课后习题解——高等教育出版社《原子物理学》(褚圣麟编)

合集下载

原子物理学 褚圣麟 第一章习题解答

原子物理学 褚圣麟 第一章习题解答
2 ' ' 整理,得: vα ( 7300 − 1) + vα ( 7300 + 1) − 2 v α' ≈ 0
即 α 粒子散射“受电子的影响是微不足道的”。 1.7 能量为 3.5 兆电子伏特的细 α 粒子束射到单位面积上质量为
9
由上式看出: rmin 与入射粒子的质量无关,所以当用相同能量和相同电荷的氘核 代替质子时,其与靶核作用的最小距离仍为 1.14 × 10−13 m。 1.4 钋放射的一种 α 粒子的速度为 1.597 × 107 米/秒, 正面垂直入射于厚度为
10−7 米、密度为 1.932 × 10 4 公斤 / 米3 的金箔。试求所有散射在 θ > 90ο 的 α 粒子占
ο
0
K α b Ze2
Ze 2 ctg θ 79 × (1.60 × 10 − 19 ) 2 ctg 150 9 2 2 b= = 9 × 10 × = 3.97 × 10 − 1 5 m 6 − 19 4πε 0 K α 7.68 × 10 × 1.6 × 10
2 式中 Kα = 1 是 α 粒子的功能。 2 Mv
2 1 1 1 2 ' 2 Mv α = Mv α + mv e' 2 2 2
(1) (2)
由(1)得:
G G m G' 1 G' vα − vα' = ve = ve M 7300
2 ' vα = vα + 2
……
(3)
由(2)得:
m '2 ve M
(4)
将(3)式代入(4)式,得:
K K 2 ' 2 vα = vα + 7300 ( v α − v α' ) 2

原子物理学习题答案(褚圣麟)

原子物理学习题答案(褚圣麟)

7.2 原子的3d 次壳层按泡利原理一共可以填多少电子?为什么?答:电子的状态可用四个量子s l m m l n ,,,来描写。

根据泡利原理,在原子中不能有两个电子处在同一状态,即不能有两个电子具有完全相同的四个量子数。

3d 此壳层上的电子,其主量子数n 和角量子数l 都相同。

因此,该次壳层上的任意两个电子,它们的轨道磁量子数和自旋磁量子数不能同时相等,至少要有一个不相等。

对于一个给定的l m l ,可以取12;,....,2,1,0+±±±=l l m l 共有个值;对每个给定的s l m m ,的取值是2121-或,共2个值;因此,对每一个次壳层l ,最多可以容纳)(122+l 个电子。

3d 次壳层的2=l ,所以3d 次壳层上可以容纳10个电子,而不违背泡利原理。

7.4 原子中能够有下列量子数相同的最大电子数是多少?n l n m l n )3(;,)2(;,,)1(。

答:(1)m l n ,,相同时,s m 还可以取两个值:21,21-==s s m m ;所以此时最大电子数为2个。

(2)l n ,相同时,l m 还可以取两12+l 个值,而每一个s m 还可取两个值,所以l n ,相同的最大电子数为)12(2+l 个。

(3)n 相同时,在(2)基础上,l 还可取n 个值。

因此n 相同的最大电子数是:212)12(2n l N n l =+=∑-=7.5 从实验得到的等电子体系K Ⅰ、Ca Ⅱ……等的莫塞莱图解,怎样知道从钾Z=19开始不填s d 43而填次壳层,又从钪Z=21开始填s d 43而不填次壳层?解:由图7—1所示的莫塞莱图可见,S D 2243和相交于Z=20与21之间。

当Z=19和20时,S 24的谱项值大于D 23的值,由于能量同谱项值有hcT E -=的关系,可见从钾Z=19起到钙Z=20的S 24能级低于D 23能级,所以钾和钙从第19个电子开始不是填s d 43而填次壳层。

原子物理学(褚圣麟)完整答案

原子物理学(褚圣麟)完整答案

原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭C '放射的,其动能为 7.68 ⨯106 电子伏特。

