5万吨聚氯乙烯生产工艺设计
年产万吨聚氯乙烯车间工艺设计

一、工艺流程概述1.原料准备:将乙烯气体通过氯化反应和氯化工艺制备成氯乙烯。
2.聚合反应:将制备好的氯乙烯与过氯化钴等催化剂进行聚合反应,生成聚氯乙烯。
3.精炼和提炼:通过卸料和提炼过程,除去聚合反应产生的杂质和残留催化剂。
4.融化加工:将精炼和提炼后的聚氯乙烯经过加热和融化,通过挤出、注塑、吹膜等加工工艺,制成各种产品。
5.产品检验:对融化加工后的产品进行物理性能和质量的检验。
6.包装和出库:将合格的产品进行包装,并出库销售。
二、关键设备的选择和工艺参数的确定1.氯化塔:采用液氯氯化法,选择高效的氯化塔设备,保证氯化反应的高效进行。
2.反应釜:选择适当规格的不锈钢反应釜,对聚合反应进行控制。
3.蒸馏塔:选择具有高效蒸馏性能的蒸馏塔,进行精炼和提炼过程。
4.挤出机、注塑机、吹膜机等加工设备:选择具有高效和稳定性能的加工设备,满足产品加工要求。
5.检测仪器:选择高精度的物理性能和质量检测仪器,确保产品符合标准要求。
三、安全措施和环保要求1.氯气泄漏报警和处理系统:设置氯气泄漏探测器,在发现泄漏情况时及时报警,并启动处理系统进行处理,保证车间人员的安全。
2.废气处理系统:设置废气处理设备,对产生的废气进行处理,减少对环境的污染。
3.废水处理设施:建立废水处理系统,对产生的废水进行处理,达到排放标准。
4.严格操作规程和个人防护措施:制定严格的操作规程,包括操作流程、操作要求等,并提供个人防护装备,提醒员工遵守相关安全规定。
5.废弃物处理:建立废弃物分类处理系统,对废弃物进行分类、包装和处理,减少对环境的影响。
四、能源消耗和优化1.合理规划车间布局和设备布置,减少能源输送、损耗和消耗。
2.对设备进行定期检修和维护,保持设备运行的稳定性和高效性,减少能源的浪费。
3.提高工艺参数的优化,减少生产过程中能源的消耗。
4.引入智能化管理系统,对能源消耗进行实时监控和调整,达到最佳的能效。
总结:年产万吨聚氯乙烯车间的工艺设计需要考虑原料准备、聚合反应、精炼和提炼、融化加工、产品检验以及包装和出库等环节。
年产5万吨PVC生产车间的工艺的设计

目录摘要.................................................................... I 1.概述 (1)1.1生产方法简介及设计方法的确定 (1)1.1.1氯乙烯单体的制备方法的选取 (1)1.1.2聚合方法选取 (1)1.2产品的基本性能 (1)1.3产品的应用状况 (2)1.4有关设计参数 (3)2.物料衡算. (4)2.1聚合釜物料衡算 (4)2.2出料槽物料衡算 (5)2.3汽提塔物料衡算 (6)2.4离心部分物料衡算 (7)2.5气流干燥部分物料衡算 (8)2.6沸腾干燥部分物料衡算 (8)2.7筛分包装部分物料衡算 (8)2.8物料衡算总平衡 (9)3.热量衡算. (11)4关键设备的选型 (12)4.1聚合釜的选型 (12)4.2其他设备的选型 (12)5.车间设备布置设计 (13)5.1车间设备布置的原则 (13)5.1.1车间设备布置的原则 (13)5.1.2车间设备平面布置的原则 (13)5.1.3车间设立面布置的原则 (13)5.2车间设备布置 (14)5.2.1车间设备平面布置 (14)5.2.2车间设备立面布置 (14)6.公用工程 (15)6.1供水 (15)6.2供电 (15)6.3供暖 (15)6.4通风 (15)参考文献 (16)致 (17)年产5万吨PVC生产车间的工艺设计摘要本设计是年产5万吨聚氯乙烯(PVC)车间合成工段初步设计。
