七年级上册有理数与无理数 知识讲解和巩固练习

合集下载

人教版七年级数学第一章有理数知识点归纳及巩固练习

人教版七年级数学第一章有理数知识点归纳及巩固练习

教师: 学生: 学科: 日期: 年月日星期: 时段:课题第1讲有理数学习目标与考点分析1、理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。

2、借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法。

3、理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算4、会用科学记数法表示数(包括负指数幂的科学记数法)5、了解近似数,在解决实际问题中,会按问题的要求对结果取近似值。

学习重点难点1、有理数的实际意义。

2、求一个数的相反数、绝对值、倒数;在数轴上找出相应的数;数的比较大小。

3、用科学记数法表示一个数(含负指数幂的科学记数法)。

4、有理数基本概念(相反数、绝对值、倒数)的辨析及综合运用。

5、有理数的运算。

教学方法讲练结合教学过程【知识网络】1. 掌握有理数有关分类、数轴、相反数、近似数、有效数字和科学计数法等有关概念 2. 熟练去括号法则,以及有理数的有关运算数学符号的由来在文明和科学的发展过程中,人类创造用符号代替语言、文字的方法,这是因为符号比语言、文字更简练、更直观、更具一般性。

纵观历史,数学的发展创造了数学符号,新的数学符号的使用又反过来促进了数学的发展,历史是这样一步一步走过来的,并将这样一步步继续走下去,数学的每一个进步都必须伴随着新的数学符号的产生。

“+”是15世纪德国数学家魏德美所创造的。

它的意思是:在横线上加上一竖,表示增加 “-”也是德国数学家魏德美创造的。

它的意思是:从加号中减去一竖,表示减少“⨯”是18世纪美国数学家欧德莱最先使用的。

它的意思是:表示增加的另一种方法,因而把加好斜过来写“÷”是18世纪瑞士人哈纳创造的。

它的含义是分解的意思,因此用一条横线把两个原点分开“=”是16世纪英国学者列科尔德创造的。

列科尔德认为世界上再也没有比两条平行而相等的直线更相同了,所以用来表示两数相等。

17世纪初,法国数学家笛卡尔在他的《几何学》中,第一次使用“”表示根号17世纪德国数学家莱布尼茨在几何学中用“∽”表示相似,用“≌”全等。

7年级上册数学知识点训练题

7年级上册数学知识点训练题

7年级上册数学知识点训练题一、有理数1. 知识点:有理数的概念与分类题目:下列各数中,哪些是有理数?-3,(π)/(2),0,0.32̇,√(9),-sqrt[3]{8}。

解析:有理数是整数(正整数、0、负整数)和分数的统称。

-3是负整数,属于有理数。

(π)/(2),π是无限不循环小数,所以(π)/(2)是无理数,不属于有理数。

0是整数,属于有理数。

0.32̇是无限循环小数,属于分数,是有理数。

√(9)=3,3是整数,属于有理数。

-sqrt[3]{8}=-2,-2是整数,属于有理数。

2. 知识点:数轴题目:在数轴上表示数-2,0,3,并比较它们的大小。

解析:先画出数轴,确定原点0,规定正方向(一般向右为正方向),再根据单位长度确定-2,0,3的位置。

从数轴上可以直观地看出-2<0<3。

因为在数轴上,左边的数总是小于右边的数。

3. 知识点:相反数与绝对值题目:求-5的相反数和绝对值,|3 π|的值。

解析:相反数是只有符号不同的两个数,所以-5的相反数是5。

绝对值是指一个数在数轴上所对应点到原点的距离,所以| 5|=5。

因为π≈3.14>3,所以3-π<0。

一个负数的绝对值是它的相反数,所以|3 π|=π 3。

二、整式的加减1. 知识点:整式的概念题目:下列式子中,哪些是整式?3x,(1)/(x),x + y,√(x),-2。

解析:整式为单项式和多项式的统称。

单项式是数或字母的乘积,单独的一个数或一个字母也是单项式;几个单项式的和叫做多项式。

3x是单项式,属于整式。

(1)/(x)分母含有字母,是分式,不属于整式。

x + y是多项式,属于整式。

√(x)不是整式,因为它不是单项式也不是多项式。

-2是单独的一个数,是单项式,属于整式。

2. 知识点:同类项与合并同类项题目:合并同类项:3x^2y+2x^2y 5x^2y。

解析:同类项是所含字母相同,并且相同字母的指数也相同的项。

这里3x^2y、2x^2y、-5x^2y是同类项。

人教七年级数学上册1.2有理数基础知识概括及同步练习题(含解析)

人教七年级数学上册1.2有理数基础知识概括及同步练习题(含解析)

人教七年级数学上册1.2有理数基础知识概括及同步练习题知识点1:有理数的有关概念有理数:整数和分数统称为有理数。

注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。

但是本讲中的分数不包括分母是1的分数。

(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。

(3)“0”即不是正数,也不是负数,但“0”是整数。

整数包括正整数、零、负整数。

例如:1、2、3、0、-1、-2、-3等等。

分数包括正分数和负分数,例如:1/2、0.6、-1/2、-0.6等等。

知识点2:有理数的分类(1) 按整数、分数的关系分类:(2) 按正数、负数与0的关系分类:注:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。

如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a≥0表明a是非负数;a≤0表明a是非正数。

知识点3:数轴数轴是理解有理数概念与运算的重要工具,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想。

正如华罗庚教授诗云:数与形,本是相倚依,焉能分作两边飞。

数缺形时少直觉,形少数是难入微。

数形结合百般好,隔裂分家万事非。

切莫忘,几何代数统一体,永远联系,切莫分离!数与形的第一次联姻——数轴,使数与直线上的点之间建立了对应关系,揭示了数与形的内在联系,并由此成为数形结合的基础。

1.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

数轴的定义包含三层含义:(1) 数轴是一条直线,可以向两端无限延伸;(2) 数轴有三要素——原点、正方向、单位长度,三者缺一不可;(3) 原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的(通常取向右为正方向)。

2.数轴的画法:(1) 画一条直线(一般画成水平的直线)。

(2) 在直线上选取一点为原点,并用这点表示零(在原点下面标上“0”)。

有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)

z!"#$#%&!"#$%&'()*+,-./0+123445"6$&60+12-7.890:;<=344>"6$0?+**********?C-D0?EFG0344H"IJ0?K&60L'MNO+-PQRSTU0TVWXYZ 4知识点1 :正数和负数(1)概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

) (2)意义:在同一个问题上,用正数和负数表示具有相反意义的量。

知识点2: 有理数(1)概念整 数:正整数、0、负整数统称为整数。

分 数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

) 注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

(2)分类:两种⑴按正、负性质分类: ⑵按整数、分数分类:正有理数 正整数 正整数 有理数 正分数 整数 0 零 有理数 负整数 负有理数 负整数 分数 正分数 负分数 负分数z知识点3:数轴(1)概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度(2)对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大 。

