13.1.1 轴对称(2)

合集下载

轴对称练习题(含答案)

轴对称练习题(含答案)

轴对称练习题13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25° B.45° C.30° D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.轴对称13.1.1轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB与A′B′是对应线段,∴AB=A′B′=6cm.又∵AC与A′C′是对应线段,∴A′C′=AC=8cm.(2)∵∠A′与∠A是对应角,∴∠A′=∠A=90°,∴S△A′B′C′=A′B′·A′C′÷2=24(cm2).13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD.∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm.∵AC=4cm,∴BC=7cm.第2课时线段垂直平分线的有关作图1.D2.解:如图所示.3.解:(1)图略.(2)中点垂直平分线4.解:连接AB,作线段AB的垂直平分线MN交直线l于点P,则点P即为所求位置.图略.13.2画轴对称图形第1课时画轴对称图形1.(1)M,P,N(2)G,H,I GM DM HP EP IN FN(3)GH HI IG2.解:如图所示.3.解:如图所示.第2课时用坐标表示轴对称1.C 2.C 3.A 4.B 5.(-5,-3) 6.217.解:(1)如图.(2)A1(1,5),B1(1,0),C1(4,3).(3)7.5。

人教版初中数学八年级上册 13.1.1《轴对称》 课件 (共61张PPT)

人教版初中数学八年级上册 13.1.1《轴对称》 课件 (共61张PPT)

学习反馈一
1、如图所示的图形是轴对称图 形吗?如果是,指出它的对称轴。
有的轴对称图形不止一条对称轴哟! 以后找对称轴可得仔细想想呀!
学习反馈一
2、如图所示的每幅图形中的两 个图案是轴对称的吗?如果是,指出 它们的对称轴。
问题2
成轴对称的两个图形全等吗?如果把一个 轴对称图形沿对称轴分成两个图形,那么这两 个图形全等吗?这两个图形成轴对称吗?
51
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
52
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
53
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
12
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
13
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
14
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
42
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
43
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
45
结束练习

2022年人教初中数学八上 13.1.1 轴对称课件 【通用,最新经典教案】

2022年人教初中数学八上 13.1.1 轴对称课件 【通用,最新经典教案】
第十三章 轴对称
13.1 轴对称
13.1.1 轴对称
学前温故
新课早知
全等形是指能够完全重合的两个图形,即 形状 、大小 完全相同的 两个图形.
学前温故
新课早知
1.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这
个图形叫做 轴对称图形 ,这条直线就是它的 对称轴 .这时,我们也说
这个图形关于这条直线(成轴) 对称 .
关闭
A
答案
1
2
3
4
1.下列四个图形中,不是轴对称图形的是( ).
关闭
D
答案
1
2
3
4
2.如下书写的四个汉字,其中为轴对称图形的是( ).
关闭
B
答案
1
2
3
4
3.如图所示的四个图案中,是轴对称图形的个数是( ).
A.1
B.2
C.3
D.4
关闭

答案
4.如图所示,△ABC 与△A'B'C'关于直线 l 对1 称,2且∠3A=748°,∠C'=48°,则
关闭
C
解析
答案
2.三角形的三条重要线段的简单应用
一二
【例 2】 如图所示,已知 D,E 分别是△ABC 的边 BC 和边 AC 的中点, 连接 DE,AD.若 S△ABC=24 cm2,求△DEC 的面积.
分析:对于△ABD 与△ADC,由于 AD 是△ABC 的中线,因此这两个三角
形的底相等,高是公共的,其面积也相等,即 S△ADC=S△ABD=12S△ABC.同理
1.认识三角形的三条重要线段
一二
【例 1】 如图所示,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是

13.1.1轴对称

13.1.1轴对称
4.动手操作:取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意
刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?
【教师活动】
归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.
【学生活动】
5.练习:你能找出它们的对称轴吗?分小组讨论.
思考:大家想一想,你发现了什么?
一、教学内容分析
本节课从轴对称的定义出发,利用两个图形沿着某一条直线折叠后能完全重合这一特点,推出了两个图形成轴对称的一条基本性质,并要求学生掌握这一性质。
二、教学目标
1.知识与技能
(1)了解两个图形成轴对称性的性质,了解轴对称图形的性质.
(2)探究线段垂直平分线的性质.
2.过程与方法
(1)在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;
3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!
二、导入新课
【学生活动】
1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.
强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.
练习:从学生生活周围的事物中来找一些具有对称特征的例子.
小结得出:.像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
三、随堂练习
1.课本60页练习1、2。
四、课时小结
这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.

