11.2 与三角形有关的角

合集下载

人教版八年级上册数学11.2 与三角形有关的角(解析版)

人教版八年级上册数学11.2  与三角形有关的角(解析版)

11.2与三角形有关的角知识要点:1.三角形内角和定理:三角形三个内角的和等于180︒.(1)三角形内角和定理适用于任意三角形.(2)任何一个三角形中,至少有两个锐角,最多有一个钝角或直角.2.直角三角形的性质与判定(1)性质:直角三角形的两个锐角互余.在Rt ABC∠+∠=︒.A BC△中,90∠=︒,则90(2)判定:有两个角互余的三角形是直角三角形.3.三角形的外角三角形内角的一边与另一边的反向延长线组成的角,叫做三角形的外角.4.三角形外角的性质(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于与它不相邻的任意一个内角.一、单选题1.一个三角形三个内角的度数之比是2:3:4,这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【答案】C【解析】设一份为k∘,则三个内角的度数分别为2k°,3k°,4k.根据三角形内角和定理可知2k°+3k°+4k°=180°,所以2k°=40°,3k°=60°,4k°=80°.即这个三角形是锐角三角形。

故选:C2.已知三角形两个内角的差等于第三个内角,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【答案】C【解析】依题意得∠A-∠B=∠C,即∠A=∠B+∠C,又∠A+∠B+∠C=180°,∴∠A=90°,∴三角形为直角三角形,故选C.3.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为()A.100°B.120°C.140°D.160°【答案】B【解析】∵∠A=2(∠B+∠C),∠A+∠B+∠C=180°∴∠A=2(180°-∠A)解得∠A=120°,故选B.4.下列条件:(1)∠A=25°,∠B=65°;(2)3∠A=2∠B=∠C;(3)∠A=5∠B;(4)2∠A=3∠B=4∠C中,其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个【解析】(1)∵∠A=25°,∠B=65°,∴∠A+∠B=25°+65°=90°,又∵∠A+∠B+∠C=180°,∴∠C=180°-(∠A+∠B)=180°-90°=90°,∴△ABC是直角三角形;(2)∵3∠A=2∠B=∠C,∴∠A=13∠C,∠B=12∠C,∵∠A+∠B+∠C=180°∴13∠C+12∠C+∠C=116∠C=180°∴∠C≠90°∴△ABC不是直角三角形;(3)∵∠A=5∠B∴无法计算内角的度数,因此无法判定△ABC的形状;(4)∵2∠A=3∠B=4∠C,∴∠A=2∠C,∠B=43∠C,又∵∠A+∠B+∠C=180°,∴2∠C+43∠C+∠C=133∠C=180°,∴∠C=54090 13≠︒∴△ABC不是直角三角形.故选A.5.已知三角形的一个内角是另一个内角的23,是第三个内角的45,则这个三角形各内角的度数分别为()A.60°,90°,75°B.48°,72°,60°C.48°,32°,38°D.40°,50°,90°【答案】B【解析】设第一个内角的度数为x,∵三角形的一个内角是另一个内角的23,是第三个内角的45,∴另一个内角的度数为32x,第三个内角为54x,∴x+32x+54x=180°,解得x=48°,∴三个内角分别为48°,72°,60°故选B.6.如图有四条互相不平行的直线l1、l2、l3、l4所截出的七个角,关于这七个角的度数关系,下列结论正确的是()A.∠2=∠4+∠7B.∠3=∠1+∠7C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°【答案】B【解析】A、∵∠2=∠10+∠9,∠10=∠7,∠9≠∠4,∴∠2=∠4+∠7不成立,故本选项错误;B、∵∠3=∠8+∠10,∠8=∠1,∠10=∠7,∴∠3=∠1+∠7,故本选项正确;C、∠4=∠8+∠6,∠8=∠1,∴∠4=∠1+∠6,∴无法说明∠1+∠4+∠6=180°,故本选项错误;D、根据多边形的外角和定理,∠2+∠4+∠5=360°,∵l3、l4不平行,∴∠3≠∠4,∴∠2+∠3+∠5=360°不成立,故本选项错误.故选B.7.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=()A.80°B.70°C.60°D.90°【答案】A【解析】∵AB∥CD,∠1=45°,∴∠C=∠1=45°.∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°.故选A.8.如图,∠BDC=98°,∠C=38°,∠A=37°,则∠B的度数是()A.33°B.23°C.27°D.37°【答案】B【解析】如图,延长CD交AB于E,∵∠C=38°,∠A=37°,∴∠1=∠C+∠A=38°+37°=75°,∵∠BDC=98°,∴∠B=∠BDC-∠1=98°-75°=23°.故选:B.9.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一点,FG∥CE,交AB于点G,若∠1=70°,∠2=30°,则∠3的度数为()A.30°B.40°C.45°D.50°【答案】B【解析】∵CE平分∠ACD,∴∠1=∠ECF,∵FG∥CE,∴∠F=∠ECF,∵∠FCD=∠3+∠BAC,∠BAC=∠2+∠F,∴∠FCD=∠3+∠2+∠F,∴∠1+∠ECF=∠3+∠2+∠F,∴∠2+∠3=∠1,又∵∠1=70°,∠2=30°,∴∠3=70°-30°=40°,故选B.10.如图,在△ABC中,∠BAC=90︒,AD⊥BC于D,则图中互余的角有A.2对B.3对C.4对D.5对【答案】C【解析】∵∠BAC=90°∴∠B+∠C=90°①;∠BAD+∠CAD=90°②;又∵AD⊥BC,∴∠BDA=∠CDA=90°,∴∠B+∠BAD=90°③;∠C+∠CAD=90°④。

