原子吸收光谱
原子吸收光谱法

原子吸收光谱法
原子吸收光谱法(Atomic Absorption Spectroscopy,简称AAS)是一种常用的分析技术,用于测量样品中特定金属元素的含量。
该方法基于原子的吸收特性,通过将样品中的金属元素转化为气态原子,并通过光谱仪测量其对特定波长的光的吸收程度来定量分析。
AAS的基本原理包括以下步骤:
1. 雾化:将样品溶液喷雾成细小液滴,使其表面积增大,便于后续原子化。
2. 原子化:将样品中的金属元素转化为气态原子。
这一步可以通过火焰、电弧、石墨炉等方式实现。
3. 吸收:将特定波长的光通过样品中的气态原子,原子会吸收与其电子能级跃迁相对应的光线。
4. 检测:使用光谱仪测量经过样品后剩余的光的强度变化,得到吸收的光强度。
5. 定量分析:根据吸收光强度与样品中金属元素的浓度之间的关系,通过标准曲线等方法进行定量分析。
AAS具有高灵敏度、高选择性和广泛的适用范围,常用于分析环境、食品、药品、地质和冶金等领域中金属元素的含量。
原子吸收光谱分析

原子吸收光谱分析一、光谱基本原理原子吸收光谱是利用原子在特定波长的光照射下,原子从基态跃迁到激发态,吸收光能的原理。
根据波长的选择,原子吸收光谱可分为光电、可见、紫外和X射线等光谱。
其中,紫外-可见光谱(UV-Vis)是应用最广泛的分析方法。
原子吸收光谱依靠光源、样品和检测器共同完成分析。
在光源方面,通常使用中空阴极灯、氢、氩等气体放电灯作为发射源;在样品中,需要有吸收光线的元素,如金属、无机盐或有机物中的元素;检测器则根据不同光谱区域的吸收信号进行测量。
二、仪器构成原子吸收光谱分析仪器主要包括光源、光学系统、样品室和信号接收装置。
光源通常采用中空阴极灯,通过通电使高纯度金属蒸发产生原子,金属原子处于激发态时吸收特定波长的光,从而完成光谱分析。
光学系统包括一个反射镜和一个衍射光栅,用于选择特定波长的光进入样品池。
样品室通过控制进样量和流速将待测样品引入到光路中,使其与待测元素发生反应。
信号接收装置一般采用光电倍增管或CCD相机,将吸收的光信号转化为电信号,并通过放大和分析处理,最终得到光谱图谱。
三、应用原子吸收光谱分析在许多领域都有广泛应用。
在环境领域,可以用于测定水、土壤和空气中的重金属、汞、铅等元素的含量,以评估环境的污染程度。
在食品安全和农业领域,可以用来检测食品中的农药残留、微量元素含量等。
在药物和化学品的质量控制中,原子吸收光谱也被广泛应用,用于检测药品中的微量金属离子、无机盐等。
此外,原子吸收光谱还用于地质勘探、金属材料分析、放射性元素检测等领域。
四、未来发展随着科学技术的不断发展,原子吸收光谱分析也在不断完善。
一方面,研发更先进的光源和光学系统,提高光源的稳定性和精确性,加强光学系统的分辨率和选择性。
另一方面,开发更灵敏的检测器,提高信号接收装置的灵敏度和快速性。
此外,利用微纳米技术,制备新型材料,提高原子吸收光谱的灵敏度和选择性。
同时,结合化学计量学、机器学习等技术手段,用于光谱数据处理和解析,进一步提高分析的准确性和效率。
原子吸收光谱

8
第三阶段 电热原子吸收光谱仪器的产生 1959年,苏联里沃夫发表了电热原子化技术的第一篇论 文。电热原子吸收光谱法的绝对灵敏度可达到10-12-10-14g, 使原子吸收光谱法向前发展了一步。近年来,塞曼效应和自 吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利 地实现原子吸收测定。
(3) 压力变宽(Pressure effect) 又称为碰撞(Collisional broadening)变宽。它是由于碰撞使激发 态寿命变短所致。外加压力越大,浓度越大,变宽越显著。可分为
a) Lorentz 变宽:待测原子与其它原子之间的碰撞。变宽在10-3nm。
劳伦兹变宽用Δν表示,可表达为 :
单色光谱线很窄才有明显吸收! 若 103 nm 则 I / I 0 1, A 0 无法分析
23
对于分子的紫外-可见吸收光谱的测量,入射光是由单 色器色散的光束中用狭缝截取一段波长宽度为0.xnm至1.xnm 的光,这样宽度的光对于宽度为几十nm甚至上百nm的分子带 状光谱来说,是近乎单色了,它们对吸收的测量几乎没有影 响,当然入射光的单色性更差时,就会引起吸收定律的偏离。 而对于原子吸收光谱是宽度很窄的线状光谱来说,如果 还是采用类似分子吸收的方法测量,入射光的波长宽度将比 吸收光的宽度大得许多,原子吸收的光能量只作入射光总能 量的极小部分。这样测量误差所引起的对分析结果影响就很 大。这种关系如下图所示。
33
若吸收线轮廓单纯取决于多普勒变宽,则:
原子吸收

