第五章工业机器人路径规划教学提纲
第五章第二讲机器人路径轨迹运行规划

编号:授课时间:授课班级:工业机器人应用班任课教师:项目名称第五章第二节机器人路径轨迹运行规划学时:2教学目标知识目标1.掌握机器人路径轨迹规划的方法2.掌握离线编程软件的使用方法技能目标1.能正确进行机器人五角星轨迹的规划2.能使用离线编程软件完成五角星的编程情感态度培养学生热爱学习的良好习惯,通过知识的收集和总结,提高学生理解能力,通过实际操作,提高学生的操作技能。
教学内容要让机器人绘制五角星,我们需要告知工业机器人它的作业具体内容。
本次课主要机器人路径轨迹运行规划,用离线编程软件实现五角星的绘制程序编写。
重点1.能正确进行机器人五角星轨迹的规划2.能使用离线编程软件完成五角星的编程难点能使用离线编程软件完成五角星的编程教学策略利用现有ABB工业机器人进行操作,采用现场教学的方式,按照一体化教学的步骤实施教学计划,强调学生的实际操作能力,在做中学,同时充分利用学校现有的教学资源库,最大限度的收集更多更好的网络资源,使课堂教学更生动。
教学资源准备一、明确任务,完成路径规划机器人的基本原理是示教——再现。
示教也成为导引,是由操作者直接或间接的导引机器人,一步一步按实际作业要求告知机器人应该完成的动作和作业的具体内容。
机器人在导引过程中是以程序的形式将其记录下来,并存储在机器人控制装置内。
再现是通过存储内容的回放,使机器人能在一定的精度范围内按照程序所示教的动作和赋予的作业内容。
机器人的运动轨迹是机器人为了完成某一作业任务,工具中心点(TCP)所掠过的路径,它是工业机器人示教的重点。
示教时,我们不可能将运动轨迹上的所有点都示教一遍,一是费时,二是占用大量的存储空间。
实际上,对于有规律的轨迹,原则上我们只需要示教几个程序点。
例如直线运动轨迹示教两个点,直线起始点和结束点,我们学习数学的时候学过“两点确定一条直线”。
圆弧轨迹示教3个程序点,圆弧起始点,圆弧中间点和圆弧结束点。
常见的编程方法有两种,示教编程方法和离线编程方法。
工业机器人的运动控制与路径规划

工业机器人的运动控制与路径规划一、引言随着工业自动化的进一步发展,工业机器人的应用逐渐普及。
工业机器人是一种可以自主执行各种任务的机械设备,它通过精确的控制和路径规划实现各种复杂的工作。
本文将着重探讨工业机器人的运动控制与路径规划技术。
二、工业机器人的运动控制1. 关节空间与笛卡尔空间工业机器人的运动可以描述为在关节空间和笛卡尔空间中的运动。
关节空间是指机器人关节角度的变化,而笛卡尔空间是指机器人执行器的位置和姿态的变化。
控制机器人的关节角度可以直接通过控制关节电机实现,而控制机器人的位置和姿态则需要通过逆运动学求解,即根据末端执行器的位置和姿态来推算关节角度。
2. 动态模型与控制器为了实现机器人的精确运动控制,需要建立机器人的动态模型。
动态模型描述了机器人在受力作用下的运动方程,可以用于计算机器人在给定控制输入下的状态响应。
基于动态模型,可以设计合适的控制器,包括位置控制、速度控制和力控制等。
位置控制是最常用的控制方式,通过控制机器人的位置达到期望的位置。
速度控制则是通过控制机器人的关节速度实现期望的速度。
力控制则是通过传感器反馈机器人末端执行器的受力情况,控制机器人的受力在允许范围内。
三、工业机器人的路径规划1. 末端执行器的路径规划路径规划是指确定末端执行器在空间中的轨迹,以实现机器人的期望运动。
常用的路径规划方法包括直线规划和圆弧规划。
直线规划是通过直线插补,将机器人末端执行器从起始位置移动到目标位置。
圆弧规划则是通过圆弧插补,在起始位置和目标位置之间生成一条弧线路径。
2. 避障路径规划工业机器人在执行任务时,需要避免与障碍物发生碰撞,因此需要进行避障路径规划。