初中数学11.2与三角形有关的角典型例题

初中数学11.2与三角形有关的角典型例题

《与三角形有关的角》典型例题知识点1 三角形的内角例1 (基础题)在△ABC 中,∠A +∠B =100°,∠C =2∠B ,求∠A 、∠B 、∠C 的度数.精析与解答 解法一:设∠B =x °,则∠A =100°-x °,∠C =2x ° ∴ 100°—x °十x °十2x °=180°(三角形内角和定理)解方程,得x °=40°,即∠B =40°,∠A =60°,∠C =80°. 解法二:根据题意可列出方程⎪⎩⎪⎨⎧︒∠∠∠∠∠︒∠∠③=++②=①=+1802100C B A BC B A把①代入③,得∠C =④︒80把④代入②,得∠B =⑤︒40 把⑤代入①,得∠A =.说明:本题要求出△ABC 的三个内角,除了普遍成立的条件“∠A +∠B +∠C =180°”以外,只要给出两个独立条件,就可用解方程(组)的方法,得到惟一确定的解.例2 (能力题)如图7-18所示,△ABC 中,AD 平分∠BAC ,EF ⊥AD 交AB 于E ,交AC 于F ,交BC 的延长线于H .求证:∠H =21(∠ACB -∠B ).证明 如何把∠H 、∠B 、∠ACB 联系在一起是此题的关键.当注意到∠H 、∠B 是△EBH 的两个内角时,便会发现:∠3=∠B +∠H ,即∠H =∠3-∠B .而∠3=90°-∠1=90°-21∠BAC =21(180°-∠BAC ),然后把这个式子中的180°换成∠BAC +∠B +∠ACB ,就可以证出原结论了.∵ AD ⊥EF ,∴ ∠3=90°-∠1.∵ AD 平分∠BAC ,∴ ∠1=21∠BAC .又∵ ∠3是△HEB 的一个外角,∴ ∠H =∠3-∠B =90°-∠1-∠B=90°-21∠BAC -∠B =21(180°-∠BAC -B ∠2) =21(∠BAC +∠B +∠ACB -∠BAC -B ∠2) =21(∠ACB -∠B ).故∠H =21(∠ACB -∠B ).说明:①在此题的证明过程中,用△ABC 的三个内角的和去替换180°,是几何证明中的重要的转化思想,有时也可以用21(∠BAC +∠B +∠ACB )去替换90°,以达到证题的目的,初学者要注意体会;②上述的证明是借助于∠H =∠3-∠B ,本题还可以考虑∠H =90°-∠5,∠H =∠ACB -∠HFC ,∠H =∠ADB -90°等来证明.知识点2 三角形的外角例3 (基础题)一个三角形三个外角之比为2∶3∶4,求三个内角之比. 精析与解答 三角形的外角与相邻内角是互补的关系,只要能求出三个外角,自然三个内角也就容易得到,它们的比也就轻而易举了.由题意,设三角形的三个外角分别为(2x )°,(3x )°,(4x )°,则2x +3x +4x =360,解得x =40∴ 2x =80,3x =120,4x =160∴ 三角形的三个内角分别是100°、60°、20°∴ 它们的比为100∶60∶20=5∶3∶1故三个内角的比为5∶3∶1.说明:“三角形的三个外角和等于360°”是解此题的基础.例4 (能力题)如图7-19所示,在△ABC 中,AD 是BC 上的高,AE 平分∠BAC ,∠B =75°,∠C =45°,求∠DAE 与∠AEC 的度数.精析与解答 解法一:∵ ∠B +∠C +∠BAC =180°∠B =75°,∠C =45°∴ ∠BAC =60°,∵ AE 平分∠BAC∴ ∠BAE =∠CAE =21∠BAC =21×60°=30°∵ AD 是BC 上的高,∠B +∠BAD =90°∴ ∠BAD =90°-∠B =90°-75°=15°∴ ∠DAE =∠BAE -∠BAD =30°-15°=15°∵ ∠AEC 是△AEB 的外角∴ ∠AEC =∠B +∠BAE =75°+30°=105°解法二:同解法一,得出∠BAC =60°∵ AE 平分∠BAC∴ ∠EAC =21∠BAC =21×60°=30°∵ AD 是BC 上的高∴ ∠C +∠CAD =90°∴ ∠CAD =90°-45°=45°∴ ∠DAE =∠CAD -∠CAE =45°-30°=15°∵ ∠AEC +∠C +∠EAC =180°∴ ∠AEC +45°+30°=180°∴∠AEC=105°故∠DAE=15°,∠AEC=105°说明:求角的度数的关键是把已知角放在三角形中,利用三角形内角和定理求解,或转化为与已知角有互余关系或互补关系,有些题目还可以转化为已知角的和或差来求解.例5 (能力题)已知:CE为△ABC的外角∠ACD的平分线,CE交BA的延长线于点E.求证:∠BAC>∠B证明证角的不等关系,想到三角形内角和定理的推论3,从而想到看一看大角∠BAC是不是某个三角形外角.由图7-20知∠BAC是△ACE的外角,有∠BAC>∠1,而∠1=∠2,故只须证∠2>∠B,而∠2是△BCE的一个外角,∠B 是△BCE的一个和∠2不相邻的内角,所以有∠2>∠B,故∠BAC>∠B.∵CE平分∠ACD(已知),∴∠1=∠2(角平分线定义)∵∠BAC>∠1(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BAC>∠2,∵∠2>∠B(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BAC>∠B说明:此题证明过程中,除利用“三角形的一个外角大于任一和它不相邻的内角”这一结论外,还借助“∠2”来传递不等关系.在证明两角不等关系时,有时还可将两角放在同一三角形中,利用“大边对大角”来证明.。

11.2与三角形有关的角

11.2与三角形有关的角

11.2与三角形有关的角学习目标1.了解三角形的外角概念。

2.掌握三角形内角和定理和外角的性质,初步掌握添加辅助线的方法。

3.会证明三角形的内角和定理,会运用内角和定理与外角的性质进行相关计算。

考点关注1.根据三角形的外角的性质,结合平行线的性质来求角的度数或度数之间的关系。

2.根据三角形的内角和求角的度数或证明角相等的问题。

知识点1 三角形的内角和定理(1)三角形的内角和定理:三角形的内角和是180°.(2)三角形内角和定理的证明思路:利用两直线平行,内ABC为利用两直线平行,内错角及同位角相等,的三个内角利用两直线平行,内ABC为知识点2 直角三角形的性质和判定方法是直角三角形,且知识点3 三角形的外角1.三角形的外角2.常见的基本模型(1) “飞镖”模型:如图11-14(1)所示,结论:. (2) “8”字模型:如图11-14(2)所示,结论:.(3) 如图11-14(3)所示,点P 是∠ABC 与∠ACB 的角平分线的交点,结论:.ACP A ABP BCP ∠+∠+∠=∠E B D A ∠+∠=∠+∠A P ∠+︒=∠2190(4) 如图11-14(4)所示,点P 是∠ABC 与∠ACE 的角平分线的交点,结论:.(5) 如图11-14(5)所示,点P 是三角形的外角∠FBC 与∠BCE 的角平分线的交点,结论: .注意:以上结论应用时必须证明,不能直接用。

练习:如图11-15所示,∠1=∠2=∠3. (1) 试说明;(2) 若,,求的度数。

A P ∠=∠21A P ∠-︒=∠2190DEF BAC ∠=∠︒=∠70BAC ︒=∠50DFE ABC ∠题型1 三角形内角和定理的应用例1:锐角三角形所有角的度数为正整数,最小角的度数是最大角的度数的四分之一,则满足条件的锐角三角形有( ) A.3个 B.4个 C.5个 D.6个题型2 三角形外角性质与内角和定理的综合应用例2:如图11-16所示,在△ABC 中,,,,BE 平分∠ABC ,求∠BED 的度数。

人教版八年级数学上册11.2与三角形有关的角优秀教学案例

人教版八年级数学上册11.2与三角形有关的角优秀教学案例
4. 设计具有挑战性的数学问题,激发学生的好奇心,引导学生深入探究,提高学生的创新能力。
5. 将数学教学与信息技术相结合,运用多媒体课件、网络资源等手段,丰富教学手段,提高教学效果。
(三)情感态度与价值观
1. 培养学生对数学学科的兴趣,使他们感受到数学的乐趣,提高学生学习数学的积极性。
2. 使学生认识到数学在实际生活中的重要性,培养学生运用数学知识解决实际问题的能力。
本节课的内容与学生的生活实际密切相关,学生可以通过观察、操作、推理等途径,发现并总结出三角形的内角和定理。在教学过程中,教师要引导学生积极参与,发挥学生的主体作用,让学生在观察、思考、操作、交流等活动中,发现规律,总结方法,提高学生的数学素养。同时,教师还要关注学生的个体差异,给予不同程度的学生以必要的帮助和指导,使他们在原有基础上得到提高。
四、教学内容与过程
(一)导入新课
1. 利用多媒体课件展示生活中常见的三角形实例,如自行车的三角形车架、房屋的三角屋顶等,让学生感受到三角形在生活中的广泛应用。
2. 提出具有挑战性的数学问题:“一个三角形的三个内角分别为60°、60°和60°,求这个三角形的类型。”让学生在解决实际问题的过程中,自然地引入本节课的学习内容。
(二)问题导向
1. 教师提出问题,引导学生思考:“三角形的三个内角之和是多少度?为什么?”让学生带着问题进行观察、操作、推理等学习活动。
2. 设计一系列具有层次性的问题,如:“三角形的外角与相邻的内角有什么关系?如何证明?”,引导学生逐步深入探究与三角形有关的角的性质。
3. 教师引导学生运用已有的知识和经验,尝试解决新的问题,如:“如果知道一个三角形的两个内角,如何求解第三个内角?”从而提高学生的解决问题的能力。
2. 问题导向:教师在教学过程中提出一系列具有挑战性的问题,引导学生思考、探究与三角形有关的角的性质,使学生在解决问题的过程中,自然地引入本节课的学习内容。