新人教版第十三章轴对称全章教案

新人教版第十三章轴对称全章教案

§13.1 轴对称(1)教案目标:1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.3.了解线段垂直平分线的概念.教案重、难点:轴对称的概念和性质教案过程:一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、课本精讲:问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?观察下面每对图形(如图),你能类比前面的内容概括出它们的2问题共同特征吗?共同特征:每一对图形沿着虚1 / 19线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.CABABCMN ABC ′′,′关于直线,对称,点问题3 如图,△′和△′′ MN AABBCCABC有什么关系?′,′与直线分别是点,的对称点,线段,′,教师:你能说明其中的道理吗?MN CABABC 对称,那么,直′和△′关于直线上面的问题说明“如果△′BBMN AAAAMN BBCC′和线还平分线段垂直线段′,′,并且直线′和′,CC′”.如果将其中的“三角形”改为“四边形”“五边形”…其他条件不变,上述结论还成立吗?CBMN ACABC AB′,′问题3 如图,△和△,′′′′关于直线对称,点 CCBBMN AABAC有什么关系?′与直线′,′,的对称点,线段分别是点,,经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.教师:你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.即对称点所连线段被对称轴垂直平分;对称轴垂直平分对称点2 / 19所连线段.问题4 下图是一个轴对称图形,你能发现什么结论?能说明理由吗?lBBl AA平分结论:直线′,垂直线段′,直线BBAAAABBl ′的垂直′,′(或直线′,是线段线段平分线).教师:你能用数学语言概括前面的结论吗?轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.三、巩固提高:2 1、教科书60页练习四、课堂小结: 1)本节课学习了哪些主要内容?( 2)轴对称图形和两个图形成轴对称的区别与联系是什么?()成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎3(么探究这些性质的?五、课后作业: 5题4、3、、213.1教科书习题第1、课后反思:)13.1 轴对称(2 教案目标:1.理解线段垂直平分线的性质和判定..能运用线段垂直平分线的性质和判定解决实际问题.2.会用尺规经过已知直线外一点作这条直线的垂3 线,了解作图的道理.教案重、难点:线段垂直平分线的性质.3 / 19教案过程:一、问题导入:探索并证明线段垂直平分线的性质l ABPPPl 上的点,请猜想点,…是,3如图,直线2垂直平分线段,,1PPPA B 的距离之间的数量关系.与点,…到点1,2, 3教师:你能用不同的方法验证这一结论吗?二、课本精讲:l AB 两个端点的距离相上任取一点,那么这一点与线段请在图中的直线等吗?线段垂直平分线上的点与这条线段两个端点的距离相等.证明:“线段垂直平分线上的点到线段两端点的距离相等.”lABCAC CBP l 上.,点,垂足为, =已知:如图,直线在⊥PBPA =.求证:用符号语言表示为:AB l CA CB=⊥,,∵PBPA =∴线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.AB PBP PA 的垂直平分线上,那么点是否在线段教师:反过来,如果= 呢?AB P 在线段的垂直平分线上.点PBPA .已知:如图,=AB P 求证:点的垂直平分线上.在线段用数学符号表示为:PBPA =,∵AB P ∴点的垂直平分线上.在与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.AB 能找到多少个两端点的距离相等的点吗?教师:你能再找一些到线段AB 到线段两端点距离相等的点?这些点能组成什么几何图形?4 / 19AB l AB 的距离都相等;反过来,与上的点与在线段,的垂直平分线AB ll AB 的距,可以看成与两点的距离相等的点都在直线、上,所以直线离相等的所有点的集合.教师:如何用尺规作图的方法经过直线外一点作已知直线的垂线?三、巩固提高:2. 、页练习1教科书62 四、课堂小结: 1)本节课学习了哪些内容?( 2)线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?( 3)如何判断一条直线是否是线段的垂直平分线?(五、课后作业:题6、9教科书习题13.1第课后反思:3)轴对称(13.1教案目标: 1.能用尺规作线段的垂直平分线..进一步了解作图的一般步骤和作图语言,了解作图的依据.2 .运用尺规作图的方法解决简单的作图问题.3 作线段的垂直平分线.