(3)应用 求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)【题型 1 正数与负数】【典例1】(2023•西乡塘区二模)在﹣2,0,0.5,3四个数中,是负数的是( ) A .﹣2 B .0 C .0.5 D .3【答案】A【解答】解:在﹣2,0,0.5,3四个数中,是负数的是﹣2. 故选:A .【变式1-1】(2023•安徽模拟)数1,,0,﹣2,﹣3中正数有( )个. A .2 B .3C .4D .5【答案】A【解答】解:在:1,,0,﹣2,﹣3中, 正数有:1,,共2个. 故选:A .【变式1-2】(2022秋•防城港期末)下列各数中,是负数的是( ) A .0 B .﹣C .πD .3【答案】B【解答】解:A .0既不是正数,也不是负数,故选项不符合题意; B .﹣是负数,故选项符合题意; C .π是正数,故选项不符合题意;D.3是正数,故选项不符合题意;故选:B.【变式1-3】(2022秋•石楼县期末)下列各数:﹣2,0.8,﹣5,0,﹣3.14,8.3,﹣11,其中负数的有( )个.A.2B.3C.4D.5【答案】C【解答】解:负数有﹣2,﹣5,﹣3.14,﹣11,共4个,故选:C.【题型 2 相反意义的量表示】【典例2】(2023•船营区一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家.若气温上升7℃记作:+7℃,那么气温下降10℃可记作( )A.7℃B.10℃C.﹣10℃D.﹣7℃【答案】C【解答】解:若气温上升7℃记作:+7℃,那么气温下降10℃可记作﹣10℃.故选:C.【变式2-1】(2023•吉林一模)中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作﹣500年,那么公元2023年应记作( )A.﹣2023年B.+1523年C.+2023年D.+2523年【答案】C【解答】解:∵公元前500年记作﹣500年,∴公元前为“﹣”,∴公元后为“+”,∴公元2023年就是公元后2023年,∴公元2023年应记作+2023年.故选:C.【变式2-2】(2022秋•佛山期末)下列四组量中,不具有相反意义的是( )A.海拔“上升200米”与“下降400米”B.温度计上“零上15℃”与“零下5℃”C.盈利100元与亏本25元D.长3米与重10千克【答案】D【解答】解:上升于下降具有相反意义,故A不符合题意;零上于零下具有相反意义,故B不符合题意;盈利于亏本具有相反意义,故C不符合题意;长度于质量步具有相反意义,故D符合题意;故选:D.【变式2-3】(2023•衡水二模)某日,四个城市的日平均气温如表所示:城市石家庄邢台保定张家口日平均气温/℃﹣110﹣6则日平均气温最低的是( )A.石家庄B.邢台C.保定D.张家口【答案】D【解答】解:∵﹣6<﹣1<0<1,∴日平均气温最低的城市是张家口,故选:D.【典例3】(2023•长春模拟)班级组织了一次跳远比赛,若成绩以250cm为标准,小明跳出了253cm,记做+3cm,则小亮跳出了246cm应记作( )A.+4cm B.﹣4cm C.+6cm D.﹣6cm【答案】B【解答】解:246﹣250=﹣4(cm),故选:B.【变式3-1】(2023•衡水二模)某品牌米线的包装袋上写着“300克±4%”,则下列不可能是米线的重量的是( )A.285克B.295克C.304克D.310克【答案】A【解答】解:∵300克±4%,即300×(1+4%)=312,300×(1﹣4%)=288z∴米线的重量为288~312克, 故选:A .【变式3-2】(2022秋•武陵区期末)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不是标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【解答】解:|﹣1.2|=1.2;|﹣2.3|=2.3;|0.9|=0.9;|﹣0.8|=0.8, ∵0.8<0.9<1.2<2.3, ∴0.8最小. 故选:D【变式3-3】(2022秋•德州期末)某中学进行立定跳远测试,男生成绩合格标准定为1.85米,体育老师记录了甲、乙、丙、丁四位男生成绩如下表:(超出标准的部分记为“+”,不足标准的部分记为“﹣”),你认为立定跳远成绩最好的是( ) 学生 甲 乙 丙丁成绩/米 +0.25+0.45 ﹣0.10 ﹣0.25A .甲B .乙C .丙D .丁【答案】B【解答】解:∵﹣0.25<﹣0.10<+0.25<+0.45, ∴四位男同学成绩最好的是乙; 故选:Bz【题型 3 相反意义的应用】【典例4】(2022秋•社旗县期末)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重 千克. (2)这8筐白菜中最重的重 千克;最轻的重 千克. (3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元? 【答案】(1)24.5; (2)27;22; (3)389.【解答】解:(1)最接近标准重量的是纪录中绝对值最小的数,因而是25﹣0.5=24.5(千克), 故答案为:24.5;(2)∵记录中最大的数为2,最小的数为﹣3 ∴25+2=27(千克),25﹣3=22(千克) ∴这8筐白菜中最重的重27克;最轻的22千克,故答案为:27;22.(3)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.525×8+(﹣5.5)=194.5(千克)194.5×2=389(元),答:出售这8筐白菜可卖389元.【变式4-1】(2022秋•绥德县期末)某登山队5名队员以大本营为基地,向距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下:(单位:米)+115,﹣30,﹣45,+180,+25,﹣20,+30,+110,﹣25,+100 (1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米? (2)登山时,5名队员在行进中全程均消耗了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?【答案】(1)没有登上顶峰,他们距离顶峰60米;(2)他们共消耗了17 升氧气.【解答】解:(1)500﹣(115﹣30﹣45+180+25﹣20+30+110﹣25+100)=60(米).答:没有登上顶峰,他们距离顶峰60米;(2)115+30+45+180+25+20+30+110+25+100=680(米),因为每人每100米消耗氧气0.5升,所以680×5÷100×0.5=17(升),答:他们共消耗了17 升氧气.【变式4-2】(2022秋•枣阳市期末)某校积极开展劳动教育活动,七年级(2)班利用劳动课举行包饺子比赛,以小组为单位(共分7个小组),以包100个饺子为基准,将这7个小组所包饺子的数量(单位:个)记录如下:﹣8,+5,+3,﹣2,+3,+7,+6.(超过100个的部分记为“+”,不足100个的部分记为“﹣”)(1)包饺子数量最多的小组与数量最少的小组相差多少个?(2)本次活动该班共包饺子多少个?【答案】(1)包饺子数量最多的小组与数量最少的小组相差15个;(2)本次活动该班共包饺子714个.【解答】解:(1)由题意,得:包的最多的小组比基准多7个,包的最少的小组比基准少8个;+7﹣(﹣8)=15(个);答:包饺子数量最多的小组与数量最少的小组相差15个;(2)(﹣8+5+3﹣2+3+7+6)+7×100=714(个);答:本次活动该班共包饺子714个.【变式4-3】(2022秋•慈溪市期末)2022年足球世界杯在卡塔尔举行.某工厂设计了某款足球纪念品并进行生产,原计划每天生产10000个该款足球纪念品,但由于种种原因,实际每天的生产量与计划量相比有出入,下表是某一周的生产情况(超出记为正,不足记为负,单位:个):星期一二三四五六日与计划量的差值+43﹣35﹣50+142﹣82+21﹣29(1)根据记录的数据可知,本周生产量最多的一天比生产量最少的一天多生产多少个?(2)本周实际生产总量是否达到了计划数量?说明理由.(3)若该款足球纪念品每个生产成本25元,并按每个30元出售,则该工厂本周的生产总利润是多少元?【答案】(1)本周生产量最多的一天比生产量最少的一天多生产224个;(2)本周实际生产总量达到了计划数量,理由见解析;(3)350050.【解答】(1)解:由表可知:因为本周生产量最多的一天是周四,最少的一天是周五,∴142﹣(﹣82)=224(个).答:本周生产量最多的一天比生产量最少的一天多生产224个.(2)∵43+(﹣35)+(﹣50)+(+142)+(﹣82)+(+21)+(﹣29)=43﹣35﹣50+142﹣82+21﹣29=10.∵10>0,∴本周实际生产总量达到了计划数量.(3)由利润=总量×(单价﹣成本)有:(10000×7+10)×(30﹣25)=70010×5=350050(元).答:该工厂本周的生产总利润是350050元.【题型 4 有理数的概念辨析】【典例5】(2022秋•朝阳区期末)下面的说法中,正确的是( )A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【答案】C【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.z故选:C .【变式5-1】(2022秋•长沙期末)在﹣3.5,,0.3070809,0,中,有理数有( )个. A .1 B .2C .3D .4【答案】D【解答】解:在﹣3.5,,0.3070809,0,中,有理数有﹣3.5,,0.3070809,0,共4个,故选:D .【变式5-2】(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是( )A .正有理数B .负有理数C .0D .非负数【答案】C【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数, 则“”表示的是0. 故选:C .【变式5-3】(2022秋•颍州区期末)下列说法正确的是( ) A .3.14不是分数B .不带“﹣”号的数都是正数C .0是自然数也是正数D .整数和分数统称为有理数 【答案】 Dz【解答】解:A 、3.14是分数,属于有理数,故A 不符合题意; B 、0不带“﹣”号,但不是正数,故B 不符合题意;C 、0是自然数,但既不是正数,也不是负数,故C 不符合题意;D 、整数和分数统称为有理数,说法正确,故D 符合题意. 故选:D .【题型 5 有理数的分类】【典例6】(2022秋•宁陕县校级期中)把下列各数填入相应的大括号里: ﹣3,3.14,﹣0.1,80,﹣25%,0,正数集合:{ }; 整数集合:{ }; 负数集合:{ }; 正分数集合:{ }. 【答案】3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【解答】解:﹣3,3.14,﹣0.1,80,﹣25%,0,,正数集合:{3.14,80,,};整数集合:{﹣3,80,0,}; 负数集合:{﹣3,﹣0.1,﹣25%,}; 正分数集合:{3.14,,}.故答案为:3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【变式6-1】把下列各数填入相应的集合里:﹣3.14,4.3,+72,0,,﹣6,﹣7.3,﹣12,0.4,﹣,,26.(1)正数集合:{ …}; (2)负数集合:{ …}; (3)正整数集合:{ …}; (4)负整数集合:{ …};(5)非负数集合:{ …}. 【答案】(1)4.3,+72,,0.4,,26;(2)﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)+72,26;(4)﹣6,﹣12;(5)4.3,+72,0,,0.4,,26.【解答】解:(1)正数集合:{4.3,+72,,0.4,,26…};故答案为:4.3,+72,,0.4,,26;(2)负数集合:{﹣3.14,﹣6,﹣7.3,﹣12,﹣…};故答案为:﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)正整数集合:{+72,26…};故答案为:+72,26;(4)负整数集合:{﹣6,﹣12…};故答案为:﹣6,﹣12;(5)非负数集合:{4.3,+72,0,,0.4,,26…}.故答案为:4.3,+72,0,,0.4,,26.【变式6-2】(2022秋•雁塔区校级月考)把下列各数填在相应的横线上:5%,z﹣,﹣12,0,0.,﹣3.14,+6,0.101101110,.整数集合:{…};正数集合:{…};负分数集合:{…};非负整数集合:{…}.【答案】﹣12,0,+6;5%,0.,+6,0.101101110,;﹣,﹣3.14;0,+6.【解答】解:整数集合:{﹣12,0,+6…};z正数集合:{5%,0.,+6,0.101101110,…};负分数集合:{﹣,﹣3.14…}; 非负整数集合:{0,+6…}; 故答案为:﹣12,0,+6; 5%,0.,+6,0.101101110,;﹣,﹣3.14; 0,+6.【题型 6 数轴的画法及应用】【典例7】(2022•苏州模拟)以下是四位同学画的数轴,其中正确的是( ) A . B .C .D .【答案】D【解答】解:∵数轴要有三要素:单位长度,原点,正方向,并且数轴上表示的数从左到右增大,∴四个选项中只有选项D 符合题意, 故选:D .【变式7-1】(2022•杭州模拟)下列说法中正确的是( )A .数轴是一条射线B .数轴上离开原点距离越远的点表示的数越大C .数轴上的点所表示的数从左到右依次减小D .任何一个有理数都可以用数轴上的一个点表示 【答案】D【解答】解:数轴是一条直线,A 说法错误;在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,B 说法错误; 数轴上的点所表示的数从左到右依次增大,C 说法错误; 任何一个有理数都可以用数轴上的一个点表示,D 说法正确. 故选:D .【变式7-2】(2021秋•凉州区校级期末)判断下列图中所画的数轴正确的个数是( )个.A.0B.1C.2D.3【答案】B【解答】解:数轴的三要素是:原点、正方向、单位长度,图(1)没有原点,故(1)不正确;图(2)满足数轴的定义,故(2)正确;图(3)所画负半轴上的数字排列顺序不对,故(3)错误;图(4)所画单位长度不一致,故(4)不正确.故选:B.【典例8】(2022秋•自贡期末)a,b为有理数,它们在数轴上对应点的位置如z图所示.则下列关系式正确的是( )A.﹣a<﹣b<b<a B.﹣a<b<﹣b<aC.﹣b<b<﹣a<a D.a<﹣b<b<﹣a【答案】B【解答】解:如图,由数轴可得,﹣a<b<﹣b<a,故选:B.【变式8-1】(2023•贵阳模拟)有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )zA .a +b >0B .a ﹣b >0C .ab >0D .【答案】D【解答】解:由数轴可知b >0>a ,且b <|a|, ∴a+b <0,故A 错误,不符合题意; a ﹣b <0,故B 错误,不符合题意; ab <0,故C 错误,不符合题意;,故D 正确,符合题意.