常用的避障路径规划方法包括局部规划和全局规划。
局部规划是在机器人周围的感知范围内进行规划,通过实时更新障碍物位置,避免碰撞。
全局规划则是在整个工作空间中进行规划,通过预先建立地图和路径搜索算法,找到无碰撞的路径。
全局规划常用的算法包括Dijkstra算法和A*算法等。
第五章工业机器人路径规划

上图中灰色区域为障碍物
上图黄色路线为该算法得到的最优路1径1
第五章 机器人路径规划
五、人工势场法 1.人工势场法基本思想:
人工势场法是一种虚拟力法。它模仿引力斥力下的物体运动, 目标点和运动体间为引力,运动体和障碍物间为斥力,通过建立 引力场斥力场函数进行路径寻优。优点是规划出来的路径平滑安 全、描述简单等,但是存在局部最优的问题,引力场的设计是算 法能否成功应用的关键。
20
第五章 机器人路径规划
第三节 路径规划应用
第五章 机器人路径规划
一、全球第一个能自动避开障碍 物的机器人——Shakey
1969年美国斯坦福国际研究所(Stanford Research Institute, SRI)研制了移动式机器人Shakey,这是首台采用了人工智能学的移 动机器人,Shakey具备一定人工智能,能够自主进行感知、环境建 模、行为规划并执行任务(如寻找木箱并将其推到指定目的位置)。 它装备了电视摄像机、三角法测距仪、碰撞传感器、驱动电机以及 编码器,并通过无线通讯系统
END
29
随机覆盖法不用定位、也没有环境地图,也无法对 路径进行规划,所以其移动路径基本依赖于内置的算法, 算法的优劣也决定了其清扫质量与效率的高低。
24
二、扫地机器人——ROOMBA
第五章 机器人路径规划
随机覆盖法不用定位、也没有环境地图,也无法对 路径进行规划,所以其移动路径基本依赖于内置的算法, 算法的优劣也决定了其清扫质量与效率的高低。
1.基于先验完全信息的是全局路径规划;全局路径规划 属于静态规划( 又称离线规划)。全局路径规划需要掌握所 有的环境信息,根据环境地图的所有信息进行路径规划。
2.基于传感器信息的是局部路径规划。局部路径规划属 于动态规划( 又称在线规划)。局部路径规划只需要由传感 器实时采集环境信息,了解环境地图信息,然后确定出所在 地图的位置及其局部的障碍物分布情况,从而可以选出从当 前结点到某一子目标结点的最优路径。
工业机器人路径规划与运动控制技术研究

工业机器人路径规划与运动控制技术研究第一章:引言工业机器人是一种自动化设备,可以完成各种复杂的生产任务。
随着制造业的发展,工业机器人在生产线上的应用越来越广泛。
而工业机器人的路径规划和运动控制技术则是其中至关重要的环节。
本文将重点研究工业机器人路径规划与运动控制技术,并探讨其在制造业中的应用。
第二章:工业机器人路径规划技术2.1 路径规划的概念路径规划是指通过算法确定机器人移动的轨迹,使其在不碰撞和避免障碍物的情况下,能够快速高效地到达指定的目标位置。
路径规划通常包括全局路径规划和局部路径规划两个环节。
2.2 全局路径规划算法全局路径规划是指在已知环境地图的情况下,确定机器人从起点到终点的最佳路径。
常用的算法包括A*算法、Dijkstra算法和基于图搜索的算法等。
这些算法通过搜索和评估不同路径的代价函数,确定最佳路径。
2.3 局部路径规划算法局部路径规划是指在机器人执行任务过程中,根据即时感知到的环境信息,进行实时的路径规划。
常用的算法包括DWA (Dynamic Window Approach)算法、VFH(Vector Field Histogram)算法和RRT(Rapidly-exploring Random Tree)算法等。
这些算法通过评估机器人当前位置附近的可行路径,进行实时的路径优化。