《11-2与三角形有关的角——三角形的内角和》教学设计

《11-2与三角形有关的角——三角形的内角和》教学设计

《11.2与三角形有关的角——三角形的内角和(1)》教学设计一、内容与内容解析1.内容三角形内角和.2.内容解析与边一样,角(包括内角和外角)是三角形的主要元素,在研究了边的性质后,自然要研究角(内角和外角)的性质,其中内角和是基础.三角形的角的性质是今后研究几何图形的基础.初中研究三角形内角和与小学不同之处是需要用推理的方法证明.因此本节课的重点是三角形内角和定理的证明.二、目标与目标解析1.目标(1)掌握三角形内角和定理.(2)探索发现三角形内角和定理的结论,体会证明的必要性.(3)理解三角形内角和定理的证明过程.2.目标解析达成目标(1)的标志是:能熟练应用三角形内角和定理进行推理和计算.达成目标(2)的标志是:能从结论的一般性与确定性角度体会证明的必要性.达成目标(3)的标志是:能理解三角形内角和定理证明过程的合理性,指导证明过程“步步有据”的要求.三、教学问题诊断分析学生已经知道了三角形内角和定理的内容,但难以体会到证明的必要性;同时,证明三角形内角和定理需要添加辅助线,通过把三角形内角关系转化为平行线的角的性质,是第一次接触,难以理解.通过基于一般三角形下结论是否成立的提问让学生体会证明的必要性,通过分析拼角实验过程发现证明思路,体会怎样作辅助线,帮助学生突破难点.难点:三角形内角定理证明必要性的体会,理解定理的证明过程.四、教学过程设计(一)体会证明的必要性前面,我们研究了三角形的边的性质,接下来我们研究三角形角的性质.问题1 在小学,我们研究过三角形的角,三角形的三个内角有什么关系?师生活动:教师引导学生画出三角形(如图1),回顾三角形内角之间的关系.追问:在小学中,我们是怎样发现这一性质的?师生活动:教师引导学生回顾测量法和拼角实验法.展示学生的拼角方案(如下图).设计意图:引导学生回顾“三角形内角和等于180º”的结论及研究经验. 追问1:大家测量和实验时研究了多少个三角形?追问2:三角形有多少个?用测量和实验的方法能研究完所有三角形吗?追问3:对若干个具体的三角形进行测量和研究得到的结论,能保证对所有的三角形都成立吗?怎样才能说明结论对所有的三角形都成立?师生活动:教师引导学生考察结论的一般性,从而体会证明的必要性. 设计意图:体会证明的必要性. (二)三角形内角和定理的证明 问题2 怎样证明呢? 追问1:先说说证明的步骤.师生活动:教师引导学生回顾证明的步骤:先画出图形,写出已知、求证,再写出证明过程.已知:如图5,∠A ,∠B ,∠C 是△ABC 的内角.求证:∠A +∠B +∠C =180º.并指出,要证明这一结论,需要以已经确认是正确的事实、定理为依据,一步一步有依ABC图1ABC图2A BC图3ABC图4ABC图5据地进行推导,最后推导出最终的结论.追问2:让我们分析一下拼角的操作过程,看看有什么启发.如图5我们把∠B ,∠C 撕下后拼到∠A 上得到一个平角,移动后它们的边AE ,AF 有什么特征?师生活动:教师引导学生发现它们在同一直线EF 上. 追问3:直线EF 与直线BC 有什么关系?由此有什么启发?师生活动:教师引导学生得出EF ∥BC ,这就启发我们通过过顶点A 作BC 的平行线来进行证明(如图6).图6追问4:怎样书写证明过程?师生活动:教师与学生一起书写证明过程如下: 证明:过点A 作EF ∥BC . ∵EF ∥BC ,∴∠1=∠B ,∠2=∠C ;(两直线平行,内错角相等) 又∵∠1+∠2+∠BAC =180º,(平角的定义) ∴∠BAC +∠B+∠C =180º.(等量代换)在此基础上,确认三角形内角和定理:三角形三个内角的和等于180º. 设计意图:分析证明思路,书写证明过程,明确定理结论. 追问5:如果按照图3,图4的拼角方案,怎样书写证明过程? 师生活动:教师引导学生书写相应的证明过程.设计意图:通过一题多解感悟证明过程,培养思维灵活性. 追问6:上述证明过程是怎样想的?师生活动:教师引导学生总结:用平行线性质移动角的位置,使它们拼成一个平角. 设计意图:引导学生感悟数学转化的思想. 师生活动:教师引导学生分析解题思路,学生独立书写解题过程,教师引导学生相互质疑,保证推理的严谨性.设计意图:应用三角形内角和定理进行角度计算,巩固定理.例2 如图8是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东50º的方向,B 岛在A 岛图7A B CE F的北偏东80º方向,C 岛在B 岛的北偏西40º方向.从B 岛看A ,C 两岛的视角∠ABC 是多少度?从C 岛看A ,B 两岛的视角∠ACB 是多少度?师生活动:教师引导学生分析解题思路,引导学生书写解题过程.设计意图:应用定理解决实际问题,巩固定理. 练习:1.写出下列三角形中∠ 的度数.2.如图,一种滑翔伞的形状是左右对称的四边形ABCD (沿着AC 对折后直线AC 两侧部分能完全重合),其中∠A =150º,∠B =∠D =40º,求∠C 的度数.师生活动:学生口答第1题,书写第2题. 设计意图:巩固定理,发展推理能力. (四)课堂小结教师引导学生思考下列问题,回顾并交流本课所学知识. (1)本课学习了哪一个定理?(2)小学中我们已经发现了三角形三内角的和为180º,为了什么要证明这一结论? (3)你是怎样证明这一结论的?设计意图:比较初中与小学学习三角形内角和的差别,体会证明的必要性,总结证明过程,体会证明的要求.(五)布置作业教科书习题11.2第1,3,7题.有兴趣的同学尝试写出与本课中不同的证明过程. 五、板书设计11.2.1三角形的内角1.三角形内角和:小学的做法:测量、拼角。

