钢框架_钢筋混凝土核心筒52页PPT

合集下载

钢管混凝土结构PPT课件

钢管混凝土结构PPT课件
第18页/共79页
1.压型钢板与混凝土组合板
压型钢板的肋部可以放置水电管线,从而 使结构层与管线合为一体,间接地加大了 层高或降低了建筑高度,给建筑设计带来 灵活性。
在施工阶段,压型钢板可作为钢梁的连续侧向支撑, 提高了钢梁的整体稳定承载力;在使用阶段,提高了 钢梁的整体稳定性和上翼缘的局部稳定性。
教材
1. 赵鸿铁著,《组合结构设计原理》,科学出版社,2005 2. 聂建国等,《钢-混凝土组合结构》,建筑工业出版社, 2005
第1页/共79页
提纲
一、钢与混凝土组合结构 (1)压型钢板与混凝土组合结构 (2)钢与混凝土组合梁 (3)型钢混凝土结构 (4)梁柱连接 (5)钢管混凝土结构 (6)外包钢混凝土结构 二、钢与混凝土组合结构的发展与应用
第22页/共79页
2.钢与混凝土组合梁
组合梁中的剪切连接件 剪切连接件的作用(1)抵抗砼板与钢梁叠合面上的纵向剪
力,使二者不能自由滑移(2)抵抗使砼板与钢梁具有分离趋 势的“掀起力”
第23页/共79页
2.钢与混凝土组合梁
常州市龙城大桥
龙城大桥是常州市龙城跨运河大桥。主桥采取自 锚式悬索斜拉协作体系,主梁采用箱形结构,主 跨跨中部分采用混凝土-钢结合梁,其余部分采 用预应力混凝土箱梁。
型钢混凝土组合结构
第36页/共79页
4.型钢梁—型钢混凝土柱的连接
对于型钢混凝土柱—型钢梁的情况,钢梁在型钢混凝土柱 的两侧断开,型钢混凝土柱内型钢与型钢梁的连接应采用 刚性连接,且钢梁翼缘与柱内型钢翼缘应采用全熔透焊缝 连接;梁腹板与柱宜采用摩擦型高强螺栓连接,悬臂梁段 与柱应采用全焊缝连接
型钢混凝土组合结构
克服了圆钢管混凝土柱的一些缺点。可以用作偏心受 压柱,房屋的外观较好;连接面为平面,节点构造比较 简单;方钢管构成封闭截面,自身刚度较大;由于钢材 都分布于截面外边,抗弯承载力较高;钢板为连续配置, 提高了对混凝土的约束作用,故构件的延性比钢筋混凝 土结构明显提高;省去模板,方便施工。

