七年级数学第一章复习导学案教案

合集下载

初一数学上册第一章有理数复习教案最新3篇

初一数学上册第一章有理数复习教案最新3篇

初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。

在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。

“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。

通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。

所以本节课的学习具有一定的现实地位。

(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。

同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。

另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。

(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。

2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。

3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。

4、教学重点:会进行有理数的乘除法运算。

5、教学难点:有理数乘除法法则的探索与运用。

确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。

七年级数学上册 第一章 有理数复习导学案 (新版)新人教版-(新版)新人教版初中七年级上册数学学案

七年级数学上册 第一章 有理数复习导学案 (新版)新人教版-(新版)新人教版初中七年级上册数学学案

第一章有理数复习复习整理有理数有关概念和有理数的运算法则,运算律以及近似数等有关知识.重点:有理数概念和有理数的运算;难点:对有理数的运算法则的理解.知识回顾(一)正负数、有理数的分类正整数、零、负整数统称整数,试举例说明.正分数、负分数统称分数,试举例说明.整数和分数统称有理数.(二)数轴:规定了原点、正方向、单位长度的直线,叫数轴.(三)相反数的概念,只有符号不同的两个数叫做互为相反数.0的相反数是__0__.一般地:若a为任一有理数,则a的相反数为-a.相反数的相关性质:1.相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点0的两边,并且到原点的距离相等;2.互为相反数的两个数,和为0.(四)绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是__0__.一个有理数a的绝对值,用式子表示就是:(1)当a是正数(即a>0)时,∣a∣=a;(2)当a是负数(即a<0)时,∣a∣=__-a__;(3)当a =0时,∣a ∣= 0 .(五)有理数的运算(1)有理数加法法则:______________________; (2)有理数减法法则:______________________;(3)有理数乘法法则:______________________;(4)有理数除法法则:______________________;(5)有理数的乘方:________________________.求n 个相同因数的积的运算,叫做有理数的乘方.即:a n=aa …a (有n 个a ).从运算上看式子a n ,可以读作a 的n 次方;从结果上看式子a n ,可以读作a 的n 次幂. 有理数混合运算顺序:(1)先乘方,再乘除,后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行(六)科学记数法、近似数把一个大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数),叫做科学记数法.1.把下列各数填在相应的大括号内:1,,-789,25,0,-20,,-590,78正整数集{1,25,…};正有理数集{1,25,78…}; ,-789,-20,,-590…};负整数集{-789,-20,-590…};自然数集{1,25,0…};正分数集{78…};,,…}.2.如图所示的图形为四位同学画的数轴,其中正确的是( D )3.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来. 4,-|-2|,,1,0.4.下列语句中正确的是( D )A .数轴上的点只能表示整数B .数轴上的点只能表示分数C .数轴上的点只能表示有理数D .所有有理数都可以用数轴上的点表示出来5.-5的相反数是__5__;-(-8)的相反数是-8;-[+(-6)]=__6__;0的相反数是__0__;a 的相反数是-a .6.若a 和b 是互为相反数,则a +b =__0__.7.如果-x =-6,那么x =__6__;-x =9,那么x =-9.8.|-8|=__8__;-|-5|=-5;绝对值等于4的数是±4.9.如果a >3,则|a -3|=__a -3__,|3-a |=a -3. 10.有理数中,最大的负整数是__-1__,最小的正整数是__1__,最大的非正数是__0__.11.33=__27__;(-12)2=__14__;-52=-25;22的平方是__16__. 12.下列各式正确的是( C )A .-52=(-5)2B .(-1)1996=-1996 C .(-1)2003-(-1)=0 D .(-1)99-1=013.用科学记数法表示:1 305 000 000=1.305×109;-1 020=-1.02×103. 14.120万用科学记数法应写成1.20×10624000.15.千万分位;5.47×105精确到__千__位.16.计算:(1)12-(-18)+(-7)-15;解:原式=12+18-7-15=30-22=8;(2)-23÷49×(-23)3; 解:原式=-8×94×(-827) =163; (3)(-1)10×2+(-2)3÷4;解:原式=1×2-8÷4=2-2=0;(4)(-10)4+[(-4)2-(3+32)×2].解:原式=10000+[16-(3+9)×2]=10000+(16-24)=10000-8=9992.。

新人教版数学七年级上册第一章有理数复习2课时精品导学案设计

新人教版数学七年级上册第一章有理数复习2课时精品导学案设计

第一章有理数复习( 1)复习目标:复习整理有理数有关观点和有理数的运算法例,运算律以及近似计算等有关知识复习要点:有理数观点和有理数的运算;复习难点:对有理数的运算法例的理解;导学指导:;一、改变旧世界(一)正负数(二)有理数的分类:_____________统称整数,试举例说明。