《11-2与三角形有关的角(第1课时)》测试与评价

《11-2与三角形有关的角(第1课时)》测试与评价

《11.2与三角形有关的角(第1课时)》测试与评价本课时的主要内容是三角形的内角和定理.以下题目分为三个水平等级:水平1(用★☆☆表示):运用基本知识、基本技能就能解决的题目;水平2(用★★☆表示):灵活运用基本知识、基本技能,并要具备一定的运算能力和推理能力才能解决的题目;水平3(用★★★表示):综合运用基本知识、基本技能、方法技巧,并要具备一定的运算能力和推理能力才能解决的题目.一、选择题.1.在△ABC中,若∠A=60°,∠B=65°,则∠C=().A.65°B.55°C.45°D.75°考查目的:本题考查三角形的内角和的有关计算.水平等级:★☆☆解析:因为三角形的内角和为180°,所以∠C=180°-∠A-∠B=180°-60°-65°=55°,故选B.答案:B.2.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于().A.50°B.75°C.100°D.125°考查目的:本题考查三角形的内角和的有关计算.水平等级:★☆☆解析:由于∠B比∠C大25°,所以可将∠C表示为∠B-25°,然后利用三角形的内角和定理∠A+∠B+∠C=180°,列出关于∠B的方程,即55°+∠B+∠B-25°=180°,解得∠B=75°,故选B.答案:B.3.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是().(第3题)A .85°B .80°C .75°D . 70°考查目的:本题考查三角形的内角和以及角平分线的有关计算.水平等级:★☆☆解析:在△ABC 中先由三角形的内角和定理求出∠C =60°,然后由三角形的角平分线的定义求出∠DBC =35°,最后在△BDC 中利用内角和定理求出∠BDC=85°,故选A .答案:A .二、填空题.4. 在△ABC 中,∠A :∠B :∠C =1:2:3,则∠C = ,△ABC 是 三角形. 考查目的:本题考查三角形的内角和的有关计算以及直角三角形的定义.水平等级:★☆☆解析:本题可由条件设∠A =x °,∠B =2x °,∠C =3x °,然后根据三角形的内角和定理列方程x +2x +3x=180,解得x =30,从而求出∠C =3x °=90°,所以△ABC 是直角三角形.答案:90°,直角.5. 若直角三角形的一个锐角为20°,则另一个锐角等于.考查目的:本题考查三角形的内角和定理.水平等级:★☆☆解析:根据三角形的内角和等于180°,可以求出另一个锐角为70°.答案:70°.6. 如图,在△ABC 中,∠B =46°,∠C =54°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,则∠ADE 的大小是 .(第6题)B考查目的:本题考查三角形的内角和定理以及角平分线、平行线的性质等.水平等级:★★☆解析:先由三角形的内角和定理求出∠BAC =80°,再由角平分线的定义求出∠BAD = 40°,最后再由DE ∥AB 的条件,得到∠ADE=∠BAD=40°.答案:40°.三、解答题.7. 如图,在△ABC 中,∠BAC =80°,∠C =60°,高AD 和角平分线BE 交于F ,求 ∠AFB .考查目的:本题考查三角形的内角和、高线、角平分线的有关计算.水平等级:★★☆(第7题)解析:本题可先在△ABC中由三角形的内角和定理求出∠ABC的度数,然后利用角平分线的条件求出∠ABF,在△ADC中求出∠DAC,进一步求出∠BAD,最后在△BAF 中利用内角和定理求出∠AFB.解:∵△ABC中,∠BAC=80°,∠C=60°,∴∠ABC=40°.又BE平分∠ABC,∴∠ABF=20°.∵在△ADC中,AD是高,∠C=60°,∴∠DAC=180°-90°-60°=30°.∴∠BAD=∠BAC-∠DAC =80°-30°=50°.∴△ABF中,∠AFB=180°-∠ABF-∠BAD=180°-20°-50°=110°.。

11.2与三角形有关的角 课件 2024—2025学年人教版八年级数学上册

11.2与三角形有关的角 课件  2024—2025学年人教版八年级数学上册

E
∵∠A=42° ,∠ACE=18°,
FD
∴ ∠BEC=60°.
∵ ∠BFC是△BEF的一个外角,
∴ ∠BFC= ∠ABD+ ∠BEF,
B
C ∵ ∠ABD=28° ,∠BEC=60°
∴ ∠BFC=88°.
1. 如图,在△ABC 中, ∠BAC =40°, ∠B =75°,AD 是△ABC 的角平分线.求∠ADB 的度数.
三角形内角和定理: 三角形内角和等于180°.
证明:沿长BC到D点,过点C作AB的平行线
CE.
方 法
A E

B
CD
三角形内角和定理: 三角形内角和等于180°.
证明:过A作AE∥BC, ∴∠C=∠CAE (两直线平行,内错角相等) ∠EAC+∠BAC+∠B=180° (两直线平行,同旁内角互补) ∴∠B+∠C+∠BAC=180° (等量代换) BFra bibliotek例题讲解
例1.已知: 在△ ABC中,∠BAC=40°, ∠B=75°,AD是△ABC的角平分线.求∠ADB 的度数。
例题讲解
例2.如图,C岛在A岛的北偏东50°方 向,B岛在A岛的北偏东80°方向,C 岛 在B 岛的北偏西40°方向,从C岛看A、 B两岛的视角∠ACB是多少度?
二、三角形的外角的概念
定义 如图,把△ABC的一边BC延长, 得到∠ACD,像这样,三角形的一 边与另一边的延长线组成的角,叫 做三角形的外角.
A
B
CD
∠ACD是△ABC的一个外角
画一画:画出△ABC的所有外角,请 指出来有哪几个.
有6个,它们是∠1, ∠2, ∠3, ∠4, ∠5, ∠6.
5 B2