第三章:工业机器人运动控制技术3.1 运动学建模运动学建模是指将机器人的运动描述为一系列关节变量的函数关系。
通过对机器人各个关节的运动学建模,可以确定机器人末端执行器的位置和姿态。
常用的运动学建模方法包括解析法、几何法和迭代法等。
3.2 动力学建模动力学建模是指研究机器人运动时,与其相关的力学性能和力学响应。
通过动力学建模可以分析机器人的运动特性和力学特性,并为后续的运动控制提供理论基础。
常用的动力学建模方法包括拉格朗日方法、牛顿-欧拉方法和广义动力学方法等。
3.3 运动规划与控制运动规划是指确定机器人在指定时间内的轨迹和速度,使其能够按要求完成任务。
工业机器人课程教学大纲

工业机器人课程教学大纲《工业机器人》课程教学大纲一(课程的性质与任务课程性质:本课程综合介绍了机器人技术,设计思想和发展趋势主要任务:本课程是要求学生通过学习、课堂教育,能了解机器人发展的最新技术与现状;初步掌握机器人技术的基本知识。
二(课时分配序号课题小计讲课实验机动一绪言 2 2 二机器人学的数学基础 4 4 三机器人运动方程的表示与求解 8 8 四机器人动力学 6 6机器人的控制五 4 4 六机器人学的现状、未来 2 2合计 28 26 2三(课程教学内容第一章绪言简述机器人学的起源与发展,讨论机器人学的定义,分析机器人的特点、结构与分类。
第二章机器人学的数学基础空间任意点的位置和姿态变换、坐标变换、齐次坐标变换、物体的变换和逆变换,以及通用旋转变换等。
第三章机器人运动方程的表示与求解机械手运动姿态、方向角、运动位置和坐标的运动方程以及连杆变换矩阵的表示,欧拉变换、滚-仰-偏变换和球面变换等求解方法,机器人微分运动及其雅可比矩阵等第四章机器人动力学机器人动力学方程、动态特性和静态特性;着重分析机械手动力学方程的两种求法,即拉格朗日功能平衡法和牛顿-欧拉动态平衡法;然后总结出建立拉格朗日方程的步骤第五章机器人的控制机器人控制与规划第六章机器人学的现状、未来包括国内外机器人技术和市场的发展现状和预测、21世纪机器人技术的发展趋势、我国新世纪机器人学的发展战略等。
不同类型机器人的研究发展状况等。
四(教学的基本要求采用启发式教学,培养学生思考问题、分析问题、解决问题的能力;理论以够用为度,且从应用的角度,尽量简化定量分析。
五(建议教材与教学参考书1、机器人学、蔡自兴、清华大学出版社、20002、机器人学导论,约翰J.克雷格、西北工业大学出版社、1987 六(说明1( 本课程的教学原则上须由一定工作经验的讲师及讲师以上的教师担任,以保证理论知识和实践操作技能教学的需要。
2( 本课程适用于高职数控技术应用、机电一体化、机电工程及自动化、机械工程与自动化等专业。
工业机器人 教学大纲

工业机器人教学大纲工业机器人教学大纲引言工业机器人是一种能够自动执行各种任务的机器人系统,它在现代制造业中扮演着重要的角色。
为了培养适应工业机器人应用需求的人才,制定一份全面的工业机器人教学大纲是至关重要的。
本文将探讨工业机器人教学大纲的内容和结构,以及其在培养学生技能和知识方面的重要性。
一、基础知识在工业机器人教学大纲中,首先应包括工业机器人的基础知识。
这包括机器人的定义、分类和应用领域。
学生需要了解机器人的基本构造和工作原理,以及机器人在制造业、物流和医疗等领域的应用。
此外,还应介绍机器人的安全性和维护保养方面的知识,以确保学生能够正确操作和维护机器人系统。
二、编程与控制工业机器人的编程与控制是培养学生技能的关键部分。
教学大纲应包括机器人编程语言的介绍,如G代码和Rapid语言。
学生需要学习如何编写程序,以实现机器人的自动化操作。
此外,还需要教授机器人的运动控制和路径规划技术,使学生能够精确控制机器人的运动轨迹和速度。
三、传感器与视觉系统工业机器人的传感器和视觉系统在实际应用中起着重要的作用。