教案重点:教案难点:作线段的垂直平分线.教案过程:一、问题导入:有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、课本精讲:5 / 19作线段的垂直平分线我们已能用尺规完成:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过已知直线外一点作这条直线的垂线.教师:那么利用尺规还能解决什么作图问题呢?A B 关于某条直线成轴对称,如图,点和点1 例你能作出这条直线吗?AB 教师:怎样作线段的垂直平分线呢?作法:如图.ABAB 的为半,为圆心,以大于)分别以点(1D C,两点;径作弧,两弧相交于CD2)作直线.(CD 就是所求作的直线.教师:这种作法的依据是什么?教师:这种作图方法还有哪些作用?确定线段的中点.教师:如果两个图形成轴对称,怎样作出图形的对称轴?如果两个图形成轴对称,其对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴. . 如图中的五角星,请作出它的一条对称轴你能作出这个五角星的其他对称轴吗?它共有几条对称轴?三、巩固提高:3 2、、页练习教科书641 四、课堂小结: 1()本节课学习了哪些内容?6 / 19 (2)作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用?(3)如何用尺规作轴对称图形的对称轴?五、课后作业:教科书习题13.1第10、12题.课后反思:13.2 画轴对称图形(1)教案目标:1.理解图形轴对称变换的性质.2.能按要求画出一个平面图形关于某直线对称的图形.教案重点:画轴对称图形.教案难点:画轴对称图形.教案过程:一、问题导入:在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?二、课本精讲:请动手在一张纸上画一个你喜欢的图形,将这张纸折叠,描图,再打开纸,看看你得到了什么?一个平面图形和与它由一个平面图形得到与它关于一条直线对称的图形.成轴对称的另一个图形之间有什么关系?l 对称的图形,这个图形与原由一个平面图形可以得到与它关于一条直线图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直l 的对称点;连接任意一对对应点的线段被对称轴垂直平分.线于这条直线对教师:如果有一个图形和一条直线,如何作出这个图形关7 / 19称的图形呢?ABC lABC,画出与△和直线例1 如图,已知△l 对称的图形.关于直线l A 的垂线,垂画法:(1)如图,过点画直线A OAAOOA 关,点足为点,在垂线上截取′就是点′=l 的对称点;于直线l C B的对称点,)同理,分别画点(2关于直线CB′,′;CBAABABCC)连接′′,得到的△′,′′′′,′′即为所求.(3l ABC 教师:如何验证画出的图形与△对称?关于直线已知一个几何图形和一条直线,说一说画一个与该图形关于这条直线对称的图形的一般方法.几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.三、巩固提高:2 、68页练习1教科书四、课堂小结:)本节课学习了哪些内容?(1 )一个平面图形和与它成轴对称的另一个图形之间有什么关系?(2 3)画轴对称图形的一般方法是什么?依据是什么?(五、课后作业:题.第教科书习题13.21课后反思:2)13.2 画轴对称图形(教案目标:y x 轴对称的点的坐标的.理解在平面直角坐标系中,已知点关于1轴或变化规律.8 / 192.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.x 轴或在平面直角坐标系中关于教案重、难点:x y 轴轴对称的点的变化规律和作出与一个图形关于y 或轴对称的图形.教案过程:一、问题导入:如图,如果以天安门为原点,分别以长安街和中y x 轴建立平面直角坐标系,对应于东直门的坐标,你能找到西直轴线为轴和门的位置,说出西直门的坐标吗?二、课本精讲:探究并归纳已知点关于坐标轴对称的点的坐标变化规律y x 轴对称的点的对于平面直角坐标系中任意一点,你能找出其关于轴或坐标吗?它们之间有什么规律?x 轴对称的点,把它们的在平面直角坐标系中,画出下列已知点及其关于坐标填入表格中.x 轴对称的每对对教师:观察下图中关于称点的坐标有怎样的变化规律?x 轴对称的每对对称点的横坐标相关于等,纵坐标互为相反数.y 轴对称的每对对称点的教师:观察关于坐标有怎样的变化规律?y 轴对称的每对对称点的横坐标互为关于相反数,纵坐标相等.教师:请你再找几个点,分别画出它们的对称点,检验一下你发现的规律.x yx轴对称的点的坐标为)关于点(,(_______,);9 / 19xyy 轴对称的点的坐标为(___,____)关于).点(,ABCD AB(-2,-5,1例如图,四边形的四个顶点的坐标分别为),(CDABCD x y 轴对),分别画出与四边形轴和5),关于(-5,41),(-2,称的图形.x y 轴对称的图形的方法和步骤教师:归纳画一个图形关于. 