11.2 与三角形有关的角

11.2  与三角形有关的角

11.2 与三角形有关的角教学目标1.探索并证明三角形内角和定理.2.能运用三角形内角和定理解决简单问题.3.使学生在操作活动中,探索出三角形的外角的两条性质,并利用学过的定理论证这些性质.4.能利用三角形的外角性质解决实际问题.教学重点探索并证明三角形内角和(外角和)定理,体会证明的必要性.课时安排2课时教案A第1课时教学内容三角形的内角.教学过程一、新课导入在小学我们已经知道任意一个三角形三个内角的和等于180°,你还记得是怎么发现这个结论的吗?二、探究新知1.动手操作教师让学生利用手中的三角形纸片进行探究,提醒学生可以采用三种方法:度量、剪拼图、折叠.通过学生的实验探究后,教师指出运用度量的方法时,测量可能会有误差,得出的三个内角的和接近180°.通过度量、剪拼图或折叠的方法验证了手中的三角形纸片的三个内角和等于180°,但我们手中的三角形只是所有三角形中有限的几个,而形状不同的三角形有无数多个,我们如何能得出“所有的三角形的三个内角的和都等于180°”这个结论呢?2. 探究证明师生共同完成三角形内角和的证明过程. 已知:△ABC .求证:∠A +∠B + ∠C = 180°.证明:如右图,过点A 作直线l ,使l //BC . ∵ l //BC ,∴ ∠2=∠4(两直线平行,内错角相等). 同理∠3=∠5.∵ ∠1,∠4,∠5组成平角, ∴ ∠1+∠4+∠5=180° (平角定义). ∴ ∠1+∠2+∠3=180° (等量代换).通过前面的操作和证明过程,你能受到什么启发?你能用其他方法证明此定理吗? 学生独立思考,讨论其他做法.注意:为了证明的需要,在原来图形上添画的线叫做辅助线,在平面几何里,辅助线通常用虚线表示.3. 例题分析下图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东50°方向, B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向,从B 岛看A 、C 两岛的视角∠ABC 是多少度?从C 岛看A 、B 两岛的视角∠ACB 是多少度?学生先独立解决,再合作交流,最后教师点评. 想一想:你还有其他解法吗? 4.直角三角形的性质在△ABC 中,若∠C =90°,你能求出∠A ,∠B 的度数吗?为什么?你能求出∠A +∠B 的度数吗?利用上面的结果,你能得出什么结论?学生先独立解决,再合作交流,最后教师点评. 明晰:直角三角形的两个锐角互余.提示:直角三角形可以用符号“Rt △”表示,直角三角形ABC 可以写成Rt △ABC . 5.直角三角形的性质的应用如图,∠C =∠D =90°,AD ,BC 相交于点E ,∠CAE 与∠DBE有什么关系?为什么?分析:两个角的关系是什么?这两个角分别在什么三角形中?你如何验证自己的想法?解:在Rt △AEC 中,∠CAE =90°-∠AEC . 在Rt △BDE 中,∠DBE =90°-∠BED . ∵∠AEC =∠BED , ∴∠CAE =∠DBE .如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,你能得出什么结论?这个结论成立吗?如何验证你的想法?学生先独立解决,再合作交流,最后教师点评. 明晰:有两个角互余的三角形是直角三角形.三、课堂小结1.探索并证明三角形内角和定理.2.能运用三角形内角和定理解决简单问题.3.掌握直角三角形的两个锐角互余,并能简单应用. 四、布置作业习题11.2 第1、3、4题.第2课时教学内容三角形的外角. 教学过程 一、新课导入如图,在△ABC 中,∠A =30°,∠B =50°,则∠C = .把△ABC 的一边BC 延长,得到∠ACD .这个角还是三角形的内角吗?∠ACD = .二、探究新知1.三角形外角的定义定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.想一想:三角形的外角有几个? .每个顶点处有 个外角,但它们是 .2.外角的性质在右图中,△ACD 与△ABC 的内角有什么关系? (1)∠ACD = + ;(2)∠ACD∠A,∠ACD∠B(填“<”、“=”“>”).再画△ABC的其他的外角试一试,还会得到这些结论吗?请学生用几何语言叙述这个结论:三角形的一个外角等于不相邻两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角.3.外角性质的证明你能用学过的定理证明这些定理的成立吗?已知:△ACD是△ABC的外角.求证:(1)△ACD=∠A+∠B(2)△ACD>∠A,△ACD>∠B.学生独立思考,师生完成证明过程.证明:(1)因为∠A+∠B+∠ACB=180°.所以∠A+∠B=180°-∠ACB.又因为∠ACB+∠ACD=180°,所以∠ACD=180°-∠ACB.所以∠ACD=∠A+∠B.(2)由(1)的证明结果可以得出:△ACD>∠A,△ACD>∠B.想一想:你还可以结合右图形给予说明吗?4.外角性质的应用如右图,∠1、∠2、∠3是三角形ABC的不同三个Array外角,则它们的和是多少?解:因为∠1=∠ABC+∠ACB,∠2=∠BAC+∠ACB,∠3=∠ABC+∠BAC,所以∠1+∠2+∠3=2(∠ABC+∠BAC+∠ACB).因为∠ABC+∠BAC+∠ACB=180º,所以∠1+∠2+∠3=2×180º=360º.三、课堂小结1.了解三角形的外角的两条性质2.利用学过的定理论证这些性质3.能利用三角形的外角性质解决实际问题四、布置作业习题11.2第6、8题.教案B第1课时教学内容三角形的内角.教学过程一、新课导入活动1说出三角形内角和是多少,并思考如何证明.二、自主学习1.活动2 在纸上任意画一个三角形,将它的内角剪下拼合在一起,就得到一个平角.从这个操作过程中,你能发现证明的思路吗?下面是两种拼合的方法,试一试,看看得到什么结果.学生动手操作后与同伴交流,得到:所有的三角形的三个内角的和都等于180°.2.活动3如果我们不用上面的办法,可不可以用推理论证的方法来说明三角形内角和定理的正确性呢?学生独立思考后,小组合作交流.优秀小组代表发言,师生完成规范步骤的书写.提示:为了证明的需要,在原来图形上添画的线叫做辅助线,在平面几何里,辅助Array线通常用虚线表示.3.活动4如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线.求∠ADB的度数.学生独立思考后,小组合作交流.优秀小组代表发言,师生完成规范步骤的书写.4. 活动5 在△ABC中,若∠C=90°,你能求出∠A,∠B的度数吗?为什么?你能求出∠A+∠B的度数吗?你能得出什么结论?学生先独立解决,再合作交流,最后教师点评.明晰:直角三角形的两个锐角互余.提示:直角三角形可以用符号“Rt△”表示,直角三角形ABC可以写成Rt△ABC.5. 活动6 如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,你能得出什么结论?这个结论成立吗?如何验证你的想法?学生先独立解决,再合作交流,最后教师点评.明晰:有两个角互余的三角形是直角三角形.三、自我检测1.在△ABC中,若∠A=40°,∠A=2∠B,则∠C=.2.如右图,在△ABC中∠C=60°,∠B=50°,AD是∠BAC的平分线,则∠BAD=.答案1.120°2.35°四、课堂小结1.探索并证明三角形内角和定理.2.能运用三角形内角和定理解决简单问题.3.掌握直角三角形的两个锐角互余,并能简单应用.五、布置作业习题11.2第1、3、4题.第2课时教学内容三角形的外角.教学过程一、新课导入复习上节内容,导入新课的教学.二、自主学习1.活动1阅读教材的内容,找出上题的答案.明晰:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.2.活动2 画出△ABC的所有外角,并找出外角出现的规律.学生独立画图后,小组合作交流,优秀小组代表发言.提示:三角形的外角有6个,每个顶点处有2个外角,但它们是对顶角.3.