故选:D .【变式8-2】(2022秋•鼓楼区校级期末)如图,A ,B ,C ,D 是数轴上的四个点,已知a ,b 均为有理数,且a +b =0,则它们在数轴上的位置不可能落在( )A .线段AB 上 B .线段BC 上 C .线段BD 上 D .线段AD 上【答案】A【解答】解:∵a ,b 均为有理数,且a+b =0, ∴a ,b 位于原点两侧,∴a ,b 在数轴上的位置不可能落在线段AB 上.故选:A .【变式8-3】(2022秋•江阴市期末)如图,数轴上的点A ,B 分别对应有理数a ,b ,下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .以上都不正确【答案】C【解答】解:由数轴可知,a <b <0, ∴a+b <0,故A 不符合题意; a ﹣b <0,故B 不符合题意;ab >0,故C 符合题意,D 不符合题意.【题型 7 数轴上的点所表示的数】【典例9】(2022秋•天津期末)已知数轴上点A到点B的距离是4,且点B所表示的数是2,则点A所表示的数是( )A.4或﹣4B.6或﹣2C.6或2D.﹣6或﹣2【答案】B【解答】解:∵点B到点A的距离是4.∵B表示2,∴A表示为2﹣4=﹣2或2+4=6.故选:B.【变式9-1】(2022秋•武冈市期末)点A为数轴上表示﹣2的点,当点A沿数轴移动5个单位长度到点B时,点B所表示的数为( )A.7或﹣3B.3或﹣7C.3或﹣3D.7或﹣7【答案】B【解答】解:向左移动5个单位长度对应的点表示﹣2﹣5=﹣7,向右移动5个单位长度对应的点表示﹣2+5=3,故选:B.【变式9-2】(2023•义乌市校级开学)如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是( )A.﹣1B.0C.1D.2【答案】C【解答】解:由图可知,被墨水盖住的整数为:﹣3,﹣2,1,2,3,相加为﹣3+(﹣2)+1+2+3=1;故选:C【变式9-3】(2023•新邵县校级一模)在数轴上表示数﹣1和2021的两个点之间的距离为( )个单位长度.A.2022B.2021C.2020D.2019z【解答】解:|﹣1﹣2021|=2022, 故选:A .【题型 8 数轴中点规律问题】【典例10】(2023•新华区校级二模)如图,不完整的数轴上有A ,B 两点,原点在A 、B 之间,沿原点将负半轴折叠到正半轴上,点A 落在点B 左侧4个单位长度处,则线段AB 的中点表示的数为( )A .2B .﹣2C .4D .﹣4【答案】A【解答】解:根据题意可设点A 表示的数为a ,则折叠后的点A 的对称点为﹣a , 因为点A 落在点B 左侧4个单位长度处,所以点B 表示的数为﹣a+4, 则AB =﹣a+4﹣a =4﹣2a , 线段AB 的一半为2﹣a ,所以AB 中点为:﹣a+4﹣(2﹣a )=2, 故选:A .【变式10-1】(2022秋•公安县期末)在数轴上,若点A ,B 表示的数分别是﹣3和5,点M 是线段AB 的中点,则M 表示的数为( ) A .1 B .2C .4D .﹣4【答案】A【解答】解:∵点A ,B 表示的数分别是﹣3和5, ∴AB =5﹣(﹣3)=8, ∵点M 是线段AB 的中点, ∴,∴点M 表示的数为:5﹣4=1; 故选:A .【变式10-2】(2022秋•江岸区期末)如图,在数轴上,点A 、B 表示的数分别是﹣19和3.点C 为线段AD 的中点,且BC =6BD ,则点C 表示的数为( )zA .﹣9B .﹣9.5C .﹣10D .﹣10.5【答案】A【解答】解:∵数轴上A ,B 两点所表示的数分别是﹣19和3, ∴AB =3+19=22, 设BD =x , ∵BC =6BD , ∴BC =6x , ∴CD =5x ,∵点C 为线段AD 的中点, ∴AD =2CD =10x , ∴AB =11x =22, ∴x =2, ∴AC =5x =10,∴点C 所表示的数是﹣19+10=﹣9. 故选:A .1.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作( ) A .﹣2℃ B .+2℃C .﹣3℃D .+3℃【答案】C【解答】解:∵气温上升2℃记作+2℃, ∴气温下降3℃记作﹣3℃. 故选:C .2.(2022•益阳)四个实数﹣,1,2,中,比0小的数是( )A .﹣B .1C .2D .【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.3.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.4.(2021•南京)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.10:00B.12:00C.15:00D.18:00【答案】C【解答】解:由题意得,北京时间应该比莫斯科时间早5小时,当莫斯科时间为9:00,则北京时间为14:00;当北京时间为17:00,则莫斯科时间为12:00;所以这个时刻可以是14:00到17:00之间,所以这个时刻可以是北京时间15:00.故选:C.5.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是( )A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.z6.(2021•广州)如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若AB =6,则点A 表示的数为( )A .﹣3B .0C .3D .﹣6【答案】A【解答】解:∵a+b =0, ∴a =﹣b ,即a 与b 互为相反数. 又∵AB =6, ∴b ﹣a =6. ∴2b =6. ∴b =3.∴a =﹣3,即点A 表示的数为﹣3. 故选:A .7.(2021•凉山州)下列数轴表示正确的是( ) A . B .C .D .【答案】D【解答】解:A 选项,应该正数在右边,负数在左边,故该选项错误;B 选项,负数的大小顺序不对,故该选项错误;C 选项,没有原点,故该选项错误;D 选项,有原点,正方向,单位长度,故该选项正确; 故选:D .8.(2020•乐山)数轴上点A 表示的数是﹣3,将点A 在数轴上平移7个单位长度得到点B ,则点B 表示的数是( ) A .4 B .﹣4或10C .4或﹣10D .﹣10【答案】C【解答】解:如果A 向右平移得到,点B 表示的数是:﹣3+7=4, 如果A 向左平移得到,点B 表示的数是:﹣3﹣7=﹣10,z故点B 表示的数是4或﹣10. 故选:C .9.(2020•临沂)如图,数轴上点A 对应的数是,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .﹣B .﹣2C .D .【答案】A【解答】解:点A 向左移动2个单位, 点B 对应的数为:﹣2=﹣. 故选:A .10.(2020•湘潭)在数轴上到原点的距离小于4的整数可以为 .(任意写出一个即可) 【答案】见试题解答内容【解答】解:在数轴上到原点的距离小于4的整数有:﹣3,3,﹣2,2,﹣1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,﹣1,﹣2,﹣3任意一个均可);1.(2023•河北模拟)向东走2m ,记为+2m ,那么走﹣7m ,表示( ) A .向南走7m B .向东走7mC .向西走7mD .向北走7m【答案】C【解答】解:向东走2m ,记为+2m ,那么走﹣7m ,表示向西走7m . 故选:C .2.(2022秋•河池期末)下列说法错误的是( ) A .0既不是正数,也不是负数B .零上4摄氏度可以写成+4°C ,也可以写成4°CzC .若盈利100元记作+100元,则﹣20元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示 【答案】D【解答】解:A .0既不是正数,也不是负数,正确,故不符合题意; B .零上4摄氏度可以写成+4°C ,也可以写成4°C ,正确,故不符合题意; C .若盈利100元记作+100元,则﹣20元表示亏损20元,正确,故不符合题意; D .规定向正北走用正数表示,则向正南走才用负数表示,原说法错误,故符合题意. 故选:D .3.(2023•海安市一模)手机移动支付给生活带来便捷.如图是小颖某天微伯账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是( )A .收入18元B .收入6元C .支出6元D .支出12元【答案】B【解答】解:+18+(﹣12)=6(元),即小颖当天微信收支的最终结果是收入6元.故选:B .4.(2023•官渡区校级模拟)检查四个篮球的质量,把超过标准的克数记为正数,不足标准质量的克数记为负数,结果如下表: 其中质量最好的是( )篮球编号 甲 乙 丙 丁与标准质量的差(g ) +4+7﹣3﹣8A .甲B .乙C .丙D .丁【答案】C【解答】解:根据题意可得:超过标准质量的克数记为正数,不足标准质量的克z数记为负数;观察图表,找绝对值最小的.易得|﹣3|=3最小, 故3号球最接近标准质量,质量最好, 故选:C .5.(2022秋•广西期末)在,﹣4,0,这四个数中,属于负整数的是( ) A .B .C .0D .﹣4【答案】D【解答】解:∵﹣,都是分数, ∴选项A ,B 不符合题意; ∵0既不是正数,也不是负数, ∴选项C 不符合题意; ∵﹣4是负整数, ∴选项D 符合题意, 故选:D .6.(2022秋•红河县期末)下列说法正确的是( ) A .0不是正数,不是负数,也不是整数 B .正整数与负整数包括所有的整数C .﹣0.6是分数,负数,也是有理数D .没有最小的有理数,也没有最小的自然数【答案】C【解答】解:A 0不是正数也不是负数,0是整数,故A 错误; B 正整数于负整数不包括0,故B 错误; C ﹣0.6是分数,负数,有理数,故C 正确; D 0是最小的自然数,故D 错误; 故选:C .7.(2023•晋安区校级模拟)如图,数轴的单位长度是1,若点A 表示的数是﹣1,则点B 表示的数是( )zA .1B .2C .3D .4【答案】D【解答】解:∵数轴的单位长度为1,如果点A 表示的数是﹣1, ∴点B 表示的数是:﹣1+5=4,故D 正确. 故选:D .8.(2022秋•惠阳区期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣1B .﹣a <bC .a +b <0D .a ﹣b >0【答案】B【解答】解:观察数轴得:﹣2<a <﹣1,2<b <3, ∴A 选项错误,不符合题意; ∴1<﹣a <2,∴﹣a <b ,故B 选项正确,符合题意; ∴|a|<|b|,∴a+b >0,故C 选项错误,不符合题意; ∴a ﹣b <0,故D 选项错误,不符合题意; 故选:B .9.(2022秋•沈丘县月考)已知数轴上A ,B 两点到原点的距离分别是3和9,则A ,B 两点间的距离是( ) A .6 B .9或12C .12D .6或12【答案】D【解答】解:A 、B 两点表示的数同号时,A ,B 两点间的距离是9﹣3=6或﹣3﹣(﹣9)=6,A 、B 两点表示的数异号时,A ,B 两点间的距离是9﹣(﹣3)=12或3﹣(﹣9)=12,∴A ,B 两点间的距离是6或12. 故选:D .10.(2022秋•文成县期中)点A、B在同一条数轴上,其中点A表示的数为1,若点B到点A的距离为4,则点B表示的数是( )A.3B.5C.3或﹣3D.5或﹣3【答案】D【解答】解:∵1+4=5,1﹣4=﹣3,∴点B表示的数是5或﹣3,故选:D.11.(2022秋•济南期中)如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣14,10,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是( )A.1B.﹣3C.1或﹣5D.1或﹣4【答案】C【解答】解:10+6=16,10﹣6=4,当A落在16对应的点时,C表示的数为:(16﹣14)=1,z当A落在4对应的点时,C表示的数为:(4﹣14)=﹣5,故选:C.12.(2023春•荣县月考)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).【答案】见试题解答内容【解答】解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1,∴第16个答案为:.故答案为:.13.(2022秋•武侯区校级月考)把下列各数分别填入相应的集合里.0,,5,3.14,π,﹣3,0.1.(1)整数集合:{…};(2)分数集合:{…};(3)有理数集合:{…};(4)非负数集合:{…}.【答案】(1)0,5,﹣3;(2),3.14,0.1;(3)0,,5,3.14,﹣3,0.1;(4)0,5,3.14,π,0.1.【解答】解:0,,5,3.14,π,﹣3,0.1.(1)整数集合:{0,5,﹣3,…};故答案为:0,5,﹣3;(2)分数集合:{,3.14,0.1,…};、故答案为:,3.14,0.1;z(3)有理数集合:{0,,5,3.14,﹣3,0.1,…};故答案为:0,,5,3.14,﹣3,0.1;(4)非负数集合:{0,5,3.14,π,0.1,…}.故答案为:0,5,3.14,π,0.1.14.(2023•泰山区校级开学)自行车厂要生产一批相同型号的自行车,计划每天生产200辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过200辆记为正,不足200辆记为负)星期一二三四五六日增减(辆)+5﹣3﹣4+13﹣10+15﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.【答案】(1)598;(2)25;(3)工人这一周的工资总额是140840元.【解答】解:(1)由表格可得,(200+5)+(200﹣3)+(200﹣4)=205+197+196=598(辆),即前三天共生产了598辆,故答案为:598;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了15﹣(﹣10)=15+10=25(辆),故答案为:25;(3)200×7×100+[5+(﹣3)+(﹣4)+13+(﹣10)+15+(﹣9)]×120=140000+7×120=140000+840=140840(元),答:工人这一周的工资总额是140840元.15.(2022秋•长安区校级期末)某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:﹣3﹣2﹣1.501 1.5 2.5与标准质量的差/克袋数1434323(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?【答案】(1)这批样品的总质量比标准总质量少,少2克;(2)这批样品平均每袋的质量是199.9克.【解答】解:(1)(﹣3)×1+(﹣2)×4+(﹣1.5)×3+0×4+1×3+1.5×2+2.5×3=﹣3﹣8﹣4.5+0+3+3+7.5=﹣2(克),即这批样品的总质量比标准总质量少,少2克;(2)200×20﹣2=4000﹣2=3998(克),3998÷20=199.9(克),即这批样品平均每袋的质量是199.9克.。

