y b b b +-=≠

与x 轴相切 ()()()22

2

0x a y b b

b -+-=≠ 与y 轴相切 ()()

()2

2

20x a y b a a -+-=≠

与两坐标轴都相切 ()()()2

2

2

0x a y b a a b -+-==≠

二、一般方程

()2222040x y Dx Ey F D E F ++++=+-> 1.220Ax By Cxy Dx Ey F +++++=表示圆方程则

2222

000

04040

A B A B C C D E AF D E F A A A ??=≠=≠????

=?=????+->??????+-?> ? ????

??? 2.求圆的一般方程一般可采用待定系数法: 3.22

40D E F +->常可用来求有关参数的范围 三、点与圆的位置关系

1.判断方法:点到圆心的距离d 与半径r 的大小关系

d r ?点在圆外 2.涉及最值:

(1)圆外一点B ,圆上一动点P ,讨论PB 的最值 (2)圆内一点A ,圆上一动点P ,讨论PA 的最值

min PB BN BC r ==- min PA AN r AC ==- max PB BM BC r ==+ max PA AM r AC ==+

四、直线与圆的位置关系

1.判断方法(d 为圆心到直线的距离)

(1)相离?没有公共点?0d r ?(2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?<

这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点

①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r

(2)常见题型——求过定点的切线方程

①切线条数 点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外

如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22

200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-

第二步:通过d r =k ?,从而得到切线方程

特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了!

如:过点()1,1P 作圆2

2

46120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x =

ii )点在圆上

1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目.

2) 若点()00x y ,在圆()()2

2

2

x a y b r -+-=上,则切线方程为

()()()()200x a x a y b y b r --+--=

碰到一般方程则可先将一般方程标准化,然后运用上述结果.

由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数.

③求切线长:利用基本图形,2

2

2

AP CP r AP =-?=求切点坐标:利用两个关系列出两个方程1

AC AP AC r

k k ?=??=-?

3.直线与圆相交

(1)求弦长及弦长的应用问题 垂径定理....

及勾股定理——常用

弦长公式:

12l x =-=

(2)判断直线与圆相交的一种特殊方法(一种巧合):直线过定点,而定点恰好在圆内.

(3)关于点的个数问题

例:若圆()()2

2

2

35x y r -++=上有且仅有两个点到直线4320x y --=的距离为1,则半径r 的取值范围是

_________________. 答案:()4,6

4.直线与圆相离

会对直线与圆相离作出判断(特别是涉及一些参数时) 五、对称问题

1.若圆(

)

22

2

120x y m x my m ++-+-=,关于直线10x y -+=,则实数m 的值为____. 答案:3(注意:1m =-时,22

40D E F +-<,故舍去)

变式:已知点A 是圆C :2

2

450x y ax y +++-=上任意一点,A 点关于直线210x y +-=的对称点在圆C 上,则实数

a =_________.

2.圆()()2

2

131x y -+-=关于直线0x y +=对称的曲线方程是________________.

变式:已知圆1C :()()22421x y -+-=与圆2C :()()22

241x y -+-=关于直线l 对称,则直线l 的方程为_______________.

3.圆()()22

311x y -++=关于点()2,3对称的曲线方程是__________________.

4.已知直线l :y x b =+与圆C :2

2

1x y +=,问:是否存在实数b 使自()3,3A 发出的光线被直线l 反射后与圆C 相切于

点247,2525B ??

???

?若存在,求出b 的值;若不存在,试说明理由. 六、最值问题 方法主要有三种:(1)数形结合;(2)代换;(3)参数方程 1.已知实数x ,y 满足方程2

2

410x y x +-+=,求:

(1)

5

y

x -的最大值和最小值;——看作斜率 (2)y x -的最小值;——截距(线性规划)

(3)2

2

x y +的最大值和最小值.——两点间的距离的平方

2.已知AOB ?中,3OB =,4OA =,5AB =,点P 是AOB ?内切圆上一点,求以PA ,PB ,PO 为直径的三个圆面积之和的最大值和最小值.