活动3 找出右图中∠ACD与△ABC的内角有什么关系?学生独立思考后,小组合作交流,优秀小组代表发言.明晰:三角形的一个外角等于不相邻两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角.4.活动4 你能用学过的定理说明这些定理的成立吗?学生独立思考后,小组合作交流.优秀小组代表发言,师生完成规范步骤的书写.三、自我检测1.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ).A .直角三角形B .锐角三角形C .钝角三角形D .无法确定 2.如下图所示,则α= °. 3.如图,∠A =55°,∠B =30°,∠C =35°,求∠CDB 的度数.答案 1.C 2.114° 3.120° 四、课堂小结1.了解三角形的外角的两条性质 2.利用学过的定理论证这些性质3.能利用三角形的外角性质解决实际问题 五、布置作业 习题11.2 第6、8题.5(第2题)23α ACDB (第3题)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲与三角形有关的角(11.2)一、知识重点1.三角形内角和定理(1)定理:三角形三个内角的和等于180°.(2)证明方法:证法多样,主要是运用平行线知识把三个角转移成一个平角,从而得到内角和是180°.如图所示,过C作CM∥AB,将求∠A+∠B+∠ACB转化为求∠1+∠2+∠ACB,或过A点作DE∥BC,把求∠BAC+∠B+∠C转化为求∠BAC+∠DAB+∠EAC.(3)理解与延伸:因为三角形内角和为180°,所以延伸出三角形中很多的角的特定关系如:①一个三角形中最多只有一个钝角或直角;②一个三角形中最少有一个角不小于60°;③直角三角形两锐角互余;④等边三角形每个角都是60°等.(4)作用:已知两角求第三角或已知三角关系求角的度数.谈重点三角形内角和定理的理解三角形内角和定理是最重要的定理之一,是求角的度数问题中最基础的定理,应用非常广泛.【例1】填空:(1)在△AB C中,若∠A=80°,∠C=20°,则∠B=__________°;(2)若∠A=80°,∠B=∠C,则∠C=__________°;(3)已知△ABC的三个内角的度数之比∠A∶∠B∶∠C=2∶3∶5,则∠B=__________°,∠C=__________°.解析:(1)三角形内角和为180°,已知两角求第三角;(2)可设∠C=x°,那么x+x+80=180,求出x=50.所以∠C=50°;(3)设每一份为x,得2x+3x+5x=180,求得x=18,所以∠B=54°,∠C=90°.答案:(1)80(2)50(3)54902.直角三角形的性质与判定(1)直角三角形的性质:直角三角形的两个锐角互余.如图所示,在Rt△ABC中,如果∠C=90°,那么∠A+∠B=90°.【例2-1】将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是().A .43°B .47°C .30°D .60°解析:如图所示,由平行线的性质可知,∠CEF =∠α=43°,所以∠BDC =∠CEF =43°,∠β=∠DBC ,在Rt △DBC 中,∠DBC +∠BDC =90°,所以∠β+43°=90°,所以∠β=90°-43°=47°.答案:B(2)直角三角形的判定:有两个角互余的三角形是直角三角形.如图所示,在△ABC 中,如果∠A+∠B=90°,那么∠C=90°,即△ABC 是直角三角形.提示:由三角形的内角和定理可知,三角形的三个内角之和为180°,如果有两个角的和为90°,那么第三个角自然是直角.由直角三角形定义可知,该三角形为直角三角形.【例2-2】 如图所示,AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,∠BEF 的平分线与∠DFE 的平分线相交于点P ,求证:△EPF 是直角三角形.证明:∵AB ∥CD ,∴∠BEF +∠DFE =180°.∵EP ,FP 分别平分∠BEF ,∠DFE ,∴∠PEF =12∠BEF ,∠PFE =12∠DFE , ∴∠PEF +∠PFE =12(∠BEF +∠DF E )=12×180°=90°,∴△EPF 是直角三角形. 3.三角形的外角(1)定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.如图,∠ACD 就是△ABC 其中的一个外角.(2)特点:①三角形的一个外角和与它同顶点的内角互为邻补角,这是内、外角联系的纽带.②一个三角形有6个外角,其中两两互为对顶角,如图所示.破疑点三角形外角的理解外角是相对于内角而言的,也是三角形中重要的角,一个角对一个三角形来说是外角,而对于另一个三角形来说可能是内角;三角形的角是指的三角形的内角,这点要注意.【例3】在△ABC中,∠A等于和它相邻的外角的四分之一,这个外角等于∠B的两倍,那么∠A=__________,∠B=__________,∠C=__________.解析:∠A和与它相邻的外角互为邻补角,∠A又等于和它相邻的外角的四分之一,所以∠A=36°,∠A的外角为144°,所以∠B=72°,根据三角形内角和为180°,可以求得∠C =72°.答案:36°72°72°4.三角形外角性质(1)性质:三角形的外角等于与它不相邻的两个内角的和.如图所示:∠1=∠B+∠C(或∠B=∠1-∠C,∠C=∠1-∠B).注意:三角形的外角和不是所有外角的和,是每个顶点处取一个外角,是一半数目外角的和.(2)作用:①求角的度数,在外角、不相邻的两内角中知道两角能求第三角,也能求出相邻内角的度数;②证明角相等,一般是把外角作为中间关系式证明角相等.析规律三角形外角的性质的理解①三角形的一个外角等于和它不相邻的两内角和,是由三角形内角和是180°和邻补角关系推导出来的,是它们应用的延伸,所以用这个性质能得出的结论,用三角形内角和也能推出,但走了弯路.②因为三角形外角是通过图表现出来的,具有隐蔽性,所以应用时要注意观察图形.【例4】如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=__________.解析:由三角形外角性质定理可知,∠1=90°+∠AED,∠2=90°+∠ADE,所以∠1+∠2=90°+∠AED+90°+∠ADE.因为90°+∠AED+∠ADE=180°,所以∠1+∠2=180°+90°=270°.答案:270°5.三角形外角和(1)定义(规定):如图所示,在每一个顶点上取一个外角,如∠1,∠2,∠3,它们的和叫做三角形的外角和.(2)三角形外角和定理:三角形的外角和等于360°.注意:三角形的外角和不是所有外角的和,是每个顶点处取一个外角,是一半数目外角的和.【例5】如图所示.用两种方法说明∠1+∠2+∠3=360°.分析:方法一:根据同顶点的外角与内角互为邻补角和三角形内角和定理证明;方法二:根据一个外角等于和它不相邻的两个内角的和及三角形内角和定理证明.解:方法一:因为∠1+∠BAC=180°,∠2+∠ABC=180°,∠3+∠ACB=180°,所以∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=540°.又∠BAC+∠ABC+∠ACB=180°,所以∠1+∠2+∠3+180°=540°.所以∠1+∠2+∠3=360°.方法二:因为∠1=∠ABC+∠ACB,∠2=∠BAC+∠ACB,∠3=∠ABC+∠BAC,所以∠1+∠2+∠3=∠ABC+∠ACB+∠BAC+∠ACB+∠ABC+∠BAC=2(∠ABC +∠ACB+∠BAC)=2×180°=360°.点评:同一顶点上的内、外角互为邻补角是内、外角关系转换的最基础的依据.6.三角形内角和定理应用三角形内角和定理是三角形中最重要的定理之一,是三角形中关于角度计算的基础,也是其他多边形求角度数问题必备的基础知识,目前它的应用方式主要表现在以下几个方面:(1)已知两角求第三角这是内角和定理最简单、直接的应用,一般是直接或间接给出三个内角中的两角,求第三角,比较简单,直接用180°减去两角度数得出,往往与考查角的单位换算相联系.