本文对聚氯乙烯的研究,生产和应用进行了详细的概述,阐述了其在化学工业中的作用和地位。
并介绍了氯乙烯的制备方法和确定了聚氯乙烯的生产工艺。
在确定聚氯乙烯生产工艺的基础上进行了物料衡算,热量衡算,设备选型和车间设计等过程。
文中还对供电、供水、采暖等方案进行了简单的阐述。
关键词:氯乙烯,乙烯氯氧化,聚氯乙烯,悬浮聚合,反应釜选型1.概述1.1生产方法简介及设计方法的确定1.1.1 氯乙烯单体的制备方法的选取氯乙烯单体可由电石乙炔法和乙烯氧氯化法制备,本工艺采用乙烯氧氯化法制备氯乙烯单体。
年产万吨聚氯乙烯车间工艺设计

年产万吨聚氯乙烯车间工艺设计1. 引言本文档旨在对年产万吨聚氯乙烯(PVC)车间的工艺设计进行详细说明。
PVC是一种重要的合成树脂,广泛应用于建筑材料、电线电缆、塑料制品等领域。
设计一个高效、稳定和可持续发展的车间工艺对于确保产品质量和提高生产效率至关重要。
2. 工艺流程2.1 原料准备PVC的主要原料包括乙烯、氯乙烯和氢氯酸等。
原料准备阶段需要对原料进行储存、提供和混合。
储存区域应具备良好的通风和防火设施,确保原料的安全性和稳定性。
2.2 反应PVC的生产主要通过聚合反应完成。
聚合反应要求严格的温度控制、压力控制和触媒添加。
反应釜设备应具备高效的加热和冷却系统,以确保反应的可控性和高效性。
2.3 分离和磺化在聚合反应完成后,需对产物进行分离和磺化处理。
分离过程主要通过卸料和过滤等方式进行,确保分离效果良好。
磺化处理则需通过控制温度和添加磺化剂等手段,使产物获得所需的性质和品质。
2.4 硫化经过分离和磺化处理后的产物需要进行硫化反应,以提高PVC的机械性能和耐候性。
硫化过程需要控制温度、压力和硫化剂的添加量,确保硫化反应的完全性和一致性。
2.5 润滑和加工硫化后的PVC需要进行润滑处理,以增强其流动性和加工性。
润滑处理一般通过添加润滑剂,同时需要控制温度和混合速度,以确保润滑剂均匀分布。
之后,PVC可进行成型、挤出、注塑等加工方式,制成最终的产品。
3. 设备需求为了实现年产万吨聚氯乙烯的目标,车间需要配置以下主要设备:•反应釜:高效的反应釜能够提供良好的加热和冷却系统,满足反应过程的要求。
•分离设备:包括卸料和过滤设备,能够实现有效和高效的分离过程。
•磺化设备:具备精确的温度控制和添加磺化剂的能力,以实现良好的磺化效果。
•硫化设备:提供准确的温度和压力控制,确保硫化反应的完全性和一致性。
•润滑设备:包括润滑剂添加设备和混合设备,能够实现均匀的润滑处理。
4. 安全和环境考虑在设计车间工艺时,安全和环境因素是非常重要的考虑因素。
聚氯乙烯生产工艺设计

聚氯乙烯生产工艺设计
聚氯乙烯是一种重要的合成树脂,广泛应用于建筑、电子、汽车等行业。
聚氯乙烯的生产工艺设计涉及到原料选择、反应工艺、加工工艺等多个方面。
首先,原料选择是聚氯乙烯生产的重要环节。
聚氯乙烯的主要原料为乙烯和氯气。
乙烯是从石化原料如煤炭、石油制品中经过裂解、重整等步骤获得的。
氯气则可以通过盐水电解或者氯碱法生产。
原料的选择对聚氯乙烯的质量和成本有很大影响,需要根据实际情况进行合理的调配。
其次,反应工艺是聚氯乙烯生产过程中的关键环节。
聚氯乙烯的生产可以采用两种主要反应方式,即乙烯氯化法和乙烯间氯化法。
乙烯氯化法是将乙烯与氯气直接反应得到聚氯乙烯,反应过程需要在高温高压下进行。
乙烯间氯化法是将乙烯先与过量的氯气在催化剂存在下进行氯化得到间氯乙烯,再经过催化剂催化合成聚氯乙烯。
两种反应方式各有优缺点,需根据具体情况进行选择。
最后,加工工艺是将聚氯乙烯成型的重要环节。
聚氯乙烯可以通过挤出、注塑、吹塑等不同加工方式进行成型。