苏教版七年级上册数学[《有理数》全章复习与巩固(提高)重点题型巩固练习]

苏教版七年级上册数学[《有理数》全章复习与巩固(提高)重点题型巩固练习]

苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】 一、选择题1.计算106×(102)3÷104之值为( ).A .108B .109C .1010D .10122. a b -与a 比较大小,必定为( ).A .a b a -<B .a b a ->C .a b a -≤D .这要取决于b 3.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0 B .1 C .2 D .34.已知||5m =,||2n =,||m n n m -=-,则m n +的值是( ).A .-7B .-3C .-7或-3D .±7或±3 5.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”、“15cm”分别对应数轴上的 3.6x -和,则( ).A .910x <<B .1011x <<C .1112x <<D .1213x << 6.(2015•莒县一模)甲、乙两队合做修一条1200米的路,甲队独做4小时可以完成,乙队独做6小时可以完成,问两人合做2小时能修多少米?( ) A .600米 B . 800 C . 1000米 D . 1200米 7.(2016•松江区三模)下列分数中,能化为有限小数的是( ) A .B .C .D .8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( )A .2004B .2006C .2008D .2010 二、填空题9.(2015•湖州)计算:23×()2= .10.2011年成市承接产业转移示范区建设成效明显,第一季度完成固定资产投资238亿元,用科学记数法可记作________元.11.把下列各数填在相应的表示集合的大括号内:-3,-0.4,π,-|-4|,-227,0,4.262262226…(两个6之间依次增加一个“2”).整 数{ …} 负分数{ …} 无理数{ …}.12.当a =________时,式子23(1)a --的值最大,这个最大值是________.13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0; 2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a abc +++=<,则代数式a b ca b c++的值是 15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米. 16.(2016•富顺县校级模拟)计算:1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017=______________.三、 解答题 17.计算:(1)22213151[4(4)]1417⎛⎫---⨯--⎪⎝⎭(2)323233351914321251943252⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯--⨯⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(3)200820097887⎛⎫⎛⎫⨯- ⎪ ⎪⎝⎭⎝⎭(4)5231591736342--+- (5)111223++⨯⨯ (14950)+⨯ 18.(2015春•万州区期末)某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,b a,b的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值.20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议?【答案与解析】 一、选择题 1.【答案】 A【解析】126234664124841010(10)1010101010101010⨯÷=⨯÷=÷==. 2.【答案】 D【解析】当b 为0时,a b a -=;当b 为正数时,a b a -<;当b 为负数时,a b a -> 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3- 5.【答案】C【解析】( 3.6)15,11.4x x --==6.【答案】C.【解析】根据题意得:2×(1200÷4+1200÷6)=2×(300+200)=1000(米),则两人合作2小时能修1000米.7.【答案】A 【解析】解:A 、=0.1235,故本选项正确;B 、=0.111111…,故本选项错误;C 、=0.083333…,故本选项错误;D 、=0.066666…,故本选项错误;故选A .8.【答案】C【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】2.【解析】23×()2=8×=2. 10.【答案】102.3810⨯【解析】2(1)0a -≥,10a -=∴时,2(1)a -取到最小值,同时 23(1)a --取到最大值. 13.【答案】>, >, >, <【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可.15.【答案】10【解析】21-(-39)÷6×1=10(千米). 16.【答案】1.【解析】解:1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017=(1+2﹣3﹣4)+(5+6﹣7﹣8)+…+(2013﹣﹣2014﹣2015﹣2016)+2017=(﹣4)×(2016÷4)+2017=(﹣4)×504+2017=﹣2016+2017=1.三、解答题17.【解析】(1)原式13151(1616)1417⎛⎫=---⨯-⎪⎝⎭1315101011417⎛⎫=---⨯=--=-⎪⎝⎭(2)原式322 33431942519435⎡⎤⎛⎫⎛⎫⎛⎫=-⨯--⨯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦33916122525⎛⎫⎛⎫=-⨯-+⎪ ⎪⎝⎭⎝⎭332⎛⎫=-⨯⎪⎝⎭=(3) 原式20082008788877⎛⎫⎛⎫⎛⎫=⨯-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2008788877⎡⎤⎛⎫⎛⎫=⨯-⨯-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦88177⎛⎫=⨯-=-⎪⎝⎭(4)原式5231 591736342=----++--5231 (59173)6342⎛⎫=--+-+--+-⎪⎝⎭11 01144 =-=-(5)原式1111223=-+-+…114950+-111112233⎛⎫⎛⎫=+-++-++ ⎪ ⎪⎝⎭⎝⎭…11114914949505050⎛⎫+-+-=-=⎪⎝⎭18.【解析】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.19.【解析】由1,a+b,a与0,ba,b相同,由ba得:分母有0a≠,所以0a b+=又由三数互不相等,所以1b =,ba a= 化简得:1a =-,1b =,0a b +=,1ab =-∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=.20.【解析】(1)10÷500≈0.02(克) 答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克)答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元)答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105答:可供113880名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.。

华东师大版数学-七年级上册-第二章-有理数-巩固练习(含答案)

华东师大版数学-七年级上册-第二章-有理数-巩固练习(含答案)