钢框架_钢筋混凝土核心筒

钢框架_钢筋混凝土核心筒

钢框架_钢筋混凝土核心筒钢框架钢筋混凝土核心筒在现代建筑领域,钢框架钢筋混凝土核心筒结构因其独特的优势而被广泛应用。

这种结构体系融合了钢框架和钢筋混凝土核心筒的特点,为高层建筑提供了稳固、高效且灵活的解决方案。

首先,我们来了解一下什么是钢框架。

钢框架主要由钢梁和钢柱组成,通过节点连接形成一个稳定的框架体系。

钢材具有高强度、轻质、易于加工和安装等优点。

这使得钢框架能够提供较大的跨度和空间,并且施工速度相对较快。

而钢筋混凝土核心筒则通常位于建筑的中心位置。

它由钢筋混凝土墙体围成,内部包含电梯井、楼梯间、管道井等垂直交通和设备空间。

核心筒具有良好的抗侧力性能,能够有效地抵抗风荷载和地震作用。

钢框架钢筋混凝土核心筒结构的优势是显而易见的。

一方面,钢框架为建筑提供了灵活的大空间布局,适用于商业、办公等需要开阔空间的场所。

另一方面,核心筒能够承担大部分的水平荷载,保证了建筑在强风或地震时的稳定性。

在抗震性能方面,这种结构表现出色。

地震发生时,钢框架和核心筒协同工作,共同吸收和分散地震能量。

核心筒的混凝土墙体能够有效地限制结构的变形,而钢框架则通过其良好的延性来消耗能量,从而减少地震对建筑的破坏。

从施工角度来看,钢框架和钢筋混凝土核心筒可以同时施工,大大缩短了建筑的工期。

钢框架部分可以在工厂预制,然后运输到现场进行拼装,提高了施工效率和质量。

然而,这种结构也并非没有挑战。

例如,钢框架和钢筋混凝土核心筒之间的连接节点设计和施工要求较高。

如果处理不当,可能会影响结构的整体性和安全性。

另外,由于两种材料的物理性能不同,在温度变化时可能会产生不同程度的变形,这需要在设计和施工中加以考虑和解决。

为了确保钢框架钢筋混凝土核心筒结构的安全和可靠性,设计阶段需要进行精细的计算和分析。

设计师要根据建筑的功能、高度、地理位置等因素,合理确定钢框架和核心筒的尺寸、材料强度等参数。

同时,还要考虑风荷载、地震作用、竖向荷载等多种荷载组合,以保证结构在各种工况下都能满足设计要求。

钢框架—混凝土核心筒结构的抗震设计(全文)

钢框架—混凝土核心筒结构的抗震设计(全文)

钢框架—混凝土核心筒结构的抗震设计(全文) 1. 钢框架—混凝土核心筒结构的抗震设计第一章引言1.1 研究背景1.2 研究目的1.3 研究意义第二章钢框架结构的特点与设计原则2.1 钢框架结构的基本组成2.2 钢框架结构的优点和应用领域2.3 钢框架结构的设计原则2.4 钢框架结构的设计流程第三章混凝土核心筒结构的特点与设计原则3.1 混凝土核心筒结构的基本组成3.2 混凝土核心筒结构的优点和应用领域3.3 混凝土核心筒结构的设计原则3.4 混凝土核心筒结构的设计流程第四章钢框架—混凝土核心筒结构的组合设计方法4.1 钢框架—混凝土核心筒结构的组合原理4.2 钢框架—混凝土核心筒结构的组合设计步骤4.3 钢框架—混凝土核心筒结构的设计案例分析第五章抗震设计方法与计算5.1 基本抗震设计原则5.2 抗震设防烈度与设计地震力5.3 抗震设计参数与计算方法5.4 抗震设计中的各种荷载的计算5.5 抗震设计的结构分析方法第六章结果分析与讨论6.1 数值分析结果的重要参数总结6.2 各种设计方案的比较分析第七章结论与建议7.1 结论7.2 建议附件:1. 抗震设计草图及计算表格2. 结构分析软件模拟结果法律名词及注释:1. 结构设计规范- 标准化的结构设计规范,用于指导钢框架和混凝土核心筒结构的设计与施工。

2. 抗震设防烈度- 地震活动的程度,通常用地震烈度表中的指标表示,用于确定设计地震力。

3. 抗震设计参数- 用于计算并确定结构抗震性能的各种参数,包括强度、刚度等。

2. 钢框架—混凝土核心筒结构的抗震设计第一章引言1.1 研究背景1.2 研究目的1.3 研究意义第二章钢框架结构的特点与设计原则2.1 钢框架结构的基本组成2.2 钢框架结构的优点和应用领域2.3 钢框架结构的设计原则2.4 钢框架结构的设计流程第三章混凝土核心筒结构的特点与设计原则3.1 混凝土核心筒结构的基本组成3.2 混凝土核心筒结构的优点和应用领域3.3 混凝土核心筒结构的设计原则3.4 混凝土核心筒结构的设计流程第四章钢框架—混凝土核心筒结构的组合设计方法4.1 钢框架—混凝土核心筒结构的组合原理4.2 钢框架—混凝土核心筒结构的组合设计步骤4.3 钢框架—混凝土核心筒结构的设计案例分析第五章抗震设计方法与计算5.1 基本抗震设计原则5.2 抗震设防烈度与设计地震力5.3 抗震设计参数与计算方法5.4 抗震设计中的各种荷载的计算5.5 抗震设计的结构分析方法第六章结果分析与讨论6.1 数值分析结果的重要参数总结6.2 各种设计方案的比较分析第七章结论与建议7.1 结论7.2 建议附件:1. 抗震设计草图及计算表格2. 结构分析软件模拟结果法律名词及注释:1. 结构设计规范- 标准化的结构设计规范,用于指导钢框架和混凝土核心筒结构的设计与施工。