_____________统称分数,试举例说明。

____________统称有理数。

(三)数轴规定了、、(四)、相反数的观点像 2 和 -2 、 -5 和 5、 2.5 和 -2.5 这样,只有0 的相反数是。

一般地:若 a 为任一有理数,则的直线,叫数轴b5E2RGbCAP不一样的两个数叫做互为相反数;a 的相反数为 -a相反数的有关性质:1、相反数的几何意义:表示互为相反数的两个点(除0 外)分别在原点O的两边,而且到原点的距离相等。

2、互为相反数的两个数,和为0。

(五)、绝对值一般地,数轴上表示数 a 的点与原点的叫做数 a 的绝对值,记作∣a∣;一个正数的绝对值是;一个负数的绝对值是它的;0 的绝对值是.任一个有理数 a 的绝对值用式子表示就是:(1)当 a 是正数(即 a>0)时,∣ a∣= (2)当 a 是负数(即 a<0)时,∣ a∣= (3)当 a=0 时,∣ a∣= ;二、学海苦无边;;1.把以下各数填在相应额大括号内:71,- 0.1 ,-789 , 25, 0,-20 , -3.14 ,-590 ,8正整数集{};正有理数集{};负有理数集{};负整数集{};自然数集{};正分数集{};负分数集{};2.如下图的图形为四位同学画的数轴,此中正确的选项是( )3.在数轴上画出表示以下各数的点,并按从大到小的次序摆列,用“ >”号连结起来。

4 ,-|-2| , -4.5 ,1, 0 4. 以下语句中正确的选项是()A . 数轴上的点只好表示整数B. 数轴上的点只好表示分数C. 数轴上的点只好表示有理数D. 全部有理数都能够用数轴上的点表示出来5. -5 的相反数是 ;- (-8 )的相反数是 ;- [+ (-6)]=0 的相反数是; a 的相反数是; 6. 若 a 和 b 是互为相反数,则a+b=。

七年级数学上册导学案全册

七年级数学上册导学案全册

七年级数学上册导学案全册导学案-七年级数学上册注意:本导学案旨在帮助学生预习和复习七年级数学上册的内容,提供课前准备和课后巩固的指导,请密切配合教材使用。

第一章分数一、概念引入1.1 了解分数的定义和常用表示方法;1.2 掌握分数在数轴上的位置及其大小关系。

二、分数的基本运算2.1 分数的加法和减法:同分母、异分母情境下的计算;2.2 分数的乘法:分数乘以整数的计算;2.3 分数的除法:计算除法表达式,化简答案。

三、混合运算3.1 掌握混合数的概念及相互转化;3.2 掌握带分数的加减法运算;3.3 灵活运用所学知识解决实际问题。

第二章代数式一、代数式的概念1.1 了解代数式的定义和构成要素;1.2 了解代数式的计算方法。

二、代数表达式的分解和合并2.1 分解代数式为因式的乘积;2.2 合并同类项简化代数式。

三、代数式的应用3.1 运用代数式解决实际问题;3.2 利用代数式建立数学模型。

第三章图形的初步认识一、几何基本概念1.1 了解点、线、面的概念,认识线段、射线、直线、角等基本几何要素;1.2 掌握正方形、矩形、三角形、圆的定义和性质。

二、图形的相似和全等2.1 了解相似和全等的概念;2.2 掌握判断图形相似和全等的条件;2.3 运用相似和全等的性质解决实际问题。

三、平面镶嵌3.1 了解平面镶嵌的概念和方法;3.2 探索平面镶嵌的规律。

第四章线性方程一、方程的概念1.1 了解方程的定义及解的概念;1.2 掌握等式的性质。

二、解一元一次方程2.1 书写一元一次方程;2.2 运用等式性质解一元一次方程。

三、实际问题与方程3.1 将实际问题转化为方程;3.2 运用方程解决实际问题。

第五章数据与概率一、统计图与数据1.1 了解条形图、折线图的表示方法;1.2 能够读取和分析各类统计图。

二、概率初步2.1 了解概率的定义和常用表示方式;2.2 进行简单事件的概率计算;2.3 利用概率解决实际问题。

三、收集与处理数据3.1 学会收集和整理数据;3.2 运用统计学方法分析数据。

人教版七年级上册 第1章 有理数复习教案(表格式)

人教版七年级上册 第1章 有理数复习教案(表格式)