(2)已知三角的比例关系求各角这类题目一般给出三个角的比例关系,通过设未知数列方程的方法求解,一般是设每一份为x度,用含未知数的式子分别表示出每一个角的度数,根据它们的和是180°列方程求解,然后再求出每一个角的度数.有时是通过求角的度数判断三角形的形状,但熟练后从比例关系中可以直接确定三角形的形状.(3)已知三角之间相互关系求未知角这类题目一般是已知各角之间的和、差、倍、分等的数量关系,通过等式变形,用一共同的角表示其他两角,然后根据内角和是180°列出等式,求出其中一角,然后再根据它们之间的数量关系分别求出另两角,有时也可以列方程(组)求角的度数.解技巧利用三角形内角和求三角形的内角运用三角形内角和定理求角的度数题目形式多样,方法也不同,要根据实际灵活运用.7.三角形外角性质的应用外角性质应用:三角形外角性质是三角形角度计算中的重要定理,也是求角度运算中常用的定理.如图所示,∠1是△ABC的一个外角,在∠1,∠B,∠C三个角中,知道任意两个角就可以求出第三个角.①∠1=∠B+∠C;②∠B=∠1-∠C;③∠C=∠1-∠B.破疑点利用三角形外角的性质求一个角的方法因三角形外角的性质是由三角形内角和与邻补角定义推出的,所以用外角性质能进行的运算,用三角形内角和也能进行运算,但有外角时,应用外角性质更简便,所以要改变原来习惯用三角形内角和定理的思维定式,学会运用外角性质定理解决问题.8.三角形内角和定理、外角性质、平行线性质综合运用三角形内角和定理、外角性质定理都反映了角之间的数量关系,在求角度数问题中占有重要地位.同样平行线中也蕴含了大量的角之间的关系(两直线平行,内错角相等、同位角相等、同旁内角互补),因此它们常常结合在一起,综合应用,通过角的等量转化,以求角的度数或证明角相等.解技巧三角形内角和、外角性质的综合运用因为三角形的内角、外角以及形成的邻补角、对顶角等都是通过图形反映出来的,在已知中不提及,因此运用时要注意观察图形,善于发现各角之间的位置关系,进而确定它们的大小关系.【例6-1】在△ABC中,∠A=80°,∠B=60°,则∠C=__________°.解析:根据三角形内角和是180°,直接减去∠A,∠B的度数即可得出∠C的度数.答案:40【例6-2】已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=__________,∠C =__________.解析:由∠B-∠C=40°得∠B=40°+∠C.根据三角形内角和是180°,列出等式∠A+∠B+∠C=∠A+40°+∠C+∠C=180°,把∠A=40°代入,求得∠C=50°,进而求得∠B =90°.答案:90°50°【例6-3】在△ABC中,∠A∶∠B∶∠C=5∶3∶2,那么△ABC是().A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形解析:根据比例关系和三角形内角和,设每一份为x °,那么∠A=5x°,∠B=3x°,∠C =2x°,所以5x+3x+2x=180,解得x=18,直接得出∠A=90°,所以△ABC为直角三角形.熟练后大家可以根据∠A所占的比例是整个比例中的一半,直接得出∠A=90°,所以△ABC是直角三角形.答案:B【例6-4】锐角三角形的三个内角是∠A,∠B,∠C.如果∠α=∠A+∠B,∠β=∠B +∠C,∠γ=∠C+∠A,那么∠α,∠β,∠γ这三个角中().A.没有锐角B.有1个锐角C.有2个锐角D.有3个锐角解析:因为三角形为锐角三角形,所以三角形中不存在钝角和直角.根据三角形内角和是180°可知,180°减任何一个角都大于90°,因此任意两个角的和都是钝角,因为∠α,∠β,∠γ都等于三角形两内角的和,所以它们都是钝角,只有A正确,故选A.答案:A【例7】填空:(1)如图(1),P为△ABC中BC边的延长线上一点,∠A=50°,∠B=70°,则∠ACP=________°.(2)如图(2)所示,已知∠ABE=142°,∠C=72°,则∠A=__________°,∠ABC=__________°.(3)如图(3),∠3=120°,则∠1-∠2=________°.解析:(1)由三角形外角性质可知∠ACP=∠A+∠B=50°+70°=120°.(2)由三角形外角性质可知∠A=∠ABE-∠C=142°-72°=70°;∠ABC与∠ABE互补,所以∠ABC=38°.(3)观察图形,根据三角形外角性质可知,∠1是三角形外角,∠1-∠2=∠4,∠4与∠3互为邻补角,所以∠4=180°-∠3=180°-120°=60°,即∠1-∠2=60°.答案:(1)120(2)7038(3)60【例8-1】如图(1),将一等边三角形剪去一个角后,∠1+∠2等于().A.120°B.240°C.300°D.360°解析:如图(2),由三角形外角性质定理可知,∠1=∠3+∠5,∠2=∠3+∠4,所以∠1+∠2=∠3+∠5+∠3+∠4.因为三角形为等边三角形,所以∠3=60°,由三角形内角和定理可知∠3+∠4+∠5=180°,所以∠1+∠2=60°+180°=240°,故选B.答案:B【例8-2】如图,a∥b,则下列式子中值为180°的是().A.∠α+∠β-∠γB.∠α+∠β+∠γC.∠β+∠γ-∠αD.∠α-∠β+∠γ9.运用三角形内角和定理判断三角形形状判断三角形形状是三角形问题中经常遇到的题目,而判定三角形形状方法多样,其中运用三角形内角和定理求角,进而判断三角形形状是最常用的方法.因为三角形按角分类可以分为三类:钝角三角形、锐角三角形、直角三角形,此外根据角的度数还能判定等腰三角形、等边三角形,因此根据三角形内角和定理求出三角形某些角的度数,不仅可以按角分类判断三角形的形状,还可以按边分类判断三角形的形状,进而了解边的大小关系.解技巧利用三角形内角和确定三角形的形状运用三角形内角和定理求角判断三角形形状问题比求角度问题多一步判断,但不同点是:判断形状不是求出所有角,而是根据所给三角形各内角关系,求某些关键的角,一般是最大角,然后进行判断.解析:如图,因为a ∥b ,所以∠2=∠α,∠1=∠β-∠γ.由图可知∠1+∠2=180°,得∠α+∠β-∠γ=180°,所以A 正确,故选A.答案:A【例9-1】 一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( ).A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形解析:设三个内角度数分别为2k °,3k °,7k °,由三角形内角和定理,得2k +3k +7k =180,解得k =15,所以2k =30,3k =45,7k =105.所以这个三角形是钝角三角形,故选D.答案:D【例9-2】 在△ABC 中,若∠A =2∠B =3∠C ,试判断这个三角形的形状.分析:根据∠A =2∠B =3∠C ,可设∠A =x °,那么∠B =12x °,∠C =13x °,根据三角形内角和是180°列方程求出x ,再求出最大角的大小,即可判断出三角形的形状.解:设∠A =x °,则∠B =12x °,∠C =13x °,于是有x +12x +13x =180,解得x ≈98.2,即最大角∠A ≈98.2°.所以可知△ABC 是钝角三角形.10.角平分线的夹角与三角形内角关系的探究根据三角形的内角和,三角形外角与内角的关系及角平分线的意义,可以探究有关角平分线的夹角问题.(1)三角形的两内角平分线的夹角与内角的关系如图,在△ABC 中,∠ABC 的平分线与∠ACB 的平分线交于点O ,求∠BOC 与∠A 之间的关系.结论:三角形两内角的平分线所夹的钝角等于90°加上第三角的一半,即∠BOC =90°+12∠A . (2)三角形两外角的平分线的夹角与内角的关系如图,在△ABC 中,BP ,CP 分别是△ABC 的外角∠DBC 和∠ECB 的平分线,试探究∠BPC 与∠A 的关系.