教学大纲应包括传感器的种类和原理,以及它们在机器人系统中的应用。
学生需要学习如何选择和配置传感器,并利用传感器获取环境信息,实现机器人的自主感知和决策能力。
此外,还应介绍机器人的视觉系统,包括图像处理和目标识别技术,以提高机器人的视觉感知能力。
四、应用案例分析为了帮助学生更好地理解工业机器人的应用,教学大纲应包括一些实际的应用案例分析。
通过分析不同行业中的机器人应用案例,学生可以了解机器人在不同环境下的工作方式和应用效果。
此外,还可以让学生思考机器人在未来的发展趋势和应用前景。
五、实践操作与项目工业机器人的实践操作和项目是培养学生实际操作能力的重要环节。
教学大纲应包括一些实践操作的内容,如机器人系统的组装与调试,以及编写简单程序实现基本操作。
此外,还可以设计一些机器人应用项目,让学生通过实际操作来解决实际问题,提高他们的创新能力和解决问题的能力。
工业机器人技术基础-第五章-机器人的作业和示教

任务五 初识工业机器人的作业示教
(5)检查试运行 在完成机器人运动轨迹和作业条件输入后,需试运行测试程 序,以便检查各程序点及参数设置是否正确,这就是跟踪。跟踪的主要目的是 检查示教生成的运动以及末端工具指向位置是否已记录。一般工业机器人可 采用以下跟踪方式来确认示教的轨迹与期望轨迹是否一致。
1)单步运转。通过逐行执行当前行(光标所在行)的程序语句,机器人实现两个 临近程序点间的单步正向或反向移动。结束一行的执行后,机器人动作暂停。
(1)使用作业条件文件 输入作业条件的文件称为作业条件文件。使用这些文 件,可以使作业命令的应用更为简便。
任务五 初识工业机器人的作业示教
(2)在作业命令的附加项中直接设定 采用此方法进行作业条件设定,首 先需要了解机器人指令的语言形式,或者程序编辑画面的构成要素。由 图2-1-2可知,程序语句一般由行标号、命令及附加项几部分组成。要修 改附加项数据,将光标移动到相应语句上,然后按示教器上的相关按键即 可。
任务五 初识工业机器人的作业示教
表2-1-4 运动轨迹示教方法
任务五 初识工业机器人的作业示教
(4)设定作业条件 本实例中,焊接作业条件的输入主要涉及以下3个方面: 1)在作业开始命令中,设定焊接开始规范及焊接开始动作次序。 2)在焊接结束命令中,设定焊接结束规范及焊接结束动作次序。 3)手动调节保护气体流量。在编辑模式下合理配置焊接工艺参数。
任务五 初识工业机器人的作业示教
(6)再现施焊 示教操作生成的作业程序,经测试无误后,将“模式”旋钮 对准“再现/自动”位置,通过运行示教过的程序即可完成对工件的再现 作业。工业机器人程序的启动有两种方法: 1)手动启动。使用示教器上的“启动”按键来启动程序,适合于作业任 务编程及其测试阶段。 2)自动启动。利用外部设备输入信号来启动程序,在实际生产中经常采 用。
ABB工业机器人编程第五章

ABB工业机器人编程第五章在ABB工业机器人编程的旅程中,第五章标志着重要的里程碑。
这一章节将深入探讨机器人的运动学和动力学,为后续的编程操作奠定坚实的基础。
机器人运动学是研究机器人末端执行器在不同关节角度下所能够达到的空间位置和姿态的科学。
在ABB机器人中,这些关节角度被称为“关节变量”。
理解这些关节变量如何影响机器人的运动是非常重要的。
我们需要理解机器人坐标系。
一般来说,ABB机器人使用的是六自由度的机械臂,这意味着它有六个关节,每个关节对应一个角度。
这些角度可以由一个六元组(q1, q2, q3, q4, q5, q6)来表示。
然后,我们需要理解位姿(位置和姿态)的概念。
位姿是由三个线性分量(x, y, z)和三个旋转分量(roll, pitch, yaw)组成的。
这些分量描述了末端执行器的位置和朝向。