轴或先求出已知图形中一些特殊点(多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.步骤简述为:(1)求特殊点的坐标;(2)描点;(3)连线.三、巩固提高:教科书70页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?x y 轴的对称点的坐标有什轴或(2)在平面直角坐标系中,已知点关于x y 轴对称?轴或么变化规律,如何判断两个点是否关于x y 轴对称的图形的方法和步骤.)说一说画一个图形关于轴或(3五、课后作业:教科书习题13.2第2、4、5题.课后反思:13.3 等腰三角形(1)教案目标:1.探索并证明等腰三角形的两个性质.2.能利用性质证明两个角相等或两条线段相等.3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用.教案重、难点:探索并证明等腰三角形性质.10 / 19教案过程:一、问题导入:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它ABC 有什么特点?展开,得到的△教师:仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?教师:同学们剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?二、课本精讲:教师:在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出等腰三角形的性质吗?等腰三角形的特征:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.教师:利用实验操作的方法,我们发现并概括出等腰三角形的性质1和性质2.对于性质1,你能通过严格的逻辑推理证明这个结论吗?(1)你能根据结论画出图形,写出已知、求证吗?(2)结合所画的图形,你认为证明两个底角相等的思路是什么?(3)如何在一个等腰三角形中构造出两个全等三角形呢?从剪图、折纸的过程中你能获得什么启发?ABC AB ACB = 中,∠=.求证:∠已知:如图,△C. 1你还有其他方法证明性质吗?11 / 19可以作底边的高线或顶角的角平分线.教师:性质2可以分解为三个命题,本节课证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”.教师:在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此,你能发现等腰三角形具有什么特征?等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.三、巩固提高:教科书77页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?五、课后作业:教科书习题13.3第1、2、4、6题.课后反思:13.3 等腰三角形(2)教案目标:1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解等腰三角形的尺规作图.教案重、难点:理解和运用等腰三角形的判定定理教案过程:一、问题导入:问题等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?12 / 19性质定理的条件是:一个三角形中有两条边相等.结论:这两条边所对的角相等.二、课本精讲:思考性质定理证明方法是什么?作顶角的平分线或底边上的高或底边的中线,将一个三角形的问题转化为两个全等三角形来证明两个角相等.问题一个三角形满足什么条件是等腰三角形?思考1 如果一个三角形有两个角相等,那么这两个角所对的边有什么关系?这两个角所对的边相等.思考2 这个命题的题设和结论又分别是什么呢?如何证明这个命题?题设:一个三角形有两个角相等.结论:这两个角所对的边相等.问题类比等腰三角形性质定理的证明方法,你能选择一种来证明这个命题吗?AB CABC B 求证:中,∠. =已知:如图,在△∠ AC.= 教师:你还有其他证明方法吗?BC 上的中线吗?思考能作底边等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).符号语言:CABC B 中,∠,=∠在△∵ACAB =∴.思考与等腰三角形性质进行比较看有什么区别?求证:如果三角形一个外角的平分线平行于三角例1.形的一边,那么这个三角形是等腰三角形BCADCAE ABC ∠已知:∠是△的外角,∠1 =2∥,.13 / 19AB AC.=求证:a h ,求作这个等腰,底边上的高的长为例2 已知等腰三角形底边长为三角形.作法:aAB )作线段;=(1DMNAB AB 相交于点(2)作线段;的垂直平分线,与hDC MNC 3)在=上取一点;,使(ABC BCAC. 4)连接,则△,就是所求作的等腰三角形(三、巩固提高:4 3、1、2、页练习教科书79四、课堂小结: 1)本节课学习了哪些内容?( 2)等腰三角形的判定方法有哪几种?