华东师大版数学-七年级上册-第二章-有理数-巩固练习一、单选题1.在下列各数:﹣3,+8,3.14,0,π,,﹣0.4,2.75%,0.1010010001…中,有理数的个数是()A. 6个B. 7个C. 8个D. 9个2.一个数的相反数是最大的负整数,则这个数是()A. -1B. 1C. 0D. ±13.定义运算a⊗b=a(1﹣b),下面给出的关于这种运算的四个结论中正确的是()A. 2⊗(﹣2)=﹣4B. a⊗b=b⊗aC. (﹣2)⊗2=2D. 若a⊗b=0,则a=04.6912的相反数是()A. ﹣6912B.C. ﹣1269D. ﹣5.如果a<0,那么a和它的相反数的差的绝对值等于()A. aB. 0C. 2aD. -2a6.去年五月奥运圣火在高度约为8848米的珠峰项上传递,创造了世界之最.这个高度的百万分之一相当于 ( )A. 一间教室的高度B. 一块黑板的宽度C. 一张讲桌的高度D. 一本数学课本的厚度7.如果ab<0,那么下列判断正确的是()A. a<0,b<0B. a>0,b>0C. a≥0,b≤0D. a<0,b>0或a>0,b<08.用四舍五入按要求对分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.06(精确到千分位)C. 0.06(精确到百分位)D. 0.0602(精确到0.0001)9.某天股票A开盘价为12元,上午12:00跌1.0元,下午收盘时又涨了0.2元,则股票A的收盘价是()A. 0.2元B. 9.8元C. 11.2元D. 12元二、填空题10.﹣9的绝对值是________ .11.计算:3﹣(﹣5)+7=________;计算﹣2﹣|﹣6|的结果是________.12.如果|x|+y2=5,且y=﹣1,则x=________.13.已知数m小于它的相反数且数轴上表示数m的点与原点相距3个单位的长度,将该点m向右移动5个单位长度后,得到的数是________.14.若x<0,化简=________15.绝对值小于10的所有整数的和为________,积为________.16.数轴上到原点的距离小于2 个单位长度的点中,表示整数的点共有________个.三、解答题17.某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0.5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)18.在数轴上表示下列各数:0,,,,,,并用“<”号连接.四、综合题19.“十一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为________万人;(2)七天中旅客人数最多的一天比最少的一天多________万人(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?20.某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“﹣”表示股票比前一天下跌)(1)周一至周五这支股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了?________.(3)这五天的收盘价中哪天的最高?________哪天的最低?________相差多少?________.答案一、单选题1.【答案】B【解析】【解答】有理数有::﹣3,+8,3.14,0,,﹣0.4,2.75%,共7个;无理数有:π,0.1010010001…,共2个.故选B.【分析】根据整数和分数统称为有理数,及无理数的三种形式即可解答.2.【答案】B【解析】【分析】由于最大的负整数是-1,本题即求-1的相反数.【解答】最大的负整数是-1,根据概念,(-1的相反数)+(-1)=0,则-1的相反数是1.故选B.【点评】此题主要考查相反数、负整数的概念.3.【答案】C【解析】【解答】解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=2×3=6,∴选项A不正确;∵a⊗b=a(1﹣b),b⊗a=b(1﹣a),∴a⊗b=b⊗a只有在a=b时成立,∴选项B不正确;∵(﹣2)⊗2=(﹣2)×(1﹣2)=(﹣2)×(﹣1)=2,∴选项C正确;∵a⊗b=0,∴a(1﹣b)=0,∴a=0或b=1∴选项D不正确.故选:C.【分析】A:根据新运算a⊗b=a(1﹣b),求出2⊗(﹣2)的值是多少,即可判断出2⊗(﹣2)=﹣4是否正确.B:根据新运算a⊗b=a(1﹣b),求出a⊗b、b⊗a的值各是多少,即可判断出a⊗b=b⊗a是否正确.C:根据新运算a⊗b=a(1﹣b),求出(﹣2)⊗2的值是多少,即可判断出(﹣2)⊗2=2是否正确.D:根据a⊗b=0,可得a(1﹣b)=0,所以a=0或b=1,据此判断即可.4.【答案】A【解析】【解答】解:6912的相反数是﹣6912,故选:A.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.5.【答案】D【解析】【分析】首先根据题意表示出代数式,再根据负数的绝对值等于它的相反数可得答案.【解答】由题意得:|a-(-a)|=|2a|=-2a.故选D.【点评】此题主要考查了列代数式,以及绝对值,关键是掌握绝对值的性质.6.【答案】D【解析】【分析】这个高度的百万分之一,即除以1000000.【解答】8848÷1000000=0.008848米,相当于一本数学课本的厚度.故选D.【点评】本题属于基础题,考查了对有理数的除法运算法则掌握的程度.7.【答案】D【解析】【解答】解:∵ab<0,∴a与b异号,∴a<0,b>0或a>0,b<0.故选D.【分析】根据有理数的乘法符号法则作答.8.【答案】B【解析】【解答】A.0.06019≈0.1(精确到0.1),所以A选项的说法正确;B.0.06019≈0.060(精确到千分位),所以B选项的说法错误;C.0.06019≈0.06(精确到百分),所以C选项的说法正确;D.0.06019≈0.0602(精确到0.0001),所以D选项的说法正确。

1.2.1+有理数的概念+ 同步练习 2024-2025学年人教版(2024)七年级数学上册++

1.2.1+有理数的概念+ 同步练习 2024-2025学年人教版(2024)七年级数学上册++

1.2.1 有理数的概念学习目标理解有理数的概念,能按照一定的标准对有理数进行分类.课堂学习检测一、填空题1. 统称为整数;可以写成形式的数为正有理数,可以写成形式的数为负有理数. 和统称为非负数., 0, 4, +10, 中,正有理数有;2. 在有理数-3, 12负有理数有;整数有 .,0中,属于分数的共有个.3. 在有理数-0.5,534. 在有理数中,最大的负整数是,最小的非负数是,最小的自然数是 .二、选择题5. 0是一个 ( ).(A) 负整数 (B) 正分数 (C) 非负整数 (D) 正整数6. 下列各数是负分数的是 ( ).(A) -3.5 (B)31(C) -5 (D) 627. 下列说法中正确的有 ( )个.是负分数;②2不是整数;③0是非负数:④-1.3不是有理数.①−35(A) 1 (B) 2 (C) 3 (D) 4综合·运用·诊断一、选择题8. 下列说法中正确的是 ( ).(A) -1.234是负数, 不是分数 (B) 非正数就是负数是负分数(C) 带有“-”号的数就是负数(D)−9119. 下列说法错误的是 ( ).(A) 正分数一定是有理数(B) 整数和分数统称为有理数(C) 整数包括正整数、0、负整数(D) 正数和负数统称为有理数10. 下列说法:①整数包括正整数和负整数;②分数包括正分数和负分数;③-7既是负数也是整数,但不是自然数;④0既是正整数也是负整数;⑤非负分数就是正分数. 其中正确的个数是 ( ).(A) 1个 (B) 2个 (C) 3个 (D) 4个二、判断题 (正确的画“✔”, 错误的画“×”)11. 有理数是正数和负数的统称. ( )12. 有最小的正整数,但没有最小的正有理数. ( )13. 非负数就是正数. ( )14.−113是负分数. ( )15. 0是最小的有理数. ( )16. —3.782不是分数, 是有理数. ( )三、解答题17. 把下列各数填在相应的集合中:2 7,−15,8.5,−14,−234,0.5,−3.14,0,6,47.正数集合:{ …};负数集合:{ …};非负数集合:{ …};有理数集合:{ …}.18. 已知有A, B, C三个数的“家族”:A: {-1, 3.1, -4, 6, 2.1};B:{−4.2,2.1,−1,10,−18};C: {2.1, -4.2, 8, 6}.(1) 请把每个“家族”中所含的数填入图中的相应部分;(2) 把A, B, C三个数的“家族”中的负数写在横线上: ;(3) 有没有同时属于A,B,C三个数的“家族”的数? 若有,则为 .拓展·探究·思考19. 学科素养——无限循环小数与分数的转化我们知道有理数包括整数与分数,小学中学习了把分数转化为有限小数或无限循环小数,把有限小数转化为分数,那么,无限循环小数是不是一定可以转化为分数呢? 答案是肯定的. 无限小数可按照小数部分是否循环分成两类:无限循环小数和无限不循环小数. 无限不循环小数是无理数,一定不能转化为分数. 无限循环小数是可以转化为分数的. 那么,无限循环小数又是如何转化为分数的呢? 由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……其实,无限循环小数转化为分数的难点为无限的小数位数. 所以我们可以选择从这里入手,想办法“剪掉”无限循环小数的“大尾巴”. 解决方法就是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“大尾巴”完全相同,然后这两个数相减或替代,“大尾巴”就可以剪掉了!例如0.3转化成分数的方法如下:令a=0.3,则10a=3.3=3+0.3=3+a,即9a=3, 解得a=39=13,所以0.3可以转化成分13阅读上面的材料,回答问题.(1) 将0.7转化成分数是;(2) 将0.26转化成分数是;(3) 将0.12i 转化成分数是 .。