数形结合和参数方程两种方法均可!

3.设(),P x y 为圆()2

2

11x y +-=上的任一点,欲使不等式0x y c ++≥恒成立,则c 的取值范围是____________. 答案:

1c ≥(数形结合和参数方程两种方法均可!)

七、圆的参数方程

()2

2

2

cos 0sin x r x y r r y r θθ=?+=>??

=?,θ为参数 ()()()222

cos 0sin x a r x a y b r r y b r θθ=+?-+-=>??=+?

,θ为参数 八、相关应用

1.若直线240mx ny +-=(m ,n R ∈),始终平分圆22

4240x y x y +---=的周长,则m n ?的取值范围是

______________.

2.已知圆C :2

2

2440x y x y +-+-=,问:是否存在斜率为1的直线l ,使l 被圆C 截得的弦为AB ,以AB 为直径的圆经过原点,若存在,写出直线l 的方程,若不存在,说明理由.

提示:12120x x y y +=或弦长公式12d x =-. 答案:10x y -+=或40x y --=

3.已知圆C :()()22341x y -+-=,点()0,1A ,()0,1B ,设P 点是圆C 上的动点,22

d PA PB =+,求d 的最值及对应的P 点坐标.

4.已知圆C :()()22

1225x y -+-=,直线l :()()211740m x m y m +++--=(m R ∈) (1)证明:不论m 取什么值,直线l 与圆C 均有两个交点; (2)求其中弦长最短的直线方程.

5.若直线y x k =-+与曲线x =k 的取值范围.

6.已知圆2

2

60x y x y m ++-+=与直线230x y +-=交于P ,Q 两点,O 为坐标原点,问:是否存在实数m ,使

OP OQ ⊥,若存在,求出m 的值;若不存在,说明理由.

九、圆与圆的位置关系

1.判断方法:几何法(d 为圆心距)

(1)12d r r >+?外离 (2)12d r r =+?外切 (3)1212r r d r r -<<+?相交 (4)12d r r =-?内切 (5)12d r r <-?内含 2.两圆公共弦所在直线方程

圆1C :22

1110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,

则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程. 补充说明:

若1C 与2C 相切,则表示其中一条公切线方程; 若1C 与2C 相离,则表示连心线的中垂线方程. 3圆系问题

(1)过两圆1C :22

1110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为

()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)

说明:1)上述圆系不包括2C ;2)当1λ=-时,表示过两圆交点的直线方程(公共弦) (

2

线

Ax By C ++=与圆

220

x y Dx Ey F ++++=交点的圆系方程为

()220x y Dx Ey F Ax By C λ+++++++=

(3)有关圆系的简单应用 (4)两圆公切线的条数问题

①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相离时,有四条公切线 十、轨迹方程

(1)定义法(圆的定义):略

(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式——轨迹方程. 例:过圆2

2

1x y +=外一点()2,0A 作圆的割线,求割线被圆截得的弦的中点的轨迹方程.

分析:222

OP AP OA +=

(3)相关点法(平移转换法):一点随另一点的变动而变动

↓ ↓

动点 主动点

特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动.

例1.如图,已知定点()2,0A ,点Q 是圆2

2

1x y +=上的动点,

AOQ ∠的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程. 分析:角平分线定理和定比分点公式.

例2.已知圆O :2

2

9x y +=,点()3,0A ,B 、C 是圆O 上的两个动点,A 、B 、C 呈逆时针方向排列,且3

BAC π

∠=

求ABC ?的重心G 的轨迹方程. 法1:3

BAC π

∠=

Q ,BC ∴为定长且等于33

设(),G x y ,则333

33A B C B C A B C B

C x x x x x x y y y y y y ++++?==???+++?==??

取BC 的中点为33,24E x ??∈-????,333,42E y ??∈- ? ??

222

OE CE OC +=Q ,229

4

E E x y ∴+=

L L (1) 2222B C E B C E B C E B C E

x x x x x x y y y y y y +?=?+=????

?+=+??=??,323332

2323E E E E x x x x y y y

y +-??==????∴?????==????