结论:三角形的两个外角的平分线所夹的锐角等于90°减去第三个角的一半,即∠BPC=90°-12∠A . (3)一个内角平分线与一个外角平分线的夹角与内角的关系如图,在△ABC 中,CE 平分∠ACB ,BE 是△ABC 的外角∠ABD 的平分线,试探究∠BEC 与∠A 的关系.结论:三角形的一个内角平分线与外角平分线相交成的锐角等于第三个内角的一半,即∠BEC =12∠A . 【例10-1】 如图,已知△ABC ,∠ABC 的平分线与∠ACB 的平分线交于点O ,求∠BOC 与∠A 之间的关系.分析:根据角平分线意义和三角形内角和定理,采用整体代入方法,由∠BOC =180°-(∠OBC +∠OCB ),经过代换得,∠BOC =180°-12∠ABC -12∠ACB =180°-12(∠ABC +∠ACB )=180°-12(180°-∠A ),化简得出结论. 解:因为BO ,CO 分别是∠ABC ,∠ACB 的平分线,所以∠OBC =12∠ABC ,∠OCB =12∠ACB . 因为∠BOC =180°-(∠OBC +∠OCB ),所以∠BOC =180°-12∠ABC -12∠ACB =180°-12(∠ABC +∠ACB ) =180°-12(180°-∠A )=90°+12∠A . 【例10-2】 如图,BO ,CO 分别是∠ABC ,∠ACB 的两条平分线,∠A =100°,则∠BOC 的度数是( ).A .80°B .90°C .120°D .140°解析:根据以上结论可以直接得出∠BOC =90°+12∠A =90°+12×100°=140°,故选D. 答案:D【例10-3】 如图所示,∠ABC 的平分线和△ABC 的外角∠ACE 的平分线交于点D ,∠D =30°,∠A 的度数是__________;当∠D =__________时,∠A 的度数是90°.解析:(1)题目符合“一个内角平分线与一个外角平分线的夹角与内角的关系”,所以∠D =12∠A ,因此∠A =2∠D =2×30°=60°; (2)同样当∠A =90°时,∠D =12∠A ,所以∠D 应为45°. 答案:60° 45°11.与三角形有关的角的问题的一题多解由于用三角形外角性质得到的结论都能用三角形内角和定理和邻补角定义推出,以及外角的多样性和求角度的方法多样性,因此这部分内容中的题目解法多样,很多题目解法都不唯一,例如:如图(1)是由平面上五个点A,B,C,D,E连接而成,求∠A+∠B+∠C+∠D +∠E的度数是多少?由于每个角的度数都不知道,所以需要将五个角转化到同一个三角形中解决,解决此问题有多种方法,①如图(2),连接BC,根据三角形内角和定理和对顶角相等,可将∠A+∠B+∠C+∠D+∠E转化到△ABC中求解;②如图(3),延长BD,交AC于F,根据三角形的一个外角等于和它不相邻的两个内角的和,可将∠A+∠B+∠C+∠D+∠E转化到△COF中求解;③如图(4),也可以延长CE交AB于G,运用三角形的一个外角等于和它不相邻的两内角和,将∠A+∠B+∠C+∠D+∠E转化到△BOG中求解;④向两方延长DE 也能构造出三角形求解.【例11】如图(1)所示是小亮的爸爸带回家的一种零件示意图,它要求∠BDC=140°才合格,小明通过测量得∠A=90°,∠B=19°,∠C=40°后就下结论说此零件不合格,于是爸爸让小亮解释这是为什么呢?小亮很轻松地说出了原因,你能解释吗?分析:是否合格只要求出∠BDC的度数,等于140°合格,不等于140°就不合格.根据所给条件∠A=90°,∠B=19°,∠C=40°,所以必须把∠BDC与已知角联系起来.方法一:如图(2),连接AD并延长,根据三角形外角性质经过转化即可得到∠BDC=∠A +∠B+∠C;方法二:如图(3),连接BC,则∠BDC=180°-(∠1+∠2),而∠1+∠2=180°-(∠3+∠4+∠A),代入求出∠BDC;方法三:如图(4),延长CD交AB于E,则∠BDC=∠1+∠B,而∠1=∠A+∠C,故∠BDC=∠A+∠B+∠C.解:解法不唯一,以其中两种解法为例:方法一:如图(2),连接AD并延长,则∠1=∠3+∠C,∠2=∠4+∠B,所以∠BDC=∠1+∠2=∠3+∠C+∠4+∠B=(∠3+∠4)+∠B+∠C=90°+19°+40°=149°,所以∠BDC≠140°,故此零件不合格.方法二:如图(4),延长CD 交AB 于E ,因为∠BDC =∠1+∠B ,又∠1=∠A +∠C ,所以∠BDC =∠A +∠B +∠C =90°+19°+40°=149°.所以∠BDC ≠140°,故此零件不合格.二、综合练习一、选择题1.三角形的三个外角之比为2:3:4,则与之相应的三个内角之比为( )A.2:3:4 B.4:3:2 C.5:3:1 D.1:3:52.如图4,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )A.两点之间直线段最短 B.矩形的稳定性 C.矩形四个角都是直角 D.三角形的稳定性3.如图5,1∠,2∠,3∠,4∠恒满足的关系式是( )A.1234+=+∠∠∠∠ B.1243+=-∠∠∠∠C.1423+=+∠∠∠∠ D.1423+=-∠∠∠∠4.如图6,123456+++++∠∠∠∠∠∠等于( )5.如图7,在ABC △中,D 是AB 上的一点,E 是AC 上一点,BE CD ,相交于F ,70A =∠,20ACD =∠,28ABE =∠,则CFE ∠的度数为( )A.62 B.68 C.78 D.906.如图2,以BC 为公共边的三角形的个数是( )A.2 B.3 C.4 D.57.若三条线段中3a =,5b =,c 为奇数,那么由a b c ,,为边组成的三角形共有( ) A.1个 B.3个 C.无数多个 D.无法确定 8.如果线段a b c ,,能组成三角形,那么它们的长度比可能是( )A.1:2:4 B.1:3:4 C.3:4:7 D.2:3:49.不一定能构成三角形的一组线段的长度为( )A.3,7,5 B.3x ,4x ,()50x x >C.5,5,()010a a << D.2a ,2b , 10.已知有长为1,2,3的线段若干条,任取其中3样构造三角形,则最多能构成形状或大小不同的三角形的个数是( )A.5 B.7 C.8 D.10二、填空题11.如图1,ABC ∠的平分线交ACB ∠的平分线于l ,若60A =∠,则BIC =∠_____.12.一个三角形中最多有_____个内角是钝角,最多可有_____个角是锐角.13.三角形两个外角的和等于第三个内角的4倍,则第三个内角等于_____.14.如图2,A B C D E ++++=∠∠∠∠∠_____.15.如图3,1234+++=∠∠∠∠_____.16.两根木棒的长分别为7cm 和10cm .要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x (cm )的范围是______.17.如图1,1234+++=∠∠∠∠______.18.ABC △中,6a =,8b =,则周长P 的取值范围是______.19.a b c ,,是ABC △中A ∠,B ∠,C ∠的对边,若4a λ=,3b λ=,14c =,则λ的取值范围是______.20.若a b c ,,为ABC △的三边,则a b c a b c---+______0(填“>,=,<”).三、解答题21. 已知,如图8,点D 是ABC △中AC 边上的一点,点E 是BC 边延长线上一点,说明:ADB CDE >∠∠.22. 已知,如图9,ABC △中,ABC ∠的平分线与ACE ∠的平分线交于D 点,若80A =∠,求D ∠的度数.23. 如图10,已知折线ABCDE ,且360B C D ++=∠∠∠.说明:AB CD ∥.24.已知:如图3,AB CD ∥,45B =∠,78BED =∠,求D ∠的度数.25.已知,如图4,AB CD ∥,EH AB ⊥,垂足为H ,若150=∠,则E ∠为多少度?26.已知,如图5,在ABC △中,O 是高AD 和BE 的交点,观察图形,试猜想C ∠和DOE ∠之间具有怎样的数量关系,并论证你的猜想.。

相关文档
最新文档