(完整版)七年级上册《有理数》知识点总结及培优练习

(完整版)七年级上册《有理数》知识点总结及培优练习

七年级上册?有理数?知识点总结?有理数?知识点总结主讲: 王老师1.数轴:〔1〕数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.〔2〕数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.〔一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.〕3〕用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.2.相反数〔1〕相反数的概念:只有符号不同的两个数叫做互为相反数.〔2〕相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.〔3〕多重符号的化简:与“+〞个数无关,有奇数个“﹣〞号结果为负,有偶数个“﹣〞号,结果为正.〔4〕规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣〞,如a的相反数是﹣a,m+n的相反数是﹣〔m+n〕,这时m+n是一个整体,在整体前面添负号时,要用小括号.3.绝对值:〔1〕概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于 0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.〔2〕如果用字母a表示有理数,那么数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a〔a>0〕0〔a=0〕﹣a〔a<0〕4.非负数的性质:绝对值:任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,那么其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.5.倒数:〔1〕倒数:乘积是1的两数互为倒数.一般地,a?1/a=1〔a≠0〕,就说a〔a≠0〕的倒数是1/a.〔2〕方法指引:①倒数是除法运算与乘法运算转化的“桥梁〞和“渡船〞.正像减法转化为加法及相反数一样,非常重要.倒数是伴随着除法运算而产生的.②正数的倒数是正数,负数的倒数是负数,而0没有倒数,这与相反数不同.【规律方法】求相反数、倒数的方法:注意:0没有倒数.求一个数的相反求一个数的相反数时,只需在这个数前面加上“﹣〞即可数求一个数的倒数求一个整数的倒数,就是写成这个整数分之一求一个分数的倒数,就是调换分子和分母的位置6.有理数的加减混合运算〔1〕有理数加减混合运算的方法:有理数加减法统一成加法.〔2〕方法指引:①在一个式子里,有加法也有减法,根据有理数减法法那么,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.7.有理数的乘法〔1〕有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘.〔2〕任何数同零相乘,都得0.〔3〕多个有理数相乘的法那么:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.-1-七年级上册?有理数?知识点总结〔4〕方法指引:①运用乘法法那么,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号领先,这样做使运算既准确又简单.8.有理数的乘方:〔1〕有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.〔将a n看作是a的n次方的结果时,也可以读作a的n次幂.〕〔2〕乘方的法那么:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.〔3〕方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.9.有理数的混合运算〔1〕有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.〔2〕进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式再进行计算.4.巧用运算律:在计算中巧妙运用加法或乘法运算律往往使计算更简便.10.近似数和有效数字:〔1〕有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有数字都是这个数的有效数字.〔2〕近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保存几个有效数字等说法.〔3〕规律方法总结:“精确到第几位〞和“有几个有效数字〞是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以表达出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.11.代数式求值;〔1〕代数式的:用数值代替代数式里的字母,计算后所得的结果叫代数式的值.〔2〕代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①条件不化简,所给代数式化简;②条件化简,所给代数式不化简;③条件和所给代数式都要化简.12.幂的乘方与积的乘方:〔1〕幂的乘方法那么:底数不变,指数相乘.〔a m〕n=a mn〔m,n是正整数〕注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘〞指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加〞的区别.〔2〕积的乘方法那么:把每一个因式分别乘方,再把所得的幂相乘.〔ab〕n=a n b n〔n是正整数〕注意:①因式是三个或三个以上积的乘方,法那么仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.-2-七年级上册?有理数?知识点总结七年级上册?有理数?培优一.选择题〔共10小题〕1.假设x的相反数是3,|y|=5,那么x+y的值为〔〕A ﹣8B.2C.8或﹣2D.﹣8或2.2.以下各组数中,数值相等的是〔〕和3和〔﹣4〕24B.﹣4.和〔﹣2〕3D.〔﹣2和﹣2222×3〕×3.3.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,假设在这个数轴上随意画出一条长为2004厘米的线段AB,那么线段AB盖住的整点的个数是〔〕或2003B.2003或2004C.2004或2005D.2005或20062 002.4.某种鲸的体重约为×105kg.关于这个近似数,以下说法正确的选项是〔〕精A确到百分位,有3个有效数字.精B确到个位,有6个有效数字.精C确到千位,有6个有效数字.精D确到千位,有3个有效数字.5.〔﹣2〕100比〔﹣2〕99大〔〕C .299D.3×2 992 AB .﹣2.6.以下说法正确的选项是〔〕倒A数等于它本身的数只有1B.平方等于它本身的数只有1.立C方等于它本身的数只有1D.正数的绝对值是它本身.7.两个互为相反数的有理数相乘,积为〔〕正A数B.负数C.零D.负数或零.8.一个有理数与它的相反数的乘积〔〕一A定是正数B.一定是负数C.一定不大于0D.一定不小于0.9.的所有可能的值有〔〕B.2个C.3个D.4个1个.10.假设|a﹣3|﹣3+a=0,那么a的取值范围是〔A a≤3B.a<3C.a≥3D.a>3-3-二.填空题〔共6小题〕11.如果数轴上的点A对应的数为﹣1,那么与A点相距3个单位长度的点所对应的有理数为.12.如图,在长方形草地内修建了宽为2米的道路,那么草地面积为米13.平方等于的数是.14.假设n为自然数,那么〔﹣1〕2n+〔﹣1〕2n+1= .15.760340〔精确到千位〕≈,〔保存两个有效数字〕≈.16.近似数精确到位,有有效数字;近似数万精确到位.三.解答题〔共14小题〕17..在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是a,最小的积是b,1〕求a,b的值;2〕假设|x+a|+|y﹣b|=0,求〔x﹣y〕÷y的值.18.观察以下等式:,,,将以上三个等式两边分别相加得:〔1〕猜想并写出:= ;〔2〕直接写出以下各式的计算结果:①= ;②= .〔3〕探究并计算:.19.小王上周五在股市以收盘价〔收市时的价格〕每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:〔单位:元〕星期一二三四五每股涨跌〔元〕+2 ﹣﹣根据上表答复以下问题:〔1〕星期二收盘时,该股票每股多少元?〔2〕本周内该股票收盘时的最高价,最低价分别是多少?〔3〕买入股票与卖出股票均需支付成交金额的千分之五的交易费.假设小王在本周五以收盘价将全部股票卖出,他的收益情况如何?20.〔1〕阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|-4-当A、B两点都不在原点,①如2,点A、B都在原点的右|AB|=|OB||OA|=|b||a|=ba=|ab|;②如3,点A、B都在原点的左,|AB|=|OB||OA|=|b||a|=ba=|ab |;③如4,点A、B在原点的两,|AB|=|OB||OA|=|b||a|=b〔a〕=|ab|;上,数上A、B两点之的距离|AB|=|ab|.〔2〕答复以下:①数上表示2和5的两点之的距离是,数上表示2和5的两点之的距离是数上表示1和3的两点之的距离是;②数上表示x和1的两点A和B之的距离是,如果|AB|=2,那么x;③当代数式|x+1|十|x2|取最小,相的x的取范是.21.以下材料,解答.水是关系到学生身心健康的重要生活,坡中学共有教学班24个,平均每班有学生50人,估算,学生一年在校240天〔除去各种假日〕,春、夏、秋、冬季各60天.原来,学生水一般都是水〔其它碳酸料或果汁价格更高〕,水零售价元/瓶,每个学生春、秋、冬季平均每天1瓶水,夏季平均每天要2瓶水,学校了减学生消担,要求每个班自行1台冷水机,,一台功率500w的冷水机150元,水每桶6元,每班春、秋两季,平均每天4桶,夏季平均每天5桶,冬季平均每天1桶,水机每天开10小,当地民用价元/度.:〔1〕在未水机之前,全年平均每个学生要花元来水用;〔2〕算:在水机解决学生水后,每班当年共要花多少元?〔3〕便利学生的措施施后,坡中学一年要全体学生共元.22.商了促,推出两种促方式:方式①:所有商品打折售:方式②:一次物200元送60元金.〔1〕老要价628元和788元的商品各一件,有四种方案:方案一:628元和788元的商品均按促方式①;方案二:628元的商品按促方式①,788元的商品按促方式②;方案三:628元的商品按促方式②,788元的商品按促方式①;方案四:628元和788元的商品均按促方式②.你老提出的最合理方案是.〔2〕通算下表中价在600元到800元之商品的付款金,你出商品的律是.商品价〔元〕628638648768778788付款金〔元〕方式①方式②23.水葫芦是一种水生浮植物,有着惊人的繁殖能力.据道,已造成某些流域河道堵塞,水染等重后果、据研究说明:适量的水葫芦生水的化是有利的,关是科学管理和化利用.假设在适宜条件下,〔不考植株死亡、被打等其它因素〕.〔1〕假江面上有1株水葫芦,填写下表:第几天51015⋯50⋯n株数24⋯⋯-5-七年级上册?有理数?知识点总结〔2〕假定某流域内水葫芦持在33万株以内化水有益.假设有10株水葫芦,你利用算器行估算探究,照上述生速度,多少天水葫芦有33万株?此后就必开始定期打理水葫芦.〔要求写出必要的、估算程!〕24.某市有一土地共100,某房地商以每80万元的价格得此地,准修建“和花园〞住宅区.