挤出是将熔融的聚氯乙烯通过模具挤出成型,常用于制造管道、板材等。
注塑是将熔融的聚氯乙烯射入模具中形成所需产品,常用于制造塑料零部件。
吹塑是将熔融的聚氯乙烯加热喷射到模具中形成产品,常用于制造塑料瓶子、容器等。
综上所述,聚氯乙烯的生产工艺设计需要考虑原料选择、反应
工艺和加工工艺等多个方面。
通过合理的设计,可以提高聚氯乙烯的质量和生产效率,促进相关行业的发展。
年产5万吨乙炔发生工段工艺流程设计

5万吨/年PVC车间乙炔发生工段工艺流程设计目录前言 (1)一、设计背景 (1)(一)乙炔概述 (1)1、乙炔在水中的溶解度 (2)2、原料特性 (2)3、化学性质 (3)4、产品的主要用途 (3)二、设计内容 (4)(一)设计思路 (4)(二)工艺流程选择 (4)1、湿法乙炔发生 (4)2、干法乙炔发生 (5)3、工艺方案的选择 (5)4、湿法乙炔生产原理及工艺流程设计 (5)(五)工艺流程图 (6)(三)生产流程说明 (7)1、发生 (7)2、冷却与调节 (7)3、次氯酸钠的配制 (8)4、清净 (8)5、碱洗和干燥 (8)(四)乙炔发生工段工艺计算 (8)1、物料衡算 (8)(六)三废处理 (12)1、废渣 (12)2、废气 (12)3、废水 (13)三、设计总结 (13)参考文献 (14)前言聚氯乙烯PVC是由氯乙烯单体VC均聚或与其他多种单体共聚而制得的合成树脂聚氯乙烯再配以增塑剂稳定剂高分子改性剂填料偶联剂和加工助剂经过提炼塑化成型加工成各种材料当前PVC生产面临着严重的挑战比如生态环境的保护潜在替代品的市场竞争资源的进一步优化配置能量的合理充分利用生产过程的优化和高效率化生产和使用效率的提高应用技术和市场开拓等都在不同程度上影响着PVC的进一步发展在上述问题上仍有大量工作要做对生态环境安全的配套助剂环境保护技术包括PVC废弃物的回收再利用和处理等方面更需要花大力气加以研究。
一、设计背景(一)乙炔概述(1)产品名称:乙炔(2)分子式:C2H2,分子量26.04(3)产品说明:工业电石乙炔中因含有杂质磷化氢等而有特殊臭味。
在温度-836℃和0.1MPa压力下,乙炔变为无色易流动的液体。
当温度继续下降即成为白雪状物质;在0℃和01MPa压力下1L液态时,乙炔可得3825L气态。
(4)物理性质①在标准大气压下乙炔密度表1 在不同温度下乙炔的密度表2 不同温度下乙炔热熔粘度导热系数乙炔在水中的溶解度随温度的升高而减小,随压力的升高而增大。
年产万吨聚氯乙烯生产工艺设计

安装调试阶段:按照设计要求,安装设备并进行调试,确保生产工艺流程顺畅
试生产阶段:进行试生产,对产品进行检测和评估,确保产品质量符合要求
正式生产阶段:正式投入生产,对生产过程进行监控和管理,确保生产效率和产品质量稳定可靠
主要设备及参数选择
反应器类型:根据工艺要求选择合适的反应器类型
反应温度:控制反应温度,保证反应效率
Part Three
年产万吨聚氯乙烯生产工艺方案
方案设计依据和原则
依据:市场需求、产品用途、生产工艺要求等
原则:经济性、可行性、环保性、安全性等
方案流程说明
准备阶段:确定生产工艺方案,进行市场调研和可行性分析
设计阶段:根据产品要求,设计生产工艺流程,进行设备选型和配置
采购阶段:根据设计方案,采购原材料和设备,确保质量合格
项目主要目标和意义
提高聚氯乙烯生产效率,降低成本
优化生产工艺,提高产品质量
推动聚氯乙烯产业升级,提高市场竞争力
促进地方经济发展,增加就业机会
Part Two
聚氯乙烯生产工艺流程及特点
聚氯乙烯生产工艺流程
单击此处输入你的正文,请阐述观点
聚合反应:在催化剂的作用下,氯乙烯单体发生聚合反应生成聚氯乙烯树脂