义务教育学校课时教案备课时间:上课时间:A. 正数B. 负数C. 正数或负数D. 正数或0或负数5.下列说法中,错误的有()①-23/7 是负分数;② 1.5 不是整数;③非负有理数不包括 0;④可以写成分数形式的数称为有理数;⑤ 0 是最小的有理数;⑥ -1是最小的负整数. A.1 个 B.2 个 C.3 个 D .4 个6. 把下列各数分别填入相应的括号内:-7,3.5, -3.1415,0,17,0.03, - 2,10,- 4非负整数集合{⋯};整数集合{⋯};正分数集合{⋯};非正数集合{⋯}.【3、数轴】数轴有三要素:原点、正方向、单位长度。

画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。

所有的有理数都可以用数轴上的点来表示,但数轴上的点并不都表示有理数7. 在数轴上表示下列各数、并将这些数按从小到大的顺序排列,再用“<”连接起来.3,-4,0,2,-2,-1【4、相反数】(1)相反数:只有符号不同的两个数,互为相反数;(2)相反数的几何意义:在数轴上位于原点两侧并且到原点距离相等的两个点所表示的两个则 a_____b,| a |_____| b |.18. 若|a|=3,|b|=7,则|a+b|的值是( )A.10B.4C.10或4D.以上都不对【6. 有理数大小的比较】(1)数学中规定:在水平的数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.(2)有理数大小的比较法则:①正数大于0,0大于负数,正数大于负数;②两个负数,绝对值大的反而小.(3)两个负数比较大小,绝对值大的反而小。

练习:19. 如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是____,点B表示的数是 ____.(2)点C表示的数是− 0.3 ,点D表示的数是-1,请在数轴上分别画出点C和点D的位置.(3)在(1)(2)的条件下将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.20. 数轴上表示数a,b的点如图所示,把a,-a,b,-b 按照从小到大的顺序排列,正确的是().A.-b<-a<a<bB. -a <-b<a<bC. -b<a<-a<bD. -b<b<-a<a21.如图,有理数a,b在数轴上对应点的位置如图所示.(1)结合数轴可知:-a___b(用“>、=或<”填空);(2)结合数轴化简:|a+1|+|-b+1|.22.工厂生产的乒乓球超过标准质量的克数记作正数,低于标准质量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的质量最接近标准?解:| +0.01|=0.01,|-0.02|=0.02,|-0.01|=0.01,| +0.04|=0.04,|-0.03|=0.03.因为0.01<0.02<0.03<0.04,所以A球和C球的质量最接近标准.四.课堂小结、课堂作业板书设计第一章有理数例题课堂练习作业设计与布置作业类型作业内容试做时长基础性作业基本性作业(必做)教科书第16页复习题1复习巩固第1题5分钟鼓励性作业(选择)教科书第17页复习题1复习巩固7题5分钟挑战性作业(选择)教科书第17页复习题1复习巩固9题5分钟拓展性作业作业反馈记录教学反思备课组长审核签字教研组长审核签字年级部审核签字党支部审核签字时间时间时间时间。

最新部编版人教初中数学七年级上册《第一章 有理数 复习(1)导学案》精品完美优秀导学单

最新部编版人教初中数学七年级上册《第一章 有理数 复习(1)导学案》精品完美优秀导学单




整数
分数有理数
前言:
该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的导学案(导学单)是高效课堂的前提和保障。

(最新精品导学案)
课型回归复习课主备人审定人执教者
班级学习小组学生姓名
【课程目标】掌握有理数、数轴、相反数、绝对值等有关概念。

【复习目标】
1、梳理本章知识,建构知识树,进一步理解正负数、有理数、数轴、相反数、绝对值等概念。

2、加强合作交流,克服易错点,提高对本章知识的整体把握。

【复习过程】
一、知识梳理
(一)正负数
1. 叫做正数;叫做负数;既不是正数也不是负数。

2.列举生活中具有相反意义的量:
(二)有理数
1. 和统称为有理数
2.有理数的分类:
正有理数

负有理数
- 1 -。

人教版七年级上册数学:第一章有理数复习导学案

人教版七年级上册数学:第一章有理数复习导学案

第一章 有理数复习导学案复习目标:1、梳理本章知识,熟悉知识结构,进一步理解正负数、有理数、相反数、绝对值等概念,熟练进行有理数的运算。

2、体会利用所学知识解决实际问题。

3、加强合作交流,克服易错点及运算错误,提高对本章知识的整体把握。

重难点:有理数的有关概念及运算。

一、自主复习:1. 大于零的数叫 , 在正数前加一个“- ”号的数叫做 , 既不是正数,也不是负数.2. 和 统称为有理数. 有理数的分类为:特别注意:下面分类是否有错误?并请你指出错误的原因。