钢框架-混凝土核心筒两种连接方式

钢框架-混凝土核心筒两种连接方式

钢框架-混凝土核心筒的两种连接方式摘要:对钢框架-混凝土核心筒体系中钢梁与核心筒连接的两种连接方式进行比较。

分析表明,采用刚接做法,在不提高造价前提下,能有效增强结构的抗震延性,提高结构的安全性。

关键词:钢框架-混凝土核心筒铰接刚接two connections of steel frame-concrete core wall structuresabstract:key words:mixed framehinged connectionstiff connection1 前言目前,钢框架-混凝土核心筒体系在高层建筑中应用越来越普遍:外框架采用钢管混凝土柱(或纯钢柱)+钢梁,内筒采用钢筋混凝土结构,建筑高度较高时,可设置若干道伸臂桁架,增强结构的水平刚度。

其中外框架的钢梁与混凝土核心筒的连接有两种方法:铰接、刚接。

采用铰接连接时,施工比较简便,只需在混凝土核心筒外侧设置预埋件,施工时与钢梁用高强螺栓连接;采用刚接连接时,需在混凝土核心筒内埋置钢芯柱,预留钢牛腿与钢梁连接。

下图为两种典型连接做法:a-铰接连接b-刚接连接图1本文试对这两种连接进行比较分析。

2 抗震概念分析与钢筋混凝土的框筒结构体系相似,钢框架-混凝土核心筒体系在水平荷载作用下,混凝土内筒是主要抗侧力结构,经楼板变形协调后,钢框架承担少量的水平剪力,混凝土内筒即承担大部分倾覆力矩,又承担大部分水平剪力。

由于混凝土内筒的变形曲线是弯曲型的,而钢框架是呈剪切型,因此,经楼板变形协调后,钢框架在顶部水平剪力将大于下部。

这类结构体系在地震力的持续作用下,混凝土内筒进入弹塑性阶段后,墙体产生裂缝,侧向刚度急剧下降,致使钢框架要承担比弹性阶段大的多的倾覆力矩和水平剪力。

由于钢梁与混凝土核心筒的连接方式不同,在剪力墙底部出现塑性铰之后结构体系是完全不同的:当钢梁与核心筒采用铰接时,由于核心筒底部出现裂缝形成塑性铰,侧向刚度急剧降低,而一般框架核心筒体系中,框架一般只有一跨,此时整个结构体系的水平刚度将快速降低,难以继续抵抗较大的地震力作用,整个结构体系会发生脆性破坏。

[新版]钢支撑-钢筋混凝土框架

[新版]钢支撑-钢筋混凝土框架

G.1 钢支撑-钢筋混凝土框架(抗规)G.1.1 抗震设防烈度为6~8度且房屋高度超过本规范第6.1.1条规定的钢筋混凝土框架结构最大适用高度时,可采用钢支撑-混凝土框架组成抗侧力体系的结构。