项目背景及介绍
项目背景介绍
项目名称:年产万吨聚氯乙烯生产工艺设计
项目背景:随着聚氯乙烯市场的不断扩大,市场需求量不断增加,为了满足市场需求,提高产品质量和降低成本,需要进行生产工艺设计
项目目标:设计一套高效、稳定、环保的聚氯乙烯生产工艺,提高产品质量和降低成本,满足市场需求
项目意义:提高聚氯乙烯生产效率,降低生产成本,提高产品质量和竞争力,促进聚氯乙烯行业的发展
,a click to unlimited possibilities
年产5000吨硬质聚氯乙烯管车间工艺设计

硬质聚氯乙烯(PVC-U)管是一种常用的管材,常用于给排水系统、化工管道等。
下面将对年产5000吨硬质聚氯乙烯管车间的工艺设计进行详细介绍。
1.原料准备:原料主要包括聚氯乙烯树脂、稳定剂、填充剂和其他助剂。
树脂是管材的主要成分,稳定剂用于防止聚合过程中的氧化反应,填充剂用于增加材料的硬度和冲击强度,助剂用于改善材料的流动性和加工性能。
原料按照一定比例称重,并进行混合搅拌,以确保材料均匀混合。
2.挤出工艺:经过原料准备后,将材料送入挤出机。
挤出机将材料加热到一定温度,使其熔化变成熔体。
熔体经过螺杆的挤出和模具的挤压,形成连续的管状结构。
挤出机的温度、压力及机头设计的合理性对产品质量有着重要的影响。
3.冷却和定径:熔体经过挤出机后,将进入到冷却装置中进行冷却,通常采用水冷却的方式,以快速冷却管材并固化形成物理性能稳定的管材。
定径装置用于控制管材的直径,一般采用真空定径技术,通过控制真空度和压力差来调节管材的直径。
4.切割和包装:冷却凝固后的管材通过切割机进行定长切割,得到符合要求的管材长度。
切割后的管材经过目检和质量检验,将合格的管材送入包装机进行包装。
常见的包装方式包括塑料薄膜包装和纸箱包装。
5.质量控制:在整个生产过程中,需要进行严格的质量控制以确保产品质量。
可以在原料检验、挤出过程中的温度和压力控制、冷却定径过程中的各项参数监控以及最终产品的质量检验等环节进行质量控制。
总结:以上介绍了年产5000吨硬质聚氯乙烯管车间的工艺设计。
在实际生产中,需要根据具体情况进行设备的选择和工艺参数的优化,以确保产品质量和生产效率。
此外,还需要加强安全管理和环境保护,确保生产过程的安全和环境友好。
万吨聚氯乙烯聚合工段工艺设计

聚氯乙烯聚合工段经济效益分析
投资成本估算
01
设备购置费用
根据工艺流程和生产规模,计算 所需设备的数量和规格,并估算 设备购置费用。
02
建筑工程费用
03
流动资金准备
根据设备布局和生产需求,进行 厂房建设和改造,包括土建、安 装等费用。
为确保工段正常运转,需准备一 定数量的流动资金,用于购买原 材料、支付工资等日常开支。
万吨聚氯乙烯聚合工段工
BIG DATA EMPOWERS TO CREATE A NEW
ERA
艺设计
• 聚氯乙烯聚合工段概述 • 聚氯乙烯聚合工段工艺流程 • 聚氯乙烯聚合工段设备与装置 • 聚氯乙烯聚合工段安全与环保 • 聚氯乙烯聚合工段经济效益分析
目录
CONTENTS
01
聚氯乙烯聚合工段概述
聚氯乙烯聚合工段的发展历程
早期的聚氯乙烯聚合工段采用釜式间歇聚合工艺,生产效率低,产品质 量不稳定。
随着技术的不断发展,连续聚合工艺逐渐取代了间歇聚合工艺,生产效 率和质量得到了显著提高。
目前,聚氯乙烯聚合工段正朝着自动化、智能化、绿色化方向发展,新 型的反应器、催化剂和助剂不断涌现,为提高产品质量和降低生产成本 提供了更多可能性。
BIG DATA EMPOWERS TO CREATE A NEW
ERA
聚氯乙烯聚合工段简介
聚氯乙烯聚合工段是将氯乙烯单 体通过聚合反应转化为聚氯乙烯