()结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.(3五、课后作业:题.、5教科书习题13.3第2课后反思:3)13.3 等腰三角形(教案目标:.探索等边三角形的性质和判定.1.能运用等边三角形的性质和判定进行计算和证2明.探索等边三角形的性质与判定.教案重、难点:教案过程:一、问题导入:问题满足什么条件的三角形是等边三角形?14 / 19三条边都相等的三角形是等边三角形.二、课本精讲:请分别画出一个等腰三角形和等边三角形,结合你画的图形说出它们有什么区别和联系?联系:等边三角形是特殊的等腰三角形;. 区别:等边三角形有三条相等的边,而等腰三角形只有两条等腰三角形有哪些特殊的性质呢?问题从边的角度:两腰相等;从角的角度:等边对等角;从对称性的角度:轴对称图形、三线合一.将等腰三角形的性质用于等边三角形,你能得到什么结论?思考结合等腰三角形的性质,你能填出等边三角形对应的结论吗?轴对称图形角边图形是(三线合一)两边相等两底角相等等腰三角形一条对称轴(等边对等角)(定义)三边相等等边三角形(定义)对“等边三角形的三个内角都相等,并且每一个角都等于60°”这一结论进行证明.ABC A B C=60°.∠ =已知:△是等边三角形求证:∠∠=ABC 是等边三角形,证明:∵△BC ACBC AB.,∴ ==A BAC .∠∠,∠ =∴∠=A BC . =∠∴∠=∠A BC=180°,+∠∵∠+∠A =60°.∴∠15 / 19A BC =60°.∠ =∴∠∠=等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.符号语言:ABC 是等边三角形,∵△A BC =60° =∴∠∠=∠思考利用所学知识判断,等边三角形是轴对称图形吗?若是轴对称图形,请画出它的对称轴.问题等边三角形除了用定义(即用边)来判定以外,能否利用角来判定呢?思考1 一个三角形的三个内角满足什么条件是等边三角形?思考2 一个等腰三角形满足什么条件是等边三角形?三个角都相等的三角形或者一个角为60°的等腰三角形.请你将得到的这两个命题进行证明.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.符号语言:ABC 中,在△A B C , =∵∠∠=∠ABC 是等边三角形.∴△等边三角形的判定定理2:有一个角为60°的等腰三角形是等边三角形.符号语言:ABC 中,在△BC AC A =60°,∵ =,∠ABC 是等边三角形.∴△判定等边三角形的方法:从边的角度:等边三角形的定义;从角的角度:等边三角形的两条判定定理.16 / 19等边三角形的判定定理1:三个角都相等的三角形是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形.BCABC DE, 是等边三角形,∥例1 如图,△ADE EDABAC 是等边三分别交,,.求证:△于点.角形三、巩固提高:2 、80页练习1教科书四、课堂小结:)本节课学习了等边三角形的性质和判定;(1共有几种判定等 2)等边三角形与等腰三角形相比有哪些特殊的性质?(边三角形的方法?)结合本节课的学习,谈谈研究三角形的方法.(3五、课后作业: 14题.13.3第12、教科书习题课后反思:)13.3 等腰三角形(4 教案目标:°角的直角三角形的性质.1.探索含30°角的直角三角形的性质,并会应用它进行有关的证明和计302.理解含算.. 30°角的直角三角形的性质教案重、难点:探索并理解含教案过程:一、问题导入:A ABC 请你在括号内补)(°问题已知△中,∠=60, .17 / 19ABC 能成为等边三角充一个条件,使△形.二、课本精讲:思考1 等边三角形是轴对称图形,若沿着其中一条对称轴折叠,能产生什么特殊图形?思考2 这个特殊的直角三角形相比一般的直角三角形有什么不同之处,它有什么特殊性质?活动用两个全等的含30°角的直角三角尺,你能拼出怎样的三角形?能拼出等边三角形吗?请说说你的理由.BC ABC 与斜30°角的直角△的直角边问题你能借助这个图形,找到含AB 边之间有什么数量关系吗?°,那么它所对的直角边等30猜想在直角三角形中,如果一个锐角等于.于斜边的一半请说一说你猜想的命题中,条件和结论分别是什么?并结合图形,问题.用符号语言表述出来这个命题是真命题吗?请进行证明.思考A ABC C °,∠=90已知:如图,在Rt△中,∠ABBC = 求证:.. =30°°,那在直角三角形中,如果一个锐角等于30.么它所对的直角边等于斜边的一半符号语言:18 / 19ABC 中, Rt△∵在C A =30°,°,∠∠ =90BC AB .= ∴D 是斜如图是屋架设计图的一部分,点例AB ACDE ABBC,梁、的中点,立柱垂直于横梁DE BCA 、=7.4 cm,∠=30°,立柱要多长?三、巩固提高: 81页练习教科书四、课堂小结:)本节课学习了哪些内容?1(哪些问题?需要注 30°角的直角三角形的性质时,能解决2()在应用含意哪些问题?五、课后作业: 15题.第教科书习题13.3 课后反思:19 / 19。