按本节要求进行抗震设计时,其适用的最大高度不宜超过本规范第6.1.1条钢筋混凝土框架结构和框架-抗震墙结构二者最大适用高度的平均值。

超过最大适用高度的房屋,应进行专门研究和论证,采取有效的加强措施。

G.1.2 钢支撑-混凝土框架结构房屋应根据设防类别、烈度和房屋高度采用不同的抗震等级,并应符合相应的计算和构造措施要求。

丙类建筑的抗震等级,钢支撑框架部分应比本规范第8.1.3条和第6.1.2条框架结构的规定提高一个等级,钢筋混凝土框架部分仍按本规范第6.1.2条框架结构确定。

G.1.3 钢支撑-混凝土框架结构的结构布置,应符合下列要求:1 钢支撑框架应在结构的两个主轴方向同时设置。

2 钢支撑宜上下连续布置,当受建筑方案影响无法连续布置时,宜在邻跨延续布置。

3 钢支撑宜采用交叉支撑,也可采用人字支撑或V形支撑;采用单支撑时,两方向的斜杆应基本对称布置。

4 钢支撑在平面内的布置应避免导致扭转效应;钢支撑之间无大洞口的楼、屋盖的长宽比,宜符合本规范6.1.6条对抗震墙间距的要求;楼梯间宜布置钢支撑。

5 底层的钢支撑框架按刚度分配的地震倾覆力矩应大于结构总地震倾覆力矩的50%。

G.1. 4 钢支撑-混凝土框架结构的抗震计算,尚应符合下列要求:1 结构的阻尼比不应大于0.045,也可按混凝土框架部分和钢支撑部分在结构总变形能所占的比例折算为等效阻尼比。

2 钢支撑框架部分的斜杆,可按端部铰接杆计算。

当支撑斜杆的轴线偏离混凝土柱轴线超过柱宽1/4时,应考虑附加弯矩。

3 混凝土框架部分承担的地震作用,应按框架结构和支撑框架结构两种模型计算,并宜取二者的较大值。

4 钢支撑-混凝土框架的层间位移限值,宜按框架和框架-抗震墙结构内插。

钢框架-钢筋混凝土核心筒结构同步施工技术

钢框架-钢筋混凝土核心筒结构同步施工技术

钢框架-钢筋混凝土核心筒结构同步施工技术摘要:为了提高钢框架钢筋混凝土核心筒结构在地震作用下的协同工作性能及减小结构在竖向荷载作用下的变形差异,可采取以下措施,在钢框架上加设大型斜撑,在钢框架和核心筒之间增设伸臂桁架以及同时增设大型斜撑和伸臂桁架,利用有限元软件完成对比分析,这几种结构形式的协同工作性能,分析结果表明在钢框架上加设大型斜撑可明显提高结构的刚度。

框架的剪力分配率更易满足规范要求,框架柱的材料利用效率更高,增设伸臂桁架对整体结构的刚度影响不大,但可有效减小钢框架和核心筒之间的竖向变形差。

同时增设大型斜撑和伸臂桁架可显著提高钢框架钢筋混凝土核心筒结构的协同工作性能。

关键词:钢框架;钢筋混凝土;核心筒结构;同步施工传统的钢框架与钢筋混凝土核心筒施工顺序为,核心筒施工领先于钢框架5~6层,待核心筒混凝土达到设计强度后开始钢框架安装。

中部国际设计中心项目地上仅11层,核心筒先于钢框架施工无法满足工期需要,同时核心筒楼板甩筋不利于合模,本文就高层钢框架与钢筋混凝土核心筒同时建造技术的研究与应用进行交流和总结。

随着建筑行业地飞速发展,建筑设计外观的多样化、结构设计的多元化也随之而来,建筑结构形态已不仅限于规则的、普通的钢筋混凝土结构,异形核心筒钢板剪力墙,异形外幕墙钢结构等设计形式异军突起,随之而来的是对其施工技术、施工工艺等进行除旧更新。

1钢框架钢筋混凝土核心筒结构概述钢框钢框架钢筋混凝土核心筒结构将钢框架轻质,施工速度快的特点和钢筋混凝土核心筒抗压强度高,防火性能好%抗侧刚度大的特点有机地结合起来,已被广泛应用于高层建筑中,但一些已有的工程实践和试验研究表明,钢筋混凝土核心筒结构相对来说刚度有余而强度不足,而外框架则正好相反,强度有余而刚度不足,使得这种结构体系在抗震性能上不协调,内筒和外框架无法合理分担地震荷载作用。