散射物质是原子序数 Z = 79 的金箔。

试问散射角θ = 150ο所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:M v 2θ K αc o t = 4 π ε 0b = 4 π ε 0b2 Z e 2Z e 22得到:Z e 2ct g θ 7 9 ⨯ (1 .6 0 ⨯ 1 01 9 ) 2 ct g 1 5 0ο- 1 5 b = 2 2= = 3 .9 7 ⨯ 1 0 ( 4π ⨯ 8 .8 5 ⨯ 1 0 - 1 2 ) ⨯ (7 .6 8 ⨯ 1 06 ⨯ 1 0- 1 9) 米 4πε K 0 α式中 K =1 Mv 2是α 粒子的功能。

α 21.2 已知散射角为θ 的α粒子与散射核的最短距离为2 Z e 21 1 r m = (4 π ε)( 1 + ) ,试问上题α粒子与散射的金原子核M v 2 s i nθ2之间的最短距离r m 多大?解:将 1.1 题中各量代入r m 的表达式,得:1 2 Z e 21 = (1 + r m i n( 4π ε Mv 2 ) ) s i n θ0 2 - 1 9 24 ⨯ 79 ⨯ (1 .6 0 ⨯ 1 0 ) 1 = 9 ⨯ 1 0 9⨯⨯ (1 + ) 7 .6 8 ⨯ 1 0 6 ⨯ 1 .6 0 ⨯ 1 0 - 1 9sin 7 5ο = 3 .0 2 ⨯ 1 0 - 1 4 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的 两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

原子物理学(褚圣麟)完整答案

原子物理学(褚圣麟)完整答案

原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭C '放射的,其动能为 7.68 ⨯106 电子伏特。

散射物质是原子序数 Z = 79 的金箔。

试问散射角θ = 150ο所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:M v 2θ K αc o t = 4 π ε 0b = 4 π ε 0b2 Z e 2Z e 22得到:Z e 2ct g θ 7 9 ⨯ (1 .6 0 ⨯ 1 01 9 ) 2 ct g 1 5 0ο- 1 5 b = 2 2= = 3 .9 7 ⨯ 1 0 ( 4π ⨯ 8 .8 5 ⨯ 1 0 - 1 2 ) ⨯ (7 .6 8 ⨯ 1 06 ⨯ 1 0- 1 9) 米 4πε K 0 α式中 K =1 Mv 2是α 粒子的功能。

α 21.2 已知散射角为θ 的α粒子与散射核的最短距离为2 Z e 21 1 r m = (4 π ε)( 1 + ) ,试问上题α粒子与散射的金原子核M v 2 s i nθ2之间的最短距离r m 多大?解:将 1.1 题中各量代入r m 的表达式,得:1 2 Z e 21 = (1 + r m i n( 4π ε Mv 2 ) ) s i n θ0 2 - 1 9 24 ⨯ 79 ⨯ (1 .6 0 ⨯ 1 0 ) 1 = 9 ⨯ 1 0 9⨯⨯ (1 + ) 7 .6 8 ⨯ 1 0 6 ⨯ 1 .6 0 ⨯ 1 0 - 1 9sin 7 5ο = 3 .0 2 ⨯ 1 0 - 1 4 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的 两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

原子物理学(褚圣麟)完整答案

原子物理学(褚圣麟)完整答案

原子物理学习题解答薛家盈编信阳师范学院应用物理学班第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭C '放射的,其动能为 7.68 ⨯106 电子伏特。

散射物质是原子序数 Z = 79 的金箔。

试问散射角θ = 150ο所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:M v 2θ K αc o t = 4 π ε 0b = 4 π ε 0b2 Z e 2Z e 22得到:Z e 2ct g θ 7 9 ⨯ (1 .6 0 ⨯ 1 01 9 ) 2 ct g 1 5 0ο- 1 5 b = 2 2= = 3 .9 7 ⨯ 1 0 ( 4π ⨯ 8 .8 5 ⨯ 1 0 - 1 2 ) ⨯ (7 .6 8 ⨯ 1 06 ⨯ 1 0- 1 9)米 4πε K 0 α 式中 K =1 Mv 2是α 粒子的功能。

α 21.2 已知散射角为θ 的α粒子与散射核的最短距离为2 Z e 21 1 r m = (4 π ε)( 1 + ) ,试问上题α粒子与散射的金原子核M v 2 s i nθ2之间的最短距离r m 多大?解:将 1.1 题中各量代入r m 的表达式,得:1 2 Z e 21 = (1 + r m i n( 4π ε Mv 2 ) s i n θ0 2 - 1 9 24 ⨯ 79 ⨯ (1 .6 0 ⨯ 1 0 ) 1 = 9 ⨯ 1 0 9⨯⨯ (1 + ) 7 .6 8 ⨯ 1 0 6 ⨯ 1 .6 0 ⨯ 1 0 - 1 9sin 7 5ο = 3 .0 2 ⨯ 1 0 - 1 4 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的 两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