部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件

部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件
正方形ABCD面积的一半,∵正方形ABCD的边长为4cm, ∴S阴影=42÷2=8(cm2).故选B.
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?





方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,C的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!

13.1.1 轴对称


如图,把一张纸对折,剪出一个图案(折
痕处不要完全剪断),再打开这张对折的纸, 就得到了美丽的窗花. 观察得到的窗花,你能 发现它们有什么共同的特点吗?
如果一个平面图形沿一条直线折叠,直 线两旁的部分能够互相重合,这个图形就叫 做轴对称图形,这条直线就是它的对称轴.
这时,我们也说这个图形关于这条直线 (成轴)对称.
轴对称图形的性质: 轴对称图形的对称轴,是任何一对
对应点所连线段的垂直平分线.
例如图中,l 垂直平分AA′,l 垂直平分BB′ l
A
A′
B
B′
练习2 如图所示的每个图形是轴对称图形 吗?如果是,指出它的对称轴.
练习3 如图所示的每幅图形中的两个图 案是轴对称的吗?如果是,试着找出它们的对
称轴,并找出一对对称点.
第十三章 轴对称
13.1 轴对称 13.1.1 轴对称
新课导入
我们生活在一个充满对称的世界中,许多建 筑都具有对称性,艺术作品的创作往往也从对称 角度考虑,自然界的许多动植物也具有对称性, 中国的方块字中有些具有对称性,对称给我们带 来美的感受!而轴对称是对称中尤为重要的一种, 这节课让我们一起走进轴对称的世界吧!
练习1 下列各图,你能找出它们的 对称轴吗?请一一画出:
(1)
(2)
(3)
(4)
(5)
知识点2 垂直平分线 如图,△ABC 和△A′B′C′关于直线PQ 对称,点 A′,B′,C′分别是点A,B,C 的对称点,线段AA′ ,BB′,CC′与直线PQ 有什么关系?
Q
b. 线段AA′、BB′、CC′之间的位置关系
两者的联系:
把成轴对称的两个图形看成一个整体, 它就是一个轴对称图形.把一个轴对称图形 沿对称轴分成两个图形,这两个图形关于这 条轴对称.

人教版八年级数学上册 教案:13.1.1 轴对称2【精品】

13.1 轴对称13.1.1 轴对称教学目标(一)教学知识点1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.(二)能力训练要求1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.2.经历观察、分析的过程,训练学生观察、分析的能力.(三)情感与价值观要求通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.教学重点轴对称图形的概念.教学难点能够识别轴对称图形并找出它的对称轴.教学方法启发诱导法.教具准备师:1.天安门、蝴蝶、窗花、脸谱等图片.2.多媒体课件.3.投影仪.生:剪刀、小刀、硬纸板.教学过程Ⅰ.创设情境,引入新课[师]我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!从这节课开始,我们来学习第十二章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.Ⅱ.导入新课[师]我们先来看几幅图片(出示图片),观察它们都有些什么共同特征.[生甲]这些图形都是对称的.[生乙]这些图形从中间分开后,左右两部分能够完全重合.[师]对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.[生丙]我们的黑板、课桌、椅子等.[生丁]我们的身体,还有飞机、汽车、枫叶等都是对称的.[师]同学们回答得真好,大家举了这么多对称的例子,现在我们来看一下下面的问题,我们来研究一下什么是轴对称图形.(演示多媒体课件)观察如图12.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),•再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图12.1.1中的图形,你能发现它们有什么共同的特点吗?(学生讨论、探究)[生甲]窗花可以沿折痕对折,使折痕两旁的部分完全重合.[生乙]不仅窗花可以沿一条直线对折,使直线两旁重合,上面图12.1.1中的图形也可以沿一条直线对折,使直线两旁的部分重合.[生结论]这些图形沿一条直线折叠,直线两旁的部分能够互相重合.[师]太好了!我们把这样的图形叫做轴对称图形.即(点击课件、屏幕显示):如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)•对称.[师]了解了轴对称图形及其对称轴的概念后,我们来做一做.(屏幕显示)取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.(学生操作、讨论,教师指导)[生]我们经过操作、讨论、交流得知:位于折痕两侧的图案是对称的,它们可以互相重合.[师]很好,由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条,•大家请看屏幕.(点击课件)你能找出它们的对称轴吗?分小组讨论.学生讨论得出结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有无数条对称轴;图(4)有两条对称轴;图(5)有七条对称轴.[师]大家回答得很好,看屏幕.(演示折叠过程)(1) (2) (3) (4) (5)接下来,大家想一想,你发现了什么?(屏幕显示)[生甲]这些图形都是轴对称图形.[生乙]可是轴对称图形指的是一个图形,而这些图形每组都是两个图形,能不能说两个图形成轴对称呢?[师]乙同学的观察能力很强,提的问题非常好.像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.(屏幕显示上图中的两个成轴对称图形的对称点)好,接下来我们做练习来巩固所学内容.Ⅲ.随堂练习(一)下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?(图略)(学生口答)[生甲]图(1)是轴对称图形,它的对称轴是过蝴蝶头和尾的直线.[生乙]图(2)也是轴对称图形.它的对称轴是过第一架飞机头和尾的直线.[生丙]图(3)是轴对称图形.它的对称轴是中间那条竖直的线.[生丁]图(4)不是轴对称图形.图(5)是轴对称图形,它有四条对称轴.[师]大家回答得很好,看来同学们已能判断轴对称图形并找出它的对称轴了.(二)下面给出的每幅图中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对称点.答案:图(1)(3)(4)中的两个图案是轴对称的,图(2)不是.•其对称轴及对称点如图.Ⅳ.课时小结这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.Ⅴ.课后作业课本习题.Ⅵ.活动与探究成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?过程:(学生操作)在硬纸板上画两个成轴对称的图形,再用剪刀将这两个图形剪下来看是否重合.再在硬纸板上画出一个轴对称图形,然后将该图形剪下来,•再沿对称轴剪开,看两部分是否能够完全重合.结论:成轴对称的两个图形全等.如果把一个轴对称图形沿对称轴分成两个图形,这两个图形全等,并且也是成轴对称的.轴对称是说两个图形的位置关系,而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形,都要沿某一条直线折叠后重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,•如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.。