树脂的过程。
该工段通常包括原料准备、聚合 反应、树脂处理和产品包装等环
节。
在聚合反应过程中,需要使用引 发剂、分散剂、调节剂等助剂, 以控制反应速度、产品质量和生
BIG DATA EMPOWERS TO CREATE A NEW ERA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5万吨聚氯乙烯生产工艺设计目录摘要 (1)引言 (2)1 总论 (3)1.1 国内外pvc发展状况及发展趋势 (3)1.2 单体合成工艺路线 (3)1.2.1 乙烯路线: (3)1.3聚合工艺实践方法 (4)1.3.1本体法聚合生产工艺 (4)1.3.2乳液聚合生产工艺 (4)1.3.3悬浮聚合生产工艺 (4)1.4最佳的配方、后处理设备的选择 (5)1.4.1配方的选择 (5)1.4.2后处理设备侧选择 (6)1.5 防粘釜技术 (8)1.6原料及产品性能 (8)1.7影响聚合及产品质量的因素 (10)1.8工艺流程叙述 (11)1.8.1加料系统 (11)1.8.2聚合系统 (11)1.8.3回收系统 (11)1.8.4干燥系统 (11)2 工艺计算 (12)2.1物料衡算 (12)2.1.1聚合釜 (12)2.1.2 混料槽 (16)2.1.3汽提塔 (17)2.1.4离心机 (20)2.1.5 沸腾床 (21)2.1.6 包装 (22)2.2热量衡算 (23)2.2.1聚合釜 (23)2.2.2沸腾床的热量计算 (28)3 非工艺部分 (34)3.1厂内的防火防爆措施 (34)3.2车间照明及采暖措施 (35)3.3防静电,防雷措施 (35)3.4三废处理情况 (36)3.4.1电石渣的处理 (36)3.4.2电石渣上清液的处理 (36)3.4.3 热水的综合利用 (36)3.4.4尾气的回收利用 (36)3.4.5转化水洗塔水的回收利用 (37)致谢 (38)参考文献 (39)摘要本文讲述了我国聚氯乙烯工业生产技术的发展进程和目前状况,包括原料路线、工艺设备、聚合方法等。
本设计采用悬浮法生产聚氯乙烯,介绍了采用悬浮法生产PVC树脂工聚合机理,工艺过程中需要注意的问题,包括质量影响因素,工艺条件及合成工艺中的各种助剂选择,对聚合工艺过程进行详细的叙述。
并且从物料衡算、热量衡算和设备计算和选型三个方面进行准确的工艺计算,对厂址进行了选择,采取了防火防爆防雷等重要措施,对三废的处理回收等进行了叙述,画出了整个工艺的流程图。
关键词:聚氯乙烯;生产技术;悬浮法;乙炔法;乙烯法;防粘釜技术;引言聚氯乙烯(PVC)是5大通用塑料之一,具有耐腐蚀、电绝缘、阻燃性和机械强度高等优异性能,广泛用于工农业及日常生活等各个领域,尤其是近年来建筑市场对PVC产品的巨大需求,使其成为具备相当竞争力的一个塑料品种。
PVC糊树脂自20世纪30年代开发以来,已有近70年的历史。
目前全世界PVC 糊树脂总生产能力约200万t/a,其中,西欧是PVC糊树脂生产厂家最多、产量最大的地区。
我国聚氯乙烯工业起步于于50年代,仅次于酚醛树脂是最早工业化生产的热塑性树脂,第一个PVC装置于1958年在锦西化工厂建成投产,生产能力为3000吨/年。
此后全国各地的PVC装置相继建成投产,到目前为止,我国有PVC树脂生产企业80余家,遍布全国29个省、市、自治区,总生产能力达220万吨/年70~75万t/a。
PVC树脂在我国塑料工业中具有举足轻重的地位,同时PVC作为氯碱工业中最大的有机耗氯产品,对维持氯碱工业的氯碱平衡具有极其重要的作用。
本设计为年产量5万吨聚氯乙烯车间聚合工段工艺。
本次设计采用了氯乙烯单体悬浮聚合工艺。