故由(1)得:()22

22

333933110,,,12242x y x y x y ??-??????+=?-+=∈∈- ? ? ??? ????????

法2:(参数法)

设()3cos ,3sin B θθ,由223

BOC BAC π

∠=∠=

,则 223cos ,3sin 33C ππθθ??????+

+ ? ? ????

??

?

设(),G x y ,则

()()233cos 3cos 231cos cos 133323sin 3sin 23sin sin 2333A B C A B C x x x x y y y y πθθπθθπθθπθθ??

?+++ ??++?????===+++ ????

?

???++ ??++????===++? ????L L L 4,

33

ππ

θ??∈ ???,由()()()22112-+得:()22

33110,,,12x y x y ????-+=∈∈- ??? ????

参数法的本质是将动点坐标(),x y 中的x 和y 都用第三个变量(即参数)表示,通过消参..得到动点轨迹方程,通过参数的范围得出x ,y 的范围. (4)求轨迹方程常用到得知识

①重心(),G x y ,33A B C A B C x x x x y y y y ++?=???++?=??

②中点(),P x y ,1212

2

2x x x y y y +?

=???+?=??③内角平分线定理:BD AB CD AC =

④定比分点公式:AM

MB λ=,则1A B M x x x λλ+=+,1A B M y y y λλ

+=+ ⑤韦达定理.

高三总复习直线与圆的方程知识点总结

直线与圆的方程 一、直线的方程 1、倾斜角: ,围0≤α<π, x l //轴或与x 轴重合时,α=00 。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 (说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --'

圆与方程知识点小结

圆与方程 2、1圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2、2点与圆的位置关系: 1. 设点到圆心的距离为d ,圆半径为r : (1)点在圆上 d=r ; (2)点在圆外 d >r ; (3)点在圆内 d <r . 2.给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-?( ③M 在圆C 外22020)()(r b y a x >-+-? 2、3 圆的一般方程:022=++++F Ey Dx y x . 当042 2 >-+F E D 时,方程表示一个圆,其中圆心? ?? ??--2,2 E D C ,半径2 42 2F E D r -+= . 当0422=-+F E D 时,方程表示一个点?? ? ? ?- - 2,2 E D . 当0422<-+ F E D 时,方程无图形(称虚圆). 注:(1)方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0 =B 且 ≠=C A 且 042 2 AF E D -+. 圆的直径或方程:已知0))(())((),(),(21212211=--+--?y y y y x x x x y x B y x A 2、4 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种 (1)若2 2 B A C Bb Aa d +++= ,0相离r d ; (2)0=???=相切r d ; (3)0>???<相交r d 。 还可以利用直线方程与圆的方程联立方程组???=++++=++0 2 2 F Ey Dx y x C By Ax 求解,通过解 的个数来判断: (1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交;

圆与方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1).设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. (2) 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形.

注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ; ④ 条公切线内切121??-=r r d ; ⑤ 无公切线内含??-<<210r r d ;

高一数学必修二《圆与方程》知识点整理

《圆与方程》知识点整理 一、标准方程()() 222 x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b和半径r ①待定系数:往往已知圆上三点坐标,例如教材 119 P例2 ②利用平面几何性质 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 二、一般方程 () 2222 040 x y Dx Ey F D E F ++++=+-> 1.220 Ax By Cxy Dx Ey F +++++=表示圆方程则 22 22 00 00 40 40 A B A B C C D E AF D E F A A A ? ? =≠=≠ ? ? ?? =?= ?? ??+-> ? ???? ?+-?> ? ? ????? ? 2.求圆的一般方程一般可采用待定系数法: 3.2240 D E F +->常可用来求有关参数的范围 三、圆系方程: 四、参数方程: 五、点与圆的位置关系 1.判断方法:点到圆心的距离d与半径r的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B,圆上一动点P,讨论PB的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A,圆上一动点P,讨论PA的最值 m i n P A A N r A C ==- max PA AM r AC ==+ 思考:过此A点作最短的弦?(此弦垂直AC)

六、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程 ①切线条数 点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外 如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22 200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=- 第二步:通过d r =k ?,从而得到切线方程 特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆22 46120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x = ii )点在圆上 1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目. 2) 若点()00x y ,在圆()()22 2x a y b r -+-=上,则切线方程为 ()()()()200x a x a y b y b r --+--= 碰到一般方程则可先将一般方程标准化,然后运用上述结果. 由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数. ③求切线长:利用基本图形,222AP CP r AP =-?= 3.直线与圆相交 (1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用

圆方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1). 设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2). 给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x .