13.1.1轴对称


l垂直平分CC′
猜字游戏
在艺术字中,有些汉字是轴对称的,你能猜一猜 下列是哪些字的一半吗?
挑战哈佛:
• 哈佛大学对录取新生的入学考试 题。请利用轴对称性,在下面这组 图形符号中找出它们所蕴含的内在 规律,然后在横线上的空白处填上 恰当的图形:
小结:
本节课你收获了什么? 还有什么困惑?
挑战哈佛:
线段的垂直平分线

经过线段中点并且垂 直于这条线段的直线, 叫做这条线段的垂直平 分线(中垂线)
轴对称的性质
1、如果两个图形关于某条直线对称,那么对称轴 是任何一对对应点所连线段的垂直平分线 2、如果一 个图形是轴对称图形,那么对称轴是任 何一对对应点所连线段的垂直平分线
l垂直平分AA′
l垂直平分BB′
• 哈佛大学对新生入学考试题。请利用轴对称的 知识,在下面这组图形符号中找出它们所蕴含 的内在规律,然后在横线上的空白处填上恰当 的图形:

作业:
• 课本P64—65 第1、2、3 题。
城关中心校:薛琴
仔细观察,用心体会, 原来生活如此之美!
学习目标
• 1.认识轴对称图形及两个图形 成轴对称的概念,并体会它们 的区别与联系。 • 2.通过独立思考、小组合作探 究,获得轴对称的性质,初步 感知线段垂直平分线的定义。
我参与,我快乐:
• 请你把一张纸对折, 随意剪(或撕)出一个 你喜欢的图片。 •(要求:折痕处不要完 全断开)
要 仔 细 观 察 哦!
要 仔 细 观 察 哦!
探究一:轴对称图形

一个平面图形 如果____________沿某一
条直线折叠,直线两旁的部分 能够________,这个图形就叫 轴对称图形 做____________. 这条直线就 对称轴 是它的__________.