划在住宅区内建造八个小区〔A区,B区,C区⋯H区〕,其中A区,B区各修建一24的楼房;C区,D 区,E区各修建一18的楼房;F区,G区,H区各修建一16的楼房.了足市民不同的房需求,开商准将A区,B区两个小区都修建成高档,每800m2,初步核算本钱800元/m2;将C区,D区,E区三个小区都修建成中档住宅,每800m2,初步核算本钱700元/m2;将F区,G区,H区三个小区都修建成适用房,每750m2,初步核算本钱600元/m2.整个小区内其他空余局部土地用于修建小区公路通道,植造林,建花园,运和居民生活商店等,些所需用加上物管理,置安装楼梯等用共需要9900万元.开商打算在修建完工后,将高档,中档和适用房以平均价格分3000元/m2,2600元/m2和2100元/m2的价格售.假设房屋全部出售完,你帮助算出房地开商的利是多少元?25某自行厂一周划生1400自行,平均每天生200.由于各种原因,上每天的生量与划量相比有出入.下表是某周的生情况〔增正,减〕:星期一二三四五六日增减+524+1310+169〔1〕根据可知,前三天共生了自行;〔2〕量最多的一天比量最少的一天多生了自行;3〕厂行件工制,每生一得60元,超完成每15元,少生一扣15元,那么厂工人一周的工是多少?26.某位需以“挂号信〞或“特快〞方式向五所学校各寄一封信.五封信的重量分是72g,90g,215g,340g,400g.根据五所学校的地址及信件的重量范,在局得相关准如下:种位准〔元〕挂号〔元/封〕特制信封〔元/个〕挂号信首重100g,每重20g 3重101~2000g,每重100g特快首重1000g内 3〔1〕重量 90g的信假设以“挂号信〞方式寄出,寄多少元?假设以“特快〞方式寄出呢?2〕五封信分以怎的方式寄出最合算?明理由.3〕通解答上述,你有何启示?〔你用一、两句明〕-6-27.甲、乙、丙三个教承担本学期期末考的第17的网上卷任,假设由三人中的某一人独立完成卷任,甲需要15小,乙需要10小,丙需要8小.〔1〕如果甲乙丙三人同改卷,那么需要多少完成?〔2〕如果按照甲、乙、丙、甲、乙、丙,⋯的次序流卷,每一中每人各卷 1小,那么需要多少小完成?3〕能否把〔2〕所的甲、乙、丙的次序作适当整,其余的不,使得完成任的至少提前半小?〔答要求:如不能,需明理由;如能,至少出一种流的次序,并求出相能提前多少完成卷任〕28.某学校改善学条件,划置至少40台,有甲,乙两家公司供:甲公司的价每台2000元,40台以上〔含40台〕,按价的九折惠;乙公司的价也是每台2000元,40台以上〔含40台〕,一次性返回10000元学校.〔1〕假设你是学校人,在品牌,量,售后服等完全相同的前提下,你如何?明理由;〔2〕甲公司乙公司与他争〔但甲公司不知乙公司的售方案〕,便主与校系,提出新的售方案;价每台2000元,40台以上〔含40台〕,按价的九折惠,在40台的基上,每增加15台,便送一台.:学校划120台〔包括送〕,至少需要多少元?29.假设|a|=2,b= 3,c是最大的整数,求a+b c的.30.|a|=3,|b|=5,且a<b,求a b的.-7-七年级第一章?有理数?培优解析一.选择题〔共10小题〕1.〔2006?哈尔滨〕假设x 的相反数是 3,|y|=5,那么x+y 的值为〔D 〕A .﹣8B .2C .8或﹣2D .﹣8或22.〔2021秋?曲阜市期中〕以下各组数中,数值相等的是〔C〕A 4和432和〔﹣4〕23B .﹣4.C ﹣23和〔﹣2〕3D .〔﹣2×3〕2和﹣22×32.解:A 、34=81,43=64,81≠64,故本选项错误,B 、﹣42=﹣16,〔﹣4〕2=16,﹣16≠16,故本选项错误,C 、﹣23=﹣8,〔﹣2〕3=﹣8,﹣8=﹣8,故本选项正确,22 2C .D 、〔﹣2×3〕=36,﹣2×3=﹣36,36≠﹣36,故本选项错误,应选3.〔2021秋?安徽期中〕数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,假设在这个数轴上随意画出一条长为2004厘米的线段AB ,那么线段AB 盖住的整点的个数是〔C 〕A .2002或2003B .2003或2004C .2004或2005D .2005或2006解:依题意得: ①当线段AB 起点在整点时覆盖2005个数;②当线段AB 起点不在整点,即在两个整点之间时覆盖2004个数.4.〔2021?青岛〕某种鲸的体重约为×105kg.关于这个近似数,以下说法正确的选项是〔D〕A.精确到百分位,有3个有效数字B.精确到个位,有6个有效数字C.精确到千位,有6个有效数字D.精确到千位,有3个有效数字分析:有效数字的计算方法:从左边第一个不是0的数字起,后面所有数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:×105kg最后一位的6表示6千,共有1、3、6三个有效数字.应选:D.点评:此题考查了科学记数法表示的数的有效数字确实定方法,要注意10的n次方限定的乘号前面的最后一位数表示的数位.5.〔2021秋?德州校级期末〕〔﹣2〕100比〔﹣2〕99大〔D〕B.﹣2C.99D.3×2992.解:〔﹣2〕100﹣〔﹣2〕99=2100+299=299×〔2+1〕=3×299.应选D.求〔﹣2〕100比〔﹣2〕99大多少,用减法.6.〔2021秋?鄞州区期末〕以下说法正确的选项是〔DA.倒数等于它本身的数只有1B.平方等于它本身的数只有1C.立方等于它本身的数只有1D.正数的绝对值是它本身7.〔2021秋?莱州市期末〕两个互为相反数的有理数相乘,积为〔D〕A.正数B.负数C.零D.负数或零8.〔2021秋?滨湖区校级期末〕一个有理数与它的相反数的乘积〔C〕一A定是正数B.一定是负数C.一定不大于0D.一定不小于0.9.〔2004?南平〕的所有可能的值有〔C〕-8-七年级上册?有理数?知识点总结个B.2个C.3个D.4个.分析:由于a、b的符号不确定,应分a、b同号,a、b异号两种情况分类求解.解:①a、b同号时,、也同号,即同为1或﹣1;故此时原式=±2;②a、b异号时,、也异号,即一个是1,另一个是﹣1,故此时原式=1﹣1=0;所以所给代数式的值可能有3个:±2或0.应选C.10.〔2003?黑龙江〕假设|a﹣3|﹣3+a=0,那么a的取值范围是〔 A 〕A.a≤3B.a<3 C.a≥3 D.a>3分析:移项,|a﹣3|﹣3+a=0可变为,|a﹣3|=3﹣a,根据负数的绝对值是其相反数,0的绝对值是0可知,a﹣3≤0,那么a≤3.解答:解:由|a﹣3|﹣3+a=0可得,|a﹣3|=3﹣a,根据绝对值的性质可知,a﹣3≤0,a≤3.应选A.二.填空题〔共6小题〕11.〔2021秋?赵县期末〕如果数轴上的点A对应的数为﹣1,那么与A点相距3个单位长度的点所对应的有理数为4或2.分析:考虑在A点左边和右边两种情形解答问题.12.如图,在长方形草地内修建了宽为2米的道路,那么草地面积为144米2.13.〔2021秋?靖江市期中〕平方等于的数是.14.〔2021秋?雁江区期末〕假设n为自然数,那么〔﹣1〕2n+〔﹣1〕2n+1=0.15.760340〔精确到千位〕≈×105,〔保存两个有效数字〕≈×102.考点:近似数和有效数字.分析:对于较大的数,进行精确到个位以上或保存有效数字时,必须用科学记数法取近似值,再根据题意要求四舍五入.解答:解:76040×105≈×105;×102≈×102.点评:此题注意精确到十位或十位以前的数位时,要先用科学记数法表示出这个数,这是经常考查的内容.16.〔2021秋?常州期中〕近似数精确到百万分位,有 4 有效数字;近似数万精确到百位.三.解答题〔共14小题〕17..在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是a,最小的积是b,1〕求a,b的值;2〕假设|x+a|+|y﹣b|=0,求〔x﹣y〕÷y的值.解答:解:〔1〕共有以下几种情况:〔﹣5〕×1×〔﹣3〕=15,〔﹣5〕×1×5=﹣25,﹣5×1×〔﹣2〕=10,﹣5×〔﹣3〕×5=75,﹣5×〔﹣3〕×〔﹣2〕=﹣30,﹣5×5×〔﹣2〕=50,1×〔﹣3〕×5=﹣15,1×〔﹣3〕×〔﹣2〕=6,〔﹣3〕×5×〔﹣2〕=30,最大的积是a=75,最小的积是b=﹣30,〔2〕|x+75|+|y+30|=0,∴x+75=0,y+30=0,-9-七年级上册?有理数?知识点总结x=﹣75,y=﹣30,∴〔x﹣y〕÷y=〔﹣75+30〕÷〔﹣30〕.18.〔2007?邵阳〕观察以下等式:,,,将以上三个等式两边分别相加得:〔1〕猜想并写出:=;〔2〕直接写出以下各式的计算结果:①=;②=.〔3〕探究并计算:.专题:规律型.分析:〔1〕从材料中可看出规律是〔2〕直接根据规律求算式〔2〕中式子的值,即展开后中间的项互相抵消为零,只剩下首项和末项,要注意的是末项的符号是负号,规律为;〔3〕观察它的分母,发现两个因数的差为2,假设把每一项展开成差的形式,那么分母是2,为了保持原式不变那么需要再乘以,即得出最后结果.解答:解:〔3〕原式====19.〔2004?芜湖〕小王上周五在股市以收盘价〔收市时的价格〕每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:〔单位:元〕星期一二三四五每股涨跌〔元〕+2﹣﹣根据上表答复以下问题:1〕星期二收盘时,该股票每股多少元?2〕本周内该股票收盘时的最高价,最低价分别是多少?3〕买入股票与卖出股票均需支付成交金额的千分之五的交易费.假设小王在本周五以收盘价将全部股票卖出,他的收益情况如何?分析:〔1〕由题意可知:星期一比上周的星期五涨了2元,星期二比星期一跌了元,那么星期二收盘价表示为25+2﹣,然后计算;2〕星期一的股价为25+2=27;星期二为27﹣;星期三为26.5+1.5=28;星期四为28﹣;星期五为26.2+0.8=27;那么星期三的收盘价为最高价,星期四的收盘价为最低价;3〕计算上周五以25元买进时的价钱,再计算本周五卖出时的价钱,用卖出时的价钱﹣买进时的价钱即为小王的收益.-10-七年级上册?有理数?知识点总结解答:解:〔1〕星期二收盘价为 25+2﹣〔元/股〕.〔2〕收盘最高价为25+2﹣0.5+1.5=28〔元/股〕,收盘最低价为 25+2﹣﹣〔元/股〕.〔3〕小王的收益为:27×1000〔1﹣5‰〕﹣25×1000〔1+5‰〕=27000﹣135﹣25000﹣125=1740〔元〕.∴小王的本次收益为1740元.20.〔2002?南京〕〔1〕阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,①如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣〔﹣a〕=|a﹣b|;综上,数轴上A、B两点之间的距离|AB|=|a﹣b|.〔2〕答复以下问题:数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3;当代数式|x+1|十|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3,数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣〔﹣答:5〕|=3.数轴上表示1和﹣3的两点之间的距离是|1﹣〔﹣3〕|=4.②数轴上表示x和﹣1的两点A和B之间的距离是|x﹣〔﹣1〕|=|x+1|,如果|AB|=2,那么x为1或﹣3.③当代数式|x+1|十|x﹣2|取最小值时,∴x+1≥0,x﹣2≤0,∴﹣1≤x≤2.此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,表达了数评:形结合的优点.21.〔2005?