(1) 当042 2 >-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2 E D C ,半径2 422F E D r -+= . (2) 当0422=-+F E D 时,方程表示一个点??? ??-- 2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形. 注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且 0422φAF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离2 2 B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0

圆知识点总结及归纳

第一讲圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x-a)2+(y-b)2=r2 展开并整理得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆的一般方程x2+y2+Dx+Ey+F=0通过配方后得到的方程为:

(x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2,-E 2);③当D 2+E 2-4F <0时,方程没有实数解, 因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为 1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. 2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4内切 5内含 (五)圆的参数方程 (六)温馨提示 1、方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是: (1)B=0;(2)A=C≠0;(3)D2+E2-4AF>0.

(完整版)圆与方程知识点整理(可编辑修改word版)

? + ? PB = PB = PA = PA = 关于圆与方程的知识点整理 一、标准方程: ( x - a )2 + ( y - b )2 = r 2 二、一般方程: x 2 + y 2 + Dx + Ey + F = 0 (D 2 + E 2 - 4F > 0) 1. Ax 2 + By 2 + Cxy + Dx + Ey + F = 0 表示圆方程则 ? ? A = B ≠ 0 ? A = B ≠ 0 ? ? ?C = 0 ? ?C = 0 ?? D ? 2 ? E ?2 - 4 ? F > 0 ? D 2 + E 2 - 4 AF > 0 ? A ? A ? A ?? ? ? ? 2.求圆的一般方程一般可采用待定系数法。 3. D 2 + E 2 - 4F > 0 常可用来求有关参数的范围 三、点与圆的位置关系 1. 判断方法:点到圆心的距离 d 与半径 r 的大小: d < r ? 点在圆内; d = r ? 点在圆上; d > r ? 点在圆外 2. 涉及最值:(1)圆外一点 B ,圆上一动点 P ,讨论 PB 的最值 min max BN = BM = BC - r BC + r (2)圆内一点 A ,圆上一动点 P ,讨论 PA 的最值 min AN = r - AC max AM = r + AC 四、直线与圆的位置关系 1. 判断方法( d 为圆心到直线的距离):(1)相离? 没有公共点? ? < 0 ? d > r ;(2)相切? 只有一 个公共点? ? = 0 ? d = r ;(3)相交? 有两个公共点? ? > 0 ? d < r 。 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2. 直线与圆相切 (1) 知识要点:①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么?圆心C 到直线l 的距离恰好等于半径 r (2) 常见题型——求过定点的切线方程 ①切线条数:点在圆外——两条;点在圆上……一条;点在圆内……无 ②求切线方程的方法及注意点

第四章 圆与方程知识点总结及习题答案

第四章 圆与方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的 半径。 2、圆的方程 (1)标准方程()()22 2 r b y a x =-+-,圆心 ()b a ,,半径为r ; 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系: 当2200()()x a y b -+->2 r ,点在圆外 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内 (2)一般方程022=++++F Ey Dx y x 当042 2 >-+F E D 时,方程表示圆,此时圆心为? ? ? ? ? --2,2 E D ,半径为 F E D r 42 122-+= 当0422 =-+F E D 时,表示一个点; 当042 2<-+F E D 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离 为2 2B A C Bb Aa d +++= ,则有相离与C l r d ?>; 相切与C l r d ?=;相交与C l r d ?< (2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+- 两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 当r R d +>时两圆外离,此时有公切线四条; 当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线;