(1)0⎧⎪⎨⎪⎩正数有理数负数 (2)0⎧⎪⎨⎪⎩整数有理数分数 (3)⎧⎪⎨⎪⎩整数有理数小数分数 (4)⎧⎪⎨⎪⎩正有理数有理数负有理数3. 规定了 、 和 的直线叫数轴。

所有的有理数都可以用数轴上的 表示,但并不是所有的点都表示有理数.数轴上的原点表示数________,原点左边的数表示 ,原点及原点右边的数表示 .在原点右边,越靠近原点的点表示的数越 (填“大”或“小”),在原点左边,越靠近原点的点表示的数越 (填“大”或“小”)。

4. 有理数的大小比较:⑴在数轴上表示的两个数,右边的数总比左边的数 .⑵正数都 0,负数都 0,正数 一切负数; ⑶两个负数比较大小, .5. 数a 的相反数是 . 的相反数大于它本身, 的相反数小于它本身, 的相反数等于它本身. 的倒数等于它本身.6. 一个数a 的绝对值是指数轴上表示数a 的点与 距离,记作 .①一个正数的绝对值是 ; 即:如果a >0,则|a | = ; ②一个负数的绝对值是 ; 如果a <0,则|a | = ;③0的绝对值是 . 如果a = 0,则|a | = . 7. 反之:若一个数的绝对值是它本身,则这个数是 ;若一个数的绝对值是它相反数,则这个数是 ;即若||a a =,则a 0;若||a a =-,则a 0.一个数a 的绝对值是指数轴上表示数a 的点与 距离,记作 .①一个正数的绝对值是 ; 即:如果a >0,则|a | = ;⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎧⎧⎫⎨⎪⎪⎩⎪⎪⎪⎪⎨⎬⎪⎪⎧⎪⎪⎨⎪⎪⎭⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数12()有限小数;()无限循环小数.②一个负数的绝对值是 ; 如果a <0,则|a | = ;③0的绝对值是 . 如果a = 0,则|a | = . 反之:若一个数的绝对值是它本身,则这个数是 ;若一个数的绝对值是它相反数,则这个数是 ;即若||a a =,则a 0;若||a a =-,则a 0.有理数有理数的分类 1、按整数、分数分:2、按正数、负数、零分:1、意义:2、在数轴上表示:相反数倒数意义:有理数的大小比较方法2、运算1、在数轴上:2、利用绝对值: 绝对值:1、几何意义:2、代数意义:1、概念法则 加法法则减法法则 乘法法则 除法法则 乘方法则有理数混合运算法则运算律 交换律1、加法交换律2、乘法交换律字母表示: 文字叙述: 字母表示: 文字叙述: 结合律1、加法结合律2、乘法结合律字母表示: 文字叙述: 字母表示: 文字叙述:分配律字母表示: 文字叙述:3、科学记数法的意义:4、近似数的意义:三、本章专题研究: 1、知识专题部分: 专题1加法的运算律例1:计算: 353110(3)(8)(2)5656+-+-+-专题2乘法的运算律及分配律新课标第一网例2:计算:① 1149( 2.5)()8()72---×××× ② 753224()12643--+-×专题3 充分利用概念例3:已知a.b 互为相反数,c.d 互为倒数,m 是绝对值最小的数,求代数式2007()()a m b m cd ++-÷的值。

七年级数学下册第一章复习导学案

七年级数学下册第一章复习导学案

=⎪⎭⎫ ⎝⎛p a 1第一章《整式的乘除》复习导学案 【教学过程】:一、复习回顾1、幂的运算(1)同底数幂的乘法:a m ﹒a n = (m 、n 为正整数)推广:=⋅⋅pn m a a a (m 、n 、p 都为正整数) 逆用:a m+n = (m 、n 、都为正整数) 变形: (2)幂的乘方(a m )n = (m 、n 为正整数)推广: (m 、n 、p 都为正整数) 逆用:()mn a = (m 、n 为正整数)(3)积的乘方:(ab )n= (n 为正整数)推广:()n abc = (n 为正整数) 逆用:=⋅n n b a (n 为正整数)(4)同底数幂的除法:a m ÷a n = (a ≠0,m 、n 为正整数,n m >)推广:=÷÷pn m a a a (a ≠0,m 、n 、p 为正整数,p n m +>) 逆用:a m-n = (a ≠0,m 、n 为正整数,n m >) (5)零指数幂:a 0= (注意考底数范围a ≠0). 0的0次幂无意义.(6)负指数幂:=-p a(根据定义)= (根据底倒指反)(a ≠0,p 为正整数) ※0的负指数幂无意义.逆用: (a ≠0,p 为正整数) 2、整式的乘法:(1)、单项式乘以单项式:(2)、单项式乘以多项式:(3)、多项式乘以多项式:3.整式乘法公式:(1)、平方差公式: 逆用: (2)、公式变形:①系数变化:②符号变化: 备课董静 郭海燕 授课时间 班级 姓名 复习目标掌握整式的加减、乘除,幂的运算;并能运用乘法公式进行运算。