黄冈〕阅读以下材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天〔除去各种节假日〕,春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯洁水〔其它碳酸饮料或果汁价格更高〕,纯洁水零售价为元/瓶,每个学生春、秋、冬季平均每天买1瓶纯洁水,夏季平均每天要买2瓶纯洁水,学校为了减轻学生消费负担,要求每个班自行购置1台冷热饮水机,经调查,购买一台功率为500w的冷热饮水机约为150元,纯洁水每桶6元,每班春、秋两季,平均每天购置4桶,夏季平均每天购置5桶,冬季平均每天购置1桶,饮水机每天开10小时,当地民用电价为元/度.问题:〔1〕在未购置饮水机之前,全年平均每个学生要花费450 元钱来购置纯洁水饮用;〔2〕请计算:在购置饮水机解决学生饮水问题后,每班当年共要花费多少元?〔3〕这项便利学生的措施实施后,东坡中学一年要为全体学生共节约424080 元.分析:〔1〕通过每个学生每天的用水量,计算出每个季节的用水量,进而算出全年用水量;〔2〕购置饮水机解决学生饮水问题后,每班学生全年共花费:水费+电费;〔3〕原水费﹣现在水费=节约水费.解答:解:〔1〕∵每个学生春、秋、冬季每天1瓶矿泉水,夏季每天2瓶,∴一个学生在春、秋、冬季共要购置180瓶的矿泉水,夏天要购置120瓶矿泉水,∴一年中一个学生共要购置300瓶矿泉水,即一个学生全年共花费×300=450元钱;〔2〕购置饮水机后,一年每个班所需纯洁水的桶数为:春秋两季,每天4桶,-11-七年级上册?有理数?知识点总结那么120天共要〔4×120〕×=320桶.夏季每天5桶,共要60×5=300桶,冬季每天1桶,共60桶,∴全年共要纯洁水〔320+300+60〕=680桶,故购置矿泉水费用为:680×6=4080元,使用电费为:240×10××0.5=6 00元,故每班学生全年共花费:4080+600+150=4830元;〔3〕∵一个学生节省的钱为:450﹣元,∴全体学生共节省的钱数为:×24×50=424080元.点评:此题是一道实际问题,通过解答,不仅学会了阅读分析题目条件解题,更培养了同学们关注生活、将数学应用于生活的好习惯.22.〔2021?宁夏〕商场为了促销,推出两种促销方式:方式①:所有商品打折销售:方式②:一次购物满200元送60元现金.〔1〕杨老师要购置标价为628元和788元的商品各一件,现有四种购置方案:方案一:628元和788元的商品均按促销方式①购置;方案二:628元的商品按促销方式①购置,788元的商品按促销方式②购置;方案三:628元的商品按促销方式②购置,788元的商品按促销方式①购置;方案四:628元和788元的商品均按促销方式②购置.你给杨老师提出的最合理购置方案是方案三.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数与无理数知识讲解【学习目标】1、理解有理数的意义,知道无理数是客观存在的,了解无理数的概念.2、会判断一个数是有理数还是无理数.【要点梳理】要点一、有理数我们把能够写成分数形式mn(m,n是整数,n≠0)的数叫做有理数.要点诠释:(1)有限小数和循环小数都可以化为分数,他们都是有理数.(2)所有整数都可以写成分母是1的分数,因此可以理解为整数和分数统称为有理数.要点二、无理数1.定义:无限不循环小数叫做无理数.要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)目前常见的无理数有两种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….2.有理数与无理数的区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.要点三、循环小数化分数1.定义:如果一个无限小数的各数位上的数字,从小数部分的某一位起,按一定顺序不断重复出现,那么这样的小数叫做无限循环小数,简称循环小数,其中重复出现的一个或几个数字叫做它的一个循环节.2.纯循环小数从小数点后面第一位起就开始循环的小数,叫做纯循环小数.例如:0.666…、0.2..纯循环小数化为分数的方法是:分子是一个循环节的数字组成的数;分母的各位数字都是9,9的个数等于一个循环节的位数.例如310.393==,18970.18999937==.3.混循环小数如果小数点后面的开头几位不循环,到后面的某一位才开始循环,这样的小数叫做混循环小数.例如:0.12、0.3456456….混循环小数化为分数的方法是:分子是不循环部分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个9,再在后面按不循环部分的位数添写几个0组成的数.例如91891010.918990110-==,2392360.23990025-==,351353535100130.35135999009990037-===.要点诠释:(1)任何一个循环小数都可化为分数.(2)混循环小数化分数也可以先化为纯循环小数,然后再化为分数.【典型例题】类型一、有理数1.下列说法正确的是()A.整数就是正整数和负整数 B.分数包括正分数、负分数C.正有理数和负有理数统称有理数 D.无限小数叫做无理数【答案】B【解析】A选项整数包括正整数、负整数和0;C选项正有理数、负有理数和0统称有理数;D选项无限不循环小数才叫做无理数,所以选B.【总结升华】概念问题同学们往往忽略0的存在而模糊分类的界限,只有对定义达到真正的理解认识才不会出错.举一反三:【变式1】下列说法:①一个有理数不是整数就是分数;②有理数包括正有理数和负有理数;③分数可分为正分数和负分数;④存在最大的负整数;⑤不存在最小的正有理数.其中正确的个数是()A.2个 B.3个 C.4个 D.5个【答案】C【变式2】(2015•杭州模拟)是()A.整数 B.有限小数 C.无限循环小数 D.无限不循环小数【答案】C2.在实数,,0,,,﹣1.414,有理数有()A.1个 B.2个 C.3个 D.4个【思路点拨】根据有理数是有限小数或无限循环小数,可得答案.【答案】D【解析】解:,0,,﹣1.414,是有理数,【总结升华】本题考查了有理数,有理数是有限小数或无限循环小数.类型二、无理数3.(2016•盐城)下列实数中,是无理数的为()A.﹣4 B.0.101001 C. D.【思路点拨】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【答案】D【解析】解:A、﹣4是整数,是有理数,故本选项不符合题意;B、0.101001是小数,属于分数,故本选项不符合题意;C、是小数,属于分数,故本选项不符合题意;D、是无理数,正确;故选D.【总结升华】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.举一反三:【变式】以下各正方形的边长是无理数的是()A.面积为25的正方形;B.面积为16的正方形;C.面积为8的正方形;D.面积为1.44的正方形.【答案】C4.将下列各数填入相应的括号内3π,-2,1-2,3.020020002 0227,-(-2),2012,-0.23整数集合:{}分数集合:{}负有理数集合:{}无理数集合:{}【答案与解析】整数集合:{-2, 0,-(-2),2012}分数集合:{1-2,227,-0.23}负有理数集合:{-2,1-2,-0.23}无理数集合:{3π,3.020020002…,}【总结升华】本题考查了对有理数的有关概念的理解和应用,关键是能区分有关定义,注意:整数包括正整数、0、负整数;有理数包括正有理数、0、负有理数;无理数是指无限不循环小数.类型三、循环小数化分数5.把下列循环小数化分数【思路点拨】按循环小数化分数的规律方法化即可.【答案与解析】(1)(2),所以(3)(4)【总结升华】循环小数化分数时,整数部分不动,在掌握两种化简规律的基础上把小数部分进行相应的化简即可.举一反三:【变式】在6.4040…、3.333、9.505三个数中,是循环小数,把这个数化为分数可以写作.【答案】6.4040…;699【巩固练习】一、选择题1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数2.(2016春•文昌校级月考)下列说法:①﹣2.5既是负数、分数,也是有理数;②﹣22既是负数、整数,也是自然数;③0既不是正数,也不是负数,但是整数;④0是非负数.其中正确的有()A.1个 B.2个 C.3个D.4个3.0这个数是( )A.正数 B.负数 C.整数 D.无理数4.对于有理数a,下列说法中正确的是()A.a表示正有理数 B.-a表示负有理数C.a与-a中,必有一个是负有理数 D.a×a是非负数5.下列说法正确的是()A.不循环小数是无理数B.无限不循环小数是无理数C.无理数大于有理数D.两个无理数的和还是无理数6.把循环小数6.142化成分数是()A.1426999B.7645C.26999D.326225二、填空题7.和统称有理数.8.写出一个比-4大的负无理数.9.已知a为有理数,b为无理数,你们a+b为.10.在﹣1,0.2,,3,0,﹣0.3,中,负分数有,整数有.11.(2016春•丰城市期末)在,3.14159,,﹣8,,0.6,0,,中是无理数的个数有个.12.0.2666…化为分数是.三、解答题13.下面两个圈分别表示负数集和分数集,请把下列6个数填入这两个圈中合适的位置.﹣28%,,﹣2014,3.14,﹣(+5),﹣0.14.把下列各数填入表示它所在的数集的大括号:-2.4,3,2.004,- 103,114,-0.15,0,-(-2.28),3.14.正有理数集合:{ …},负有理数集合:{ …},整数集合:{ …},负分数集合:{ …}.15.试验与探究我们知道13写为小数即0.3,反之,无限循环小数0.3写成分数即13.一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.7为例进行讨论:设0.7=x,由0.7=0.7777…,可知,10x-x=7,解方程得x=79,于是得0.7=79.请仿照上述例题完成下列各题:(1)请你把无限循环小数0.5写成分数,即0.5= .(2)你能化无限循环小数0.73位分数吗?请仿照上述例子求之.【答案与解析】一、选择题1.【答案】C【解析】正有理数与0,负有理数组成全体有理数,C错误.2.【答案】C【解析】解:①﹣2.5既是负数、分数,也是有理数,正确;②﹣22既是负数、整数,但不是自然数,错误;③0既不是正数,也不是负数,但是整数,正确;④0是非负数,正确;故选C.3. 【答案】C4.【答案】D【解析】当a<0是,a表示负有理数, -a表示正有理数,故A、B选项错误;当a=0时,a和-a都不表示负有理数,故C选项错误;所以选D.5.【答案】B【解析】无限小数也可能是有理数如0.333…,无理数大于有理数也不一定如果无理数是负数有理数是正数就不成立,两个无理数的和可能为0如π+(-π)=0.6.【答案】D【解析】6.142=1421412832 666900900225-==.二、填空题7.【答案】整数;分数8.【答案】-π(答案不唯一)9.【答案】无理数【解析】如3+3.333…=3.333….10.【答案】﹣,﹣0.3;﹣1,3,0.11.【答案】3.【解析】解:是有理数,3.14159是一个有限小数,是有理数,是无理数,﹣8是有理数,是无理数,0.6是有理数,0是有理数,=6是有理数,是无理数.故答案为:3.12.【答案】4 15【解析】0.2666…=26-2244== 909015.三、解答题13.【解析】14.【解析】解:正有理数集合:{3,2.004,114,-(-2.28),3.14.…},负有理数集合:{-2.4, - 103,-0.15,…},整数集合:{3,0…},负分数集合:{-2.4, - 103,-0.15,…}.15.【解析】解:(1)设0.5=y,由0.5=0.5555…,可知,10y-y=5,解方程得y=59,于是得0.5=59.(2)设0.73=y,由0.73=0.7373…,可知,100y-y=73,解方程得y=73 99,于是得0.73=73 99.。

相关文档
最新文档