高中数学圆与方程知识点

高中数学圆与方程知识点分析 1. 圆的方程:(1)标准方程:2 22()()x a y b r -+-=(圆心为A(a,b),半径为r ) (2)圆的一般方程:022=++++F Ey Dx y x (0422>-+F E D ) 圆心(-2D ,-2 E )半径 F E D 421 22-+ 2. 点与圆的位置关系的判断方法:根据点与圆心的距离d 与r 在大小关系判断 3. 直线与圆的位置关系判断方法 (1)几何法:由圆心到直线的距离和圆的半径的大小关系来判断。 d=r 为相切,d>r 为相交,d0为相交,△<0为相离。利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。 4.圆与圆的位置关系判断方法 (1)几何法:两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: 1)当21r r l +>时,圆1C 与圆2C 相离;2)当21r r l +=时,圆1C 与圆2C 外切; 3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;4)当||21r r l -=时,圆1C 与圆2C 内切; 5)当||21r r l -<时,圆1C 与圆2C 内含; (2)代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。△=0为外切 或内切,△>0为相交,△<0为相离或内含。若两圆相交,两圆方程相减得公共弦所在直线方程。 5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系 题型一 求圆的方程 例1.求过点A( 2,0),圆心在(3, 2)圆的方程。 变式1求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。 解:设所求的圆的方程为:02 2=++++F Ey Dx y x (也可设圆的标准方程求) ∵(0,0),(11A B φ,),C(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于F E D ,,的三元一次方程组. 即??? ??=+++=+++=02024020F E D F E D F 解此方程组,可得:0,6,8==-=F E D 王新敞 ∴所求圆的方程为: 0682 2=+-+y x y x 王新敞

人教版数学必修二第四章 圆与方程 知识点总结

第四章圆与方程 4.1 圆得方程 4.1、1 圆得标准方程 1.以(3,-1)为圆心,4为半径得圆得方程为() A.(x+3)2+(y-1)2=4 B.(x-3)2+(y+1)2=4 C.(x-3)2+(y+1)2=16 D.(x+3)2+(y-1)2=16 2.一圆得标准方程为x2+(y+1)2=8,则此圆得圆心与半径分别为() A.(1,0),4 B.(-1,0),2 2 C.(0,1),4 D.(0,-1),2 2 3.圆(x+2)2+(y-2)2=m2得圆心为________,半径为________. 4.若点P(-3,4)在圆x2+y2=a2上,则a得值就是________. 5.以点(-2,1)为圆心且与直线x+y=1相切得圆得方程就是____________________. 6.圆心在y轴上,半径为1,且过点(1,2)得圆得方程为() A.x2+(y-2)2=1 B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1 7.一个圆经过点A(5,0)与B(-2,1),圆心在直线x-3y-10=0上,求此圆得方程. 8.点P(5a+1,12a)在圆(x-1)2+y2=1得内部,则a得取值范围就是() A.|a|<1 B.a<1 13 C.|a|<1 5 D.|a|<1 13 9.圆(x-1)2+y2=25上得点到点A(5,5)得最大距离就是__________. 10.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦AB得长为 2 3,求a得值. 4、1、2 圆得一般方程 1.圆x2+y2-6x=0得圆心坐标就是________. 2.若方程x2+y2+Dx+Ey+F=0表示以(2,-4)为圆心,以4为半径得圆,则F=________、 3.若方程x2+y2-4x+2y+5k=0表示圆,则k得取值范围就是() A.k>1 B.k<1 C.k≥1 D.k≤1 4.已知圆得方程就是x2+y2-2x+4y+3=0,则下列直线中通过圆心得就是() A.3x+2y+1=0 B.3x+2y=0 C.3x-2y=0 D.3x-2y+1=0 5.圆x2+y2-6x+4y=0得周长就是________. 6.点(2a,2)在圆x2+y2-2y-4=0得内部,则a得取值范围就是()