为了提高钢框架钢筋混凝土核心筒结构在地震作用下的协同工作性能及减小。

结构在竖向荷载作用下的变形差异,可采取以下措施$在钢框架上加设大型斜撑,在钢框架和核心筒之间增设伸臂桁架以及同时增设大型斜撑和伸臂桁架。

高层钢框架——混凝土核心筒结构同步等高攀升施工技术

高层钢框架——混凝土核心筒结构同步等高攀升施工技术

124YAN JIUJIAN SHE高层钢框架——混凝土核心筒结构同步等高攀升施工技术Gao ceng gang kuang jia —— hun ning tuhe xin tong jie gou tong bu deng gao pan sheng shi gong ji shu胡文学 贾翊铭 陈建良 刘博 徐保全目前,建筑领域高层结构采用钢框架-混凝土核心筒结构形式较为常见。

此类结构的施工多采用核心筒结构先行、外框钢结构落后几层、同步不等高施工的方法,而采用钢框架与混凝土核心筒同步等高攀升施工则较为少见。

位于深圳市深圳技术大学建设项目,大数据与互联网学院的主体结构结合工程结构设计特点,采用钢框架与混凝土核心筒同步等高攀升施工的方法,达到缩短工期、提升质量、安全可靠、节约成本的目的。

一、高层钢框架-混凝土核心筒结构施工方法比较目前国内在建的所有“钢框架+混凝土核心筒”高层结构施工均采取核心筒先行,外框钢柱、钢梁、组合楼板(或钢筋桁架楼承板)后施工的“不等高同步攀升”的施工组织形式,而实践得出结论,在主体结构高度小于100m 时,塔楼结构出±0后,采用外围钢框架与混凝土核心筒同步等高攀升施工的组织形式,相较于前者有以下几方面的优势:(1)减少核心筒爬升式脚手架安装和拆卸的等待时间,大大缩短了结构施工工期;(2)外围水平结构与核心筒整体现浇,避免留设施工冷缝,能够更好的控制外框与核心筒交界面混凝土的施工质量,保证钢框架与混凝土核心筒的协调作用;(3)避免了交界面板筋预留带来的后续楼承板施工不便从施工质量角度来讲;(4)消除了核心筒先行、垂直交叉施工时上方混凝土凿毛坠物等对外围钢结构施工的安全隐患;(5)避免了核心筒混凝土浇筑、养护水下淌等污染下方已安装完成的钢结构构件表面,提升成品保护质量及安全文明形象;(6)核心筒无需采用爬升式脚手架,避免爬架施工的安全风险,并且大大节约了工程成本;(7)采用可周转、安拆方便的临时支撑,其材料回收率高。

多层及高层房屋钢框架结构

多层及高层房屋钢框架结构

4.3 柱和支撑的设计
4.3.1 框架柱设计概要
➢柱截面形式: 箱形、焊接工字形、H型钢、圆管等 ➢截面估计:按1.2N的轴心受压构件,34层作一次截面变
化,厚度不宜超过100mm ➢板件宽厚比,见下表 ➢长细比:多层(12层)框架柱在68度设防时不应大于120,
9度设防时不应大于100。高层(>12层)框架柱在设防烈度 为6,7以及8和9度时,分别为120,80以及60
bc1= bc2
组合梁混凝土翼板的有效宽度
(a) Afbcehcfcm (塑性中和轴在混凝土受压翼板内)
(b) Af>bcehcfcm (塑性中和轴在钢梁截面内) 正弯矩时组合梁横截面抗弯承载力计算图
2.负弯矩作用时
MMp+Asfsy(y3+/y4 /2)
As
组合梁塑性中和轴 钢梁塑性中和轴
y4 y3
多层(12 层)
高层(>12 层)
7度 8度 9度 6度 7度 8度 9度
13 11 9 9 8 8 7
33 30 27 25 23 23 21
31 28 25 23 21 21 19
42 40 40 38
➢ 截面形式:
1. 双轴对称截面 2. 单轴对称截面,采取防止绕对称轴屈曲的构造措施
➢ P-效应导致的附加效应:
多层(12层) 按压杆设计
150
按拉杆设计 200
120 120 150 150
高层(>12层)
120
90 60
➢ 板件宽厚比: 1. 6度抗震设防和非抗震设防:按《钢结构设计规范》(GB50017) 2. 抗震设防结构:
板件名称
翼缘外伸部分 工字形截面腹板
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档