介绍了PVC的聚合工艺,建厂的有关事项及合成聚氯乙烯的流程和设备,对整个生产工艺做出了详细的叙述。
1 总论1.1 国内外pvc发展状况及发展趋势聚氯乙烯(PVC)广泛应用于工业、农业、建筑、交通运输、电力电讯和包装等各领域。
2006年我国PVC生产能力约为972万吨,产量为920万吨,净进口量达151万吨,消费年增长率在9.5%左右。
随着节水灌溉、建筑化学建材、包装、电子电气、汽车等下游行业对PVC需求的快速增长,未来几年我国对聚氯乙烯(PVC)的需求仍将保持较高的增长速度。
2007年全球PVC消费量约为3100万吨,预计到2010年我国PVC树脂的需求量将达1100万吨,2020年将达到2160万吨。
预计到2010年全球PVC的需求量将达到3490万吨,2020年将达到4600万吨。
1.2 单体合成工艺路线1.2.1 乙烯路线:乙烯氧氯化法的反应工艺分为乙烯直接氯化制二氯乙烷(EDC)、乙烯氧氯化制EDC和EDC裂解3个部分,生产装置主要由直接氯化单元、氧氯化单元、EDC裂解单元、EDC 精制单元和VCM单元精制等工艺单元组成。
乙烯和氯气在直接氯化单元反应生成EDC。
乙烯、氧气以及循环的HCl在氧氯化单元生成EDC。
生成的粗EDC在EDC精制单元精制、提纯。
然后在精EDC 裂解单元裂解生成的产物进入VCM单元,VCM精制后得到纯VCM产品,未裂解的EDC返回EDC精制单元回收,而HCl则返回氧氯化反应单元循环使用。
直接氯化有低温氯化法和高温氯化法;氧氯化按反应器型式的不同有流化床法和固定床法,按所用氧源种类分有空气法和纯氧法;EDC裂解按进料状态分有液相进料工艺和气相进料工艺等。
具有代表性的司的Inovyl工艺是将乙烯氧氯化法提纯的循环EDC和VCM直接氯化的EDC在裂解炉中进行裂解生产VCM 。
HCl经急冷和能量回收后,将产品分离出HCl(循环用于氧氯化)、高纯度VCM和未反应的EDC(循环用于氯化和提纯)。
来自VCM装置的含水物流被汽提,并送至界外处理,以减少废水的生化耗氧量(BOD)。
本设计采用乙烯路线生产氯乙烯单体。
1.3聚合工艺实践方法目前,世界上PVC的主要生产方法有4种:悬浮法、本体法、乳液法和微悬浮法。
其中以悬浮法生产的PVC占PVC总产量的近90%,在PVC生产中占重要地位,近年来,该技术已取得突破性进展。
1.3.1本体法聚合生产工艺本体聚合生产工艺,其主要特点是反应过程中不需要加水和分散剂。
聚合分2步进行,第1步在预聚釜中加人定量的VCM单体、引发剂和添加剂,经加热后在强搅拌(相对第2步聚合过程)的作用下,釜内保持恒定的压力和温度进行预聚合。
当VCM的转化率达到8%-12%停止反应,将生成的―种子‖送人聚合釜内进行第2步反应。
聚合釜在接收到预聚合的―种子‖后,再加人一定量的VCM单体、添加剂和引发剂,在这些―种子‖的基础上继续聚合,使―种子‖逐渐长大到一定的程度,在低速搅拌的作用下,保持恒定压力进行聚合反应。
当反应转化率达到60%一85%(根据配方而定)时终止反应,并在聚合釜中脱气、回收未反应的单体,而后在釜内汽提,进一步脱除残留在PVC粉料中的VCM,最后经风送系统将釜内PVC粉料送往分级、均化和包装工序。
1.3.2乳液聚合生产工艺氯乙烯乳液聚合方法的最终产品为制造聚氯乙烯增塑糊所用的的聚氯乙烯糊树脂(E-PVC),工业生产分两个阶段:第一阶段氯乙烯单体经乳液聚合反应生成聚氯乙烯胶乳,它是直径0.1~3微米聚氯乙烯初级粒子在水中的悬浮乳状液。
第二阶段将聚氯乙烯胶乳,经喷雾干燥得到产品聚氯乙烯糊树脂,它是初级粒子聚集而成得的直径为1~100微米,主要是20~40微米的聚氯乙烯次级粒子。