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

高一数学必修二圆与方程知识点整理

高一数学必修二圆与方程 知识点整理 LELE was finally revised on the morning of December 16, 2020

高一数学必修二《圆与方程》知识点整理 一、标准方程 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 ②利用平面几何性质 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件方程形式 圆心在原点()2220x y r r +=≠ 过原点()()()22 22220x a y b a b a b -+-=++≠ 圆心在x 轴上()()2220x a y r r -+=≠ 圆心在y 轴上()()2220x y b r r +-=≠ 圆心在x 轴上且过原点()()2220x a y a a -+=≠ 圆心在y 轴上且过原点()()2220x y b b b +-=≠ 与x 轴相切()()()2220x a y b b b -+-=≠ 与y 轴相切()()()22 20x a y b a a -+-=≠ 与两坐标轴都相切()()()2220x a y b a a b -+-==≠ 二、一般方程 1.220Ax By Cxy Dx Ey F +++++=表示圆方程则 2.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值

圆与方程知识点整理教学提纲

关于圆与方程的知识点整理 一、标准方程()()22 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,②利用平面几何性质 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 ()2220x y r r +=≠ 过原点 ()()()2 2 2 2 2 20x a y b a b a b -+-=++≠ 圆心在x 轴上 ()()2 22 0x a y r r -+=≠ 圆心在y 轴上 ()()2 220x y b r r +-=≠ 圆心在x 轴上且过原点 ()()2 2 2 0x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2 220x y b b b +-=≠ 与x 轴相切 ()()()22 2 0x a y b b b -+-=≠ 与y 轴相切 ()() ()2 2 20x a y b a a -+-=≠ 与两坐标轴都相切 ()()()2 2 2 0x a y b a a b -+-==≠ 二、一般方程 ()2222040x y Dx Ey F D E F ++++=+-> 1.220Ax By Cxy Dx Ey F +++++=表示圆方程则 2222 000 04040 A B A B C C D E AF D E F A A A ??=≠=≠???? =?=????+->??????+-?> ? ???? ??? 2.求圆的一般方程一般可采用待定系数法: 3.22 40D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值 (2)圆内一点A ,圆上一动点P ,讨论PA 的最值 min PB BN BC r ==- min PA AN r AC ==- max PB BM BC r ==+ max PA AM r AC ==+ 四、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ?(2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r

高中数学圆的方程专题复习

1 / 4 高一数学辅导资料 内容:圆与方程 本章考试要求 一、圆的方程 【知识要点】 1.圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 0==b a 时,圆心在原点的圆的方程为:222r y x =+. 2.圆的一般方程02 2 =++++F Ey Dx y x ,圆心为点,2 2D E ?? -- ???,半径2 r = , 其中0422 >-+F E D . 3.圆系方程:过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++= 交点的圆系方程是()22221112220x y D x E y F x y D x E y F λ+++++++++=(不含圆2C ), 当1λ=-时圆系方程变为两圆公共弦所在直线方程. 【互动探究】 考点一 求圆的方程 问题1. 求满足下列各条件圆的方程: ()1以两点(3,1)A --,(5,5)B 为直径端点的圆的方程是 ()2求经过)2,5(A ,)2,3(-B 两点,圆心在直线32=-y x 上的圆的方程; ()3过点()4,1A 的圆C 与直线10x y --=相切于点()2,1B ,则圆C 的方程是? 考点二 圆的标准方程与一般方程 问题2.方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 考点三 轨迹问题

问题3.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是 问题4.设两点()3,0A -,()3,0B ,动点P 到点A 的距离与到点B 的距离的比为2,求P 点的轨迹. 二、直线和圆、圆与圆的位置关系 【知识要点】 1.直线与圆的位置关系 将直线方程代入圆的方程得到一元二次方程,设它的判别式 为△,圆的半径为r ,圆心C 到直线l 的距离为d 则直线与 圆的位置关系满足以下关系: 2.直线截圆所得弦长的计算方法: 利用垂径定理和勾股定理:AB =r 为圆的半径,d 直线到圆心的距离). 0:111221=++++F y E x D y x C 0:222222=++++F y E x D y x C 则两圆的公共弦所在的直线方程是 4.相切问题的解法: ①利用圆心到切线的距离等于半径列方程求解 ②利用圆心、切点连线的斜率与切线的斜率的乘积为1-(或一条直线存在斜率,另一条不存在) ③利用直线与圆的方程联立的方程组的解只有一个,即0=?来求解. 特殊地,已知切点),(00y x P ,圆222r y x =+的切线方程为 . 圆222)()(r b y a x =-+-的切线方程为 【互动探究】 考点一 直线与圆的位置关系 问题1:()1已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 .A l 与C 相交 .B l 与C 相切 .C l 与C 相离 .D 以上三个选项均有可能 ()2直线l :1mx y m -+-与圆C :() 2 211x y +-=的位置关系是 .A 相离 .B 相切 .C 相交 .D 无法确定,与m 的取值有关. ()3过点()1,3P 引圆2244100x y x y +---=的弦,则所作的弦中最短的弦长为