原子物理学课后习题详解第4章(褚圣麟)

原子物理学课后习题详解第4章(褚圣麟)

原子物理学课后习题详解第4章(褚圣麟)第四章碱金属原子4、1 已知Li 原子光谱主线系最长波长ολA 6707=,辅线系系限波长ολA 3519=∞。

求锂原子第一激发电势与电离电势。

解:主线系最长波长就是电子从第一激发态向基态跃迁产生得。

辅线系系限波长就是电子从无穷处向第一激发态跃迁产生得。

设第一激发电势为1V ,电离电势为∞V ,则有:伏特。

伏特375.5)11(850.111=+=∴+===∴=∞∞∞∞λλλλλλe hc V c h c h eV ehc V c heV 4、2 Na 原子得基态3S 。

已知其共振线波长为5893οA ,漫线系第一条得波长为8193οA ,基线系第一条得波长为18459οA ,主线系得系限波长为2413οA 。

试求3S 、3P 、3D 、4F 各谱项得项值。

解:将上述波长依次记为οοοολλλλλλλλAA A A p f d p p f d p 2413,18459,8193,5893,,,,max max max max max max ====∞∞即容易瞧出: 16max3416max 3316max316310685.0110227.1110447.21110144.41~---∞-∞∞=-=?=-=?=-=?===米米米米f D F d p D p P P P S T T T T T v T λλλλλ4、3 K 原子共振线波长7665οA ,主线系得系限波长为2858οA 。

已知K 原子得基态4S 。

试求4S 、4P 谱项得量子数修正项p s ??,值各为多少?解:由题意知:P P s p p v T A A λλλοο/1~,2858,76654max ====∞∞由24)4(s R T S ?-=,得:S k T R s 4/4=?- 设R R K ≈,则有max411,229.2P P P T s λλ-==?∞ 与上类似 764.1/44=-≈?∞P T R p4、4 Li 原子得基态项2S 。

原子物理学习题答案(褚圣麟)很详细

原子物理学习题答案(褚圣麟)很详细

1.原子的基本状况1.1解:根据卢瑟福散射公式: 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。

非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。

因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvze d (2)把(2)式代入(1)式,得:2sin )()41(422220θπεΩ=d Mvze Nt n dn (3)式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。

原子物理学(褚圣麟)完整答案

原子物理学(褚圣麟)完整答案

原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭C '放射的,其动能为 7.68 ⨯106 电子伏特。

散射物质是原子序数 Z = 79 的金箔。

试问散射角θ = 150ο所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:M v 2θ K αc o t = 4 π ε 0b = 4 π ε 0b2 Z e 2Z e 22得到:Z e 2ct g θ 7 9 ⨯ (1 .6 0 ⨯ 1 01 9 ) 2 ct g 1 5 0ο- 1 5 b = 2 2= = 3 .9 7 ⨯ 1 0 ( 4π ⨯ 8 .8 5 ⨯ 1 0 - 1 2 ) ⨯ (7 .6 8 ⨯ 1 06 ⨯ 1 0- 1 9) 米 4πε K 0 α式中 K =1 Mv 2是α 粒子的功能。

α 21.2 已知散射角为θ 的α粒子与散射核的最短距离为2 Z e 21 1 r m = (4 π ε)( 1 + ) ,试问上题α粒子与散射的金原子核M v 2 s i nθ2之间的最短距离r m 多大?解:将 1.1 题中各量代入r m 的表达式,得:1 2 Z e 21 = (1 + r m i n( 4π ε Mv 2 ) ) s i n θ0 2 - 1 9 24 ⨯ 79 ⨯ (1 .6 0 ⨯ 1 0 ) 1 = 9 ⨯ 1 0 9⨯⨯ (1 + ) 7 .6 8 ⨯ 1 0 6 ⨯ 1 .6 0 ⨯ 1 0 - 1 9sin 7 5ο = 3 .0 2 ⨯ 1 0 - 1 4 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的 两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档