复习重点 整式的乘除运算法则与方法复习难点 整式的乘法公式 ()[]=p n m a ()⎩⎨⎧=n a -()⎩⎨⎧=n a -b ()()=-+b a b a =-22b a =⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+b a b a 214214()()=--+-1515x x③指数变化:()()=-+3232b a b a ④位置变化:()()=+-+a b a b公式变形:①系数变化: ②符号变化:()()=--+-1515x x③指数变化:()()=-+3232b a b a ④位置变化:()()=+-+a b a b⑤连用公式:()()()=++-3932a a a 完全平方公式:逆用:变形: ①=+22b a ()2b a + ab 2=()2b a - ab 2 ②ab 2=()2b a + ()22b a +=()22b a + ()2b a - ③()2b a +=()2b a -+()2b a -=()2b a +- 4、整式的除法:(1)、单项式除以单项式:(2)、多项式除以单项式:二、课堂练习1.计算① n m )5.0()21(⨯ ②232)2(c b a - ③()()3222a -a -⋅④333)32()31()9(-⋅⋅- ⑤225)(--+-⋅÷b b b n n ⑥()()()x -22-x 2-x 32⋅⋅2.解答①已知510=a ,210b =,求b a 3210+的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《章末复习》导学案
使用说明及学法指导:
1、学生先独立复习本章所学内容,梳理本章知识,独立完成自主学习部分,然后小组交流,弄清疑点,注意纠错。

2、建设本导学案使用时间两学时。

复习目标:
1、梳理本章知识熟悉知识结构,进一步理解正负数、有理数、相反数、绝对值等概念,熟练进行有理数的运算。

2、体会利用所学知识解决实际问题。

3、加强合作交流,克服易错点及运算错误,提高对本章知识的整体把握。

重难点:有理数的有关概念及运算。

一、自主复习:
二、本章专题研究:
1、知识专题部分:
专题1加法的运算律
例1:计算:
3531 10(3)(8)(2) 5656
+-+-+-
专题2乘法的运算律及分配律
例2:计算:①
11 49( 2.5)()8()
72 ---××××
② 7532
24()12643--+-×
专题3 充分利用概念
例3:已知互为相反数,互为倒数,m 是绝对值最小的数,求代数式
2007()()a m b m cd ++-÷的值。

专题4 非负数性质的应用
例4:已知2(3)40a b ++-=,求22a b +的值。

2、思想方法专题讲解
专题5 数形结合的思想方法
例5:有理数在数轴上的位置如图所示 ,试比较:a ,a -,b ,b -这四个数的大小
专题6 公式的递用解题法
例6:计算: ①201020100.254×; ②12112()()3031065
-
-+-÷
专题7 分类讨论的思想方法
例7:已知a 是任一有理数,试比较a 与2a -的大小.
专题8 特殊值法
例8:若0a >,0b <,且a b <,则a b + 0(填“>”或“<”)
三、合作探究、计算:①317
87.25(1)(2)4412
-++-+- ②
67.8(2)( 6.8)--+---
2、计算:①2156()(1)()5687---××× ②795()102814-××(-)×1
3
9
3、计算:①1111()124362-+-× ②35
3936
×(-12)
4、若m 、n 互为相反数,x 、y 互为倒数,求200720072008m n my +-的值。

5、若2(1)a -与2b -互为相反数,求33a b +的值。

6、已知有理数a 、b 、c 在数轴上的位置,如图所示,代简a a b c a b c -++-++.
7、计算:(17)42(17)21(17)164-----×××
8、若0x <,0y >,且x b <,则x y + 0(填“<”或“ >”)
四、能力提升:
1、计算:2349102222...22----+
2、计算:
11111111111(...)(1...)(1...)(...)23200723200622007232006+++++++-++++++××
3、若0a ≠,0b ≠,试求a b
a b
+的可能取值。

4、试比较a 与1
(0)a a
≠的大小。

5、观察下列各式:
221
126+=⨯⨯⨯235
2221
12346++=⨯⨯⨯37
22221
12346
+++=×4×5×9,……
①由此推算出2222123...10++++等于多少?
②2222123...n ++++等于多少?。

相关文档
最新文档