圆与方程知识点整理

关于圆与方程的知识点整理 一、标准方程:()()222x a y b r -+-= 二、一般方程:() 2222040x y Dx Ey F D E F ++++=+-> 1.220Ax By Cxy Dx Ey F +++++=表示圆方程则 2222000 04040A B A B C C D E AF D E F A A A ??=≠=≠????=?=????+->??????+-?> ? ??????? 2.求圆的一般方程一般可采用待定系数法。3.22 40D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小:d r ?点在圆外 2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 四、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离):(1)相离?没有公共点?0d r ?;(2)相切?只有一个公共点?0d r ?=?=;(3)相交?有两个公共点?0d r ?>?<。 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点:①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么?圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程 ①切线条数:点在圆外——两条;点在圆上……一条;点在圆内……无 ②求切线方程的方法及注意点... i )点在圆外:如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22 200x a y b r -+->]

高中数学必修2知识点总结:第四章_圆与方程

高中数学必修2知识点总结 第四章 圆与方程 4.1.1 圆的标准方程 1、圆的标准方程:2 22() ()x a y b r -+-= 圆心为A(a,b),半径为r 的圆的方程 2、点00(,)M x y 与圆2 22()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)220 0()()x a y b -+-<2r ,点在圆内 4.1.2 圆的一般方程 1、圆的一般方程:022 =++++F Ey Dx y x 2、圆的一般方程的特点: (1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项. (2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了. (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。 4.2.1 圆与圆的位置关系 1、用点到直线的距离来判断直线与圆的位置关系. 设直线l :0=++c by ax ,圆C :02 2 =++++F Ey Dx y x ,圆的半径为r ,圆心)2 ,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交; 4.2.2 圆与圆的位置关系 两圆的位置关系. 设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: (1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;

圆锥曲线与方程知识点详细

椭圆 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的 轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆122 22=+b y a x )0(>>b a 与坐标轴的四个 交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 22 1=,b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值范围是)10(<

高一数学必修二《圆与方程》知识点整理

高一数学必修二《圆与方程》知识点整理 一、标准方程 ()() 222 x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b和半径r ①待定系数:往往已知圆上三点坐标,例如教材 119 P例2 ②利用平面几何性质 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件方程形式 圆心在原点() 2220 x y r r +=≠ 过原点()()() 2222220 x a y b a b a b -+-=++≠圆心在x轴上()() 2220 x a y r r -+=≠ 圆心在y轴上()() 2 220 x y b r r +-=≠ 圆心在x轴上且过原点()() 2220 x a y a a -+=≠ 圆心在y轴上且过原点()() 2 220 x y b b b +-=≠ 与x轴相切()()() 2220 x a y b b b -+-=≠ 与y轴相切()()() 2220 x a y b a a -+-=≠ 与两坐标轴都相切()()() 2220 x a y b a a b -+-==≠ 二、一般方程 () 2222 040 x y Dx Ey F D E F ++++=+-> 1.220 Ax By Cxy Dx Ey F +++++=表示圆方程则 22 22 00 00 40 40 A B A B C C D E AF D E F A A A ? ? =≠=≠ ? ? ?? =?= ?? ??+-> ? ???? ?+-?> ? ? ????? ?

相关文档
最新文档