我们需要理解如何通过运动学方程将关节角度转化为位姿。
这需要使用到一些复杂的数学公式,例如雅可比矩阵。
通过这些公式,我们可以将关节角度映射到位姿,从而精确地控制机器人的运动。
机器人动力学是研究机器人运动过程中力与运动之间关系的科学。
在ABB机器人中,动力学主要的是如何在给定关节角度的情况下,计算出所需的关节扭矩。
我们需要理解牛顿-欧拉方程。
这个方程描述了物体的惯性(质量乘速度的平方)和外部力(例如重力、摩擦力)之间的关系。
通过这个方程,我们可以计算出在给定关节角度下,机器人所需的关节扭矩。
然后,我们需要理解如何通过动力学方程将关节扭矩转化为关节角度。
这需要使用到一些复杂的数学公式,例如动力学方程。
通过这些公式,我们可以将关节扭矩映射到关节角度,从而精确地控制机器人的运动。
在理解了机器人运动学和动力学的基础上,我们可以开始进行编程实践了。
在ABB工业机器人编程中,主要使用的是RobotWare软件。
这个软件提供了一套完整的编程环境,包括建模、仿真、编程、调试等功能。
我们需要使用RobotWare软件进行建模。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
六、蚁群算法
第五章 机器人路径规划
从统计的角度可以认为开始时它们以相同的概率选择 路径BCD、BMD,这样由于路径短,相同时间内最终造成通过 BCD的蚂蚁比通过BMD的多,使得BCD上的信息素比BMD上的多, 这样又吸引更多的蚂蚁沿路径走,直至最终所有蚂蚁选择路 径BCD,从而找到由蚁巢到食物源的最短路径。由此可见,蚂 蚁个体之间的信息交换是一个正反馈过程。
11
五、人工势场法
第五章 机器人路径规划
12
第五章 机器人路径规划
五、人工势场法 2.人工势场法的两个问题:
(1)非点形障碍物 普通的障碍物的形状不是一个点,如何确定一个障碍物对机器 人的排斥力呢? 方案1:计算障碍物内所有点斥力的合力。 方案2:用离障碍物最近的点进行计算。 (2)死锁(dead lock)现象
17
第五章 机器人路径规划
七、神经网络算法(Neural Networks)
神经网络算法是人工智能领域中的一种非常优秀的算 法,它主要模拟动物神经网络行为,进行分布式并行信息 处理。但它在路径规划中的应用却并不成功,因为路径规 划中复杂多变的环境很难用数学公式进行描述,如果用神 经网络去预测学习样本分布空间以外的点,其效果必然是 非常差。尽管神经网络具有优秀的学习能力,但是泛化能 力差是其致命缺点。但因其学习能力强鲁棒性好,它与其 他算法的结合应用已经成为路径规划领域研究的热点。
4
第五章 机器人路径规划
第二节 路径规划方法
一、路径规划方法
第五章 机器人路径规划
1.传统方法:
可视图法、自由空间法、栅格法、人工势场法
2.智能方法:
蚁群算法、神经网络、遗传算法
3.其他方法:
A*算法、Dijkstra 算法
6
二、可视图法
第五章 机器人路径规划
对可视图进行搜索,并利 用优化算法删除一些不必要 的连线以简化可视图,缩短了 搜索时间,最终就可以找到一 条无碰最优路径。优点是可 以求得最短路径,缺点是此法 缺乏灵活性,即一旦机器人的 起点和目标点发生改变,就要 重新构造可视图,比较麻烦。
六、蚁群算法 2.蚁群算法运用分析:
第五章 机器人路径规划
设A是巢穴,E是食物源,CM为 一障碍物。由于障碍物的存在, 蚂蚁要从A到E或E从到A,只能沿 路线BCD或BMD通过,各点之间的 距离如图所示。设每个单位时 间有50只蚂蚁由到达,蚂蚁过后 留下的激素物质量信息素为1, 为方便起见,假设信息素挥发时 间为10。
上图中灰色区域为障碍物
上图黄色路线为该算法得到的最优路1径0
第五章 机器人路径规划