这种次级粒子与增塑剂混合后,经剪切作用崩解为直径更小的颗粒而形成不沉降的聚氯乙烯增塑糊,工业上称之为聚氯乙烯糊。
1.3.3悬浮聚合生产工艺因采用悬浮法PVC生产技术易于调节品种,生产过程易于控制,设备和运行费用低,易于大规模组织生产而得到广泛的应用,成为诸多生产工艺中最主要的生产方法。
工艺特点:悬浮聚合法生产聚氯乙烯树脂的一般工艺过程是在清理后的聚合釜中加入水和悬浮剂、抗氧剂,然后加入氯乙烯单体,在去离子水中搅拌,将单体分散成小液滴,这些小液滴由保护胶加以稳定,并加入可溶于单体的引发剂或引发剂乳液,保持反应过程中的反应速度平稳,然后升温聚合,一般聚合温度在45~70℃之间。
使用低温聚合时(如42~45℃),可生产高分子质量的聚氯乙烯树脂;使用高温聚合时(一般在62~71℃)可生产出低分子质量(或超低分子质量)的聚氯乙烯树脂。
近年来,为了提高聚合速度和生产效率,国外还研究成功两步悬浮聚合工艺,一般是第一步聚合度控制在600左右,在第二步聚合前加入部分新单体继续聚合。
采用两步法聚合的优点是显著缩短了聚合周期,生产出的树脂具有良好的凝胶性能、模塑性能和机械强度。
现在悬浮法聚氯乙烯品种日益广泛,应用领域越来越广,除了通用型的树脂外,特殊用途的专用树脂的开发越来越引起PVC厂家的关注,球形树脂、高表观密度建材专用树脂、消光树脂、超高(或超低)分子质量树脂等已成为开发的热点[7]。
本设计采用悬浮法PVC生产技术。
1.4最佳的配方、后处理设备的选择1.4.1配方的选择①单体:氯乙烯纯度99.98%以上。
②分散剂:主分散剂主要是纤维素醚和部分水解的聚乙烯醇。
纤维素应为水溶性衍生物,如甲基纤维素、羟乙基纤维素、羟丙基纤维素等,聚乙烯醇应由聚醋酸乙烯酯经碱性水解得到,影响其分散效果的因素为其聚合度和水解度,而且-OH基团为嵌段分布时效果最好;副分散剂主要是小分子表面活性剂和地水解度聚乙烯醇。
常用非离子型的脱水山梨醇单月硅酸酯。
本设计采用88%聚乙烯醇和72.5%的聚乙烯醇。
③引发剂:由于聚乙烯悬浮聚合温度50~60度上下,应根据反应温度选择合适的引发剂,其原则为在反应温度条件下引发剂的半衰期约为2小时最佳。
常用过氧化乙酰环己烷硫酰、过氧化二月桂酰、过碳酸二环己酯等。
本设计采用过氧化二碳酸-2-乙基己酯。
④终止剂:反应结束后残余的自由基和引发剂残留在树脂内, 为了保证产品质量, 需要消除它们, 故而加入终止剂。
本设计的终止剂为丙酮缩氨基硫脲。
当反应出现紧急事故时,采用紧急终止剂ON终止反应。
⑤阻聚剂:本设计采用壬基苯酚作为阻聚剂。
⑥缓冲剂:碳酸钠、三聚磷酸钠、磷酸钠、氢氧化钠、氢氧化钙、碳酸铵。
本设计采用磷酸三钙。
1.4.2后处理设备侧选择①聚合釜容积:工业化大生产使用问歇悬浮法聚合釜容量一般为60~107立方米。
我国已开发出70立方米聚合釜,样机已在锦西化工机械厂研制成功。
本设计采用76立聚合釜。
采用微机控制,提高了批次之间树脂质量的稳定性,且消耗定额低。
②传热方式:传热能力直接影响着聚合反应的速度和生成物的质量,也影响着产量。
在大型聚合釜上,国外采用了体外回流冷凝器,体内增设内冷管等除热手段。
近几年,美国古德里奇公司又研制出一种薄不锈钢衬里聚合釜,以便提高釜壁的传热能力,为使薄壁能承受反应压力,在不锈钢衬里与聚合釜套之间安装了支撑内衬套的加强筋,这种釜的结构大大提高了聚合釜传热效率,且有较好的承压能力[9]。
③搅拌方式:搅拌能力是聚合釜的关键技术指标之一,搅拌能力直接影响着传质、传热及树脂的粒态分布,最终影响产品的质量,而不同的工艺方法对搅拌的要求又不尽相同。
过去,PVC聚合釜大都采用平桨和折叶桨,搅拌效果不甚理想。