2014年秋人教版八年级数学上13.1轴对称(2)同步习题精讲课件


一、选择题(每小题6分,共24分) 9.如图,在△ABC中,AB=AC=20 cm,DE垂 直平分AB,垂足为E,交AC于点D,若△DBC的周 长为35 cm,则BC的长为( C ) A.5 cm B.10 cm C.15 cm D.17.5 cm
10.如图,直线l与线段AB交于点O,点P在直线l上, 且PA=PB,则下列结论正确的有( ) D
14.(8分)如图,已知E为∠AOB的平分线上一点,EC⊥OA, ED⊥OB,垂足分别为C,D.求证:OE垂直平分CD. 证明:∵E在∠AOB的平分线上,
ED⊥OB于D.EC⊥OA于C,
∴ED=EC 在Rt△EDO和Rt△ECO中ED=EC ,OE=OE ∴Rt△EDO≌Rt△ECO ∴OD=OC ∴O,E都在CD的垂直平分线上, ∴OE垂直平分CD
15.(10分)如图,已知AB比AC长2 cm,BC的垂直
平分线交AB于点D,交BC于点E,△ACD的周长是 14 cm,求AB和AC的长.
解:∵DE垂直平分BC, ∴DB=DC. ∵AC+AD+DC=14 cm, ∴AC+AD+BD=14 cm.
即AC+AB=14 cm.
设AB③∠APO=∠BPO; ④点P在线段AB的垂直平分线上. A.1个 B.2个 C.3个 D.4个
11.如果一个三角形两边的垂直平分线的交点在 第三边上,那么这个三角形是( C ) A.锐角三角形 C.直角三角形 B.钝角三角形 D.不能确定
12.如图,∠AOB内一点P,P1,P2分别是P关于
x y 14 根据题意,得 x y 2.
x 8 解得 y 6.
∴AB长为8 cm,AC长为6 cm.
【综合运用】
16.(10分)如图,已知△ABC的BC边的垂直平分线 DE与∠BAC的平分线交于点E,EF⊥AB的延长线于 点F,EG⊥AC于点G.求证:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ቤተ መጻሕፍቲ ባይዱ
练一练 如图, AA' ι垂直平分 _______ ; ι垂直平分 _______ ; BB' ι垂直平分 _______ 。 CC'
四、归纳小结
垂直 于这条线段的直线, 1、经过线段 中点 ____并且______ 叫做这条线段的垂直平分线. 2、图形轴对称的性质:如果两个图形关于某条直线 对称轴 是任何一对对应点所连线段的 对称,那么________ 垂直平分线. 3、轴对称图形的性质:轴对称图形的对称轴,是任 垂直平分线 何一对对应点所连线段的 _____________. 4、学习反思: _____________________________________
M
A
C
B
N
三、研读课文
轴 对 称 和 知轴 识对 点称 二图 形 的 性 质
1、图形轴对称的性质:如果两个图形关于某条直线 对称,那么 ________ 是任何一对对应点所连线段 对称轴 垂直平分线 . 的 _________ 2、轴对称图形的性质:类似地,轴对称图形的对称 任何一对 对应点所连线段的 __________. 垂直平分线 轴,是_________
• 答:把一个图形沿着 某一条直线折叠 ___________ ,如果它能够与另一个 图形 ____ __________________ , 重合 ,那么就说这两个图形关于这条直线(成轴)对称 对称轴 • 这条直线叫做 __________ ,折叠后重合的点是对应点,叫做 _______ 对称点.
二、学习目标
1
了解线段垂直平分线的定义
2
掌握轴对称图形的性质
三、研读课文
1、观察下图,△ABC和△A′B′C′关于直线MN对称,
线 段 知的 识垂 点直 一平 分 线
点A′,B′,C′分别是点A,B,C的对称点,线段 A A′,B B′,C C′与直线MN有什么关系? =PA′,∠MPA=∠MPA′= 答:AP_ 900 点B与B′,点C与C′也有类 ____, 似情况. 因此,对称轴所在的直线经过对 中点 ,并且 称点所连线段的 ____ 垂直 于这条线段. ____
五、强化训练
1 、 下列平面图形中,不是轴对称图形的是 (A )
2、下列说法错误的是( C ) A.关于某条直线对称的两个三角形一定全等 B.轴对称图形至少有一条对称轴
C.全等三角形一定能关于某条直线对称
D.角是关于它的平分线对称的图形
五、强化训练
3、轴对称图形中任意一组对应点的连线的 垂直平分线 是该图形的对称轴. ______________ 4、下列图形:①角;②两相交直线;③圆;
对称轴).
Thank you!
④正方形.其中轴对称图形有( A )
A. 4个 B. 3个 C. 2个 D. 1个 5、如图,下列图案是我国几家银行的标志,其中 是轴对称 图形的有( C ) A.1个 B.2个 C.3个 D.4个
五、强化训练
6.下列图形中对称轴最多 的是( A )
A.圆
C.等腰三角形
B.正方形
D.长方形
7.下列图形中不一定为轴对称图形的是( C ) A.等腰三角形 C.梯形 B.正五角星 D.长方形
13.1轴对称
第二课时 13.1.1轴对称(2)
一、新课引入
• 1、什么叫做轴对称图形?
• 答:如果一个平面图形沿着一条直线折叠,直线两旁的部分 互相重合 ,这个图形就叫做_____________ 轴对称图形 _________ ,这条直线就 对称轴 是它的 _________ .
• 2、什么叫做轴对称?
三、研读课文
线 段 知的 识垂 点直 一平 分 线
中点_ 并且 _____ 垂直 于这 定义:经过线段 _____ 条线段的直线,叫做这条线段的垂直平分线.
练一练 如图, ∵MN是线段AB的垂直平 分线 ∴ MN __ ⊥ AB __ 且 AC __ = BC __ 900 ∴∠ ACM __ =∠BCM __ = ___
五、强化训练
8、如图,△ABC和△A′B′C′关于直线l对称,∠B =90°,A′B′=6 cm.求∠ B′的度数和AB的长.
解:∵△ABC和A′B′C′关 于直线l对称, ∴∠ B′=∠B=900, AB=A′B′=6 cm.
五、强化训练
9、分别找出具有一条对称轴、两条对称轴、三条 对称轴、四条对称轴的几何图形,并画出来(包括
相关文档
最新文档