五、人工势场法 1.人工势场法基本思想:
人工势场法是一种虚拟力法。它模仿引力斥力下的物体运动, 目标点和运动体间为引力,运动体和障碍物间为斥力,通过建立 引力场斥力场函数进行路径寻优。优点是规划出来的路径平滑安 全、描述简单等,但是存在局部最优的问题,引力场的设计是算 法能否成功应用的关键。
第五章 机器人路径规划
著名学者蒋新松将路径规划定义为路径规划是移动 机器人的一个重要组成部分,它的任务就是在具有障碍物 的环境内按照一定的评价标准如工作代价最小、行走路 线最短、行走时间最短等,寻找一条从起始状态包括位置 和姿态到达目标状态包括位置和姿态的无碰路径。
2
一、路径规划概述 路径规划需要解决的问题:
第五章 机器人路径规划
1.使机器人能从初始位置运动到目标位置。 2.一定的算法使机器人能绕开障碍物,并且经过某些 必须经过的点完成相应的作业任务。 3.在完成以上任务的前提下,尽量优化机器人运行轨迹。
3
二、路径规划的分类
第五章 机器人路径规划
按对环境信息的把握程度分为全局或局部路径 规划:
2.自由空间法的优缺点:
自由空间法的优点是比较 灵活,机器人的起始点和目标 点的改变不会造成连通图的重 新构造。
自由空间法的缺点为不是任 何时候都可以获得最短路径。
第五章 机器人路径规划
由算法找到的路径
9
四、栅格法
第五章 机器人路径规划
用编码的栅格来表示地图,把包含障碍物的栅格标记为障碍栅 格,反之则为自由栅格,以此为基础作路径搜索。栅格法一般作为 路径规划的环境建模技术来用,作为路径规划的方法它很难解决复 杂环境信息的问题,一般需要与其他智能算法相结合。
1.基于先验完全信息的是全局路径规划;全局路径规划 属于静态规划( 又称离线规划)。全局路径规划需要掌握所 有的环境信息,根据环境地图的所有信息进行路径规划。
2.基于传感器信息的是局部路径规划。局部路径规划属 于动态规划( 又称在线规划)。局部路径规划只需要由传感 器实时采集环境信息,了解环境地图信息,然后确定出所在 地图的位置及其局部的障碍物分布情况,从而可以选出从当 前结点到某一子目标结点的最优路径。
7
三、自由空间法
第五章 机器人路径规划
1.自由空间法基本思想:
自由空间法的基本思 想是采用预先定义的基本 形状如广义锥形,凸多边形 等构造自由空间,并将自由 空间表示为连通图,然后通 过对图的搜索来规划路径, 其算法的复杂度往往与障 碍物的个数成正比。
由两个障碍和工作空间边界生成的广义锥
8
三、自由空间法
13
五、人工势场法
2.人工势场法的两个问题:
(3)避免死锁的改
进算法: APF与随机采样相结
合如RPP算法、APF与遗 传算法(GA)相结合、 APF与其他全局优化算法 相结合:如:粒群算法, 蚁群算法,模拟退火法, 附加动量法等。
第五章 机器人路径规划
14
六、蚁群算法
第五章 机器人路径规划
1.蚁群算法基本思想:
蚁群算法通过模拟蚁群搜索食物的过程,达到求解比较困难的 组合优化问题的目的。该方法是受到对真实蚁群行为研究的启发而 提出的。仿生学家经过大量细致的观察研究发现,蚂蚁个体之间是 通过一种称之为外激素的物质进行信息传递的。蚂蚁在运动过程中, 能够在它所经过的路径上留下该种物质,而且蚂蚁在运动过程中能 够感知这种物质的存在及其强度,并以此指导自己的运动方向,蚂蚁 倾向于朝着该物质强度高的方向移动。因此,由大量蚂蚁组成的蚁 群的集体行为便表现出一种信息正反馈现象某一路经上走过的蚂蚁 越多,则后来者选择该路径的概率就越大。蚂蚁个体之间就是通过 这种信息的交流达到搜索食物的目的。 算法通过迭代来模拟蚁群觅食的行为达到目的。具有良好的全局优 化能力、本质上的并行性、易于用计算机实现等优点,但计算量大、 易陷入局部最优解,不过可通过加入精英蚁等方法改进。 15