原子吸收光谱原子吸收光谱(Atomic Absorption Spectroscopy,AAS),即原子吸收光谱法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。
此法是20世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。
该法主要适用样品中微量及痕量组分分析。
查看精彩图册目录基本原理原子吸收光谱分析谱线轮廓发展历史特点灵敏度高精密度好选择性好,方法简便准确度高,分析速度快应用广泛原子吸收光谱分析的基本原理原子吸收光谱的产生原子吸收光谱的谱线轮廓原子吸收光谱的测量原子吸收分光光度计的组成光源原子化器分光器检测系统干扰及其消除方法物理干扰化学干扰电离干扰光谱干扰分子吸收干扰原子吸收光谱应用近年研究展望展开基本原理原子吸收光谱分析谱线轮廓发展历史特点灵敏度高精密度好选择性好,方法简便准确度高,分析速度快应用广泛原子吸收光谱分析的基本原理原子吸收光谱的产生原子吸收光谱的谱线轮廓原子吸收光谱的测量原子吸收分光光度计的组成光源原子化器分光器检测系统干扰及其消除方法物理干扰化学干扰电离干扰光谱干扰分子吸收干扰原子吸收光谱应用近年研究展望展开编辑本段基本原理原子吸收光谱原理图每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。
当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。
特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比:式中K为常数;C为试样浓度;I0v为原始光源强度;Iv为吸收后特征谱线的强度。
原子发射光谱和原子吸收光谱的区别

原子发射光谱和原子吸收光谱的区别
原子发射光谱和原子吸收光谱是研究原子的光谱现象常用的两种方法。
它们的区别主要体现在以下几个方面:
1. 测量对象不同:原子发射光谱是测量原子在受激发后由高能级向低能级跃迁时所发射的光线的现象,而原子吸收光谱则是测量原子从低能级吸收光子跃迁到高能级的过程。
2. 光谱形态不同:原子吸收光谱通常呈现为黑线或者缺失线的形式,称为吸收线,而原子发射光谱则是一系列明亮可见光线的集合,称为发射线,有时也称为亮线谱。
3. 测量方法不同:原子发射光谱常采用光谱仪测量,它通过分离和检测样品发射的不同波长的光线来得到光谱图谱。
而原子吸收光谱则通过测量样品中某个特定波长的光线的吸收强度来得到光谱图谱。
4. 应用方向不同:原子发射光谱常用于分析和确定不同样品中化学元素的存在和浓度,例如在冶金、环境、地球科学等领域。
原子吸收光谱则通常用于测量和分析样品中特定元素的含量,特别是对于微量元素的分析具有重要意义。
总的来说,原子发射光谱和原子吸收光谱分别从不同的角度研究了原子的光谱现象,提供了研究原子量子结构和元素分析的有力工具。
原子吸收光谱和紫外吸收光谱的异同点

原子吸收光谱和紫外吸收光谱都是化学分析中常用的光谱分析技术,它们在原子结构和化学键的研究中发挥着重要的作用。
今天,我们就来对这两种光谱进行全面评估,并探讨它们之间的异同点。
一、原子吸收光谱和紫外吸收光谱的基本原理1. 原子吸收光谱原子吸收光谱是一种分析技术,它通过测量原子在特定波长的光线下吸收的能量来确定样品中特定元素的含量。
当原子处于基态时,它们会吸收特定波长的光线,使得电子跃迁到较高能级,而后再返回至基态时则会发出特定波长的光线,这些吸收和发射的光线就构成了原子的光谱线。
2. 紫外吸收光谱紫外吸收光谱是一种分析技术,它主要用于测定有机物和一些无机物的结构。
在紫外光区,有机物分子中π电子的激发跃迁是吸收紫外光的主要原因。
不同化学键和取代基团都会导致分子吸收不同波长的紫外光,因此紫外吸收光谱可以用来确定有机化合物的结构和成分。
从基本原理上看,原子吸收光谱和紫外吸收光谱都是通过测量样品对特定波长光线的吸收情况来进行分析,但其适用范围和分析对象有所不同。
二、原子吸收光谱和紫外吸收光谱的异同点1. 分析对象不同原子吸收光谱主要用于测定样品中金属元素的含量,如铁、铜、锌等。
而紫外吸收光谱则主要用于有机化合物和一些无机物的结构分析,如醛、酮、酯等。
2. 测定原理不同原子吸收光谱是通过原子在特定波长光线下吸收能量来确定元素含量的,其测定原理是基于原子内部电子跃迁的能级结构。
而紫外吸收光谱则是通过测定有机分子中π电子的激发跃迁来确定化合物的结构和成分。
3. 波长范围不同原子吸收光谱通常位于可见光和紫外光区,其波长范围较窄,一般在200-800nm范围内。
而紫外吸收光谱则主要位于紫外光区,波长范围较宽,一般在200-400nm范围内。
4. 应用领域不同由于分析对象和测定原理的差异,原子吸收光谱主要用于金属元素的分析,如环境监测、地质勘探、金属加工等领域。
而紫外吸收光谱则主要用于有机物的结构分析,如制药、化工、食品等领域。
原子吸收光谱,红外光谱之间异同点

原子吸收光谱和红外光谱是化学分析领域中常见的分析方法,它们在原子和分子结构的解析和鉴定中具有重要作用。
虽然二者都是用于分析样品成分和结构的光谱技术,但它们在原理和应用上有着明显的异同点。
一、原子吸收光谱1.原子吸收光谱的基本原理原子吸收光谱是利用原子对特定波长的光进行吸收而产生的,通过分析光的衰减程度来测定样品中不同元素的含量。
当原子吸收特定波长的光后,电子从基态跃迁至激发态,从而产生吸收峰。
这一原理被广泛应用于分析金属元素和其他原子的定量测定。
2.原子吸收光谱与光谱仪的关系原子吸收光谱仪是用于测定原子吸收光谱的分析仪器,它包括光源、样品室、光路等部分。
通过光源发出特定波长的光线,样品中的原子吸收部分光线,剩余的光线经光路到达检测器,从而实现对样品中不同元素含量的测定。
3.原子吸收光谱的应用原子吸收光谱在环境监测、食品安全和医药等领域都有着广泛的应用。
利用原子吸收光谱可以对水体中的重金属离子进行快速测定,保障水质安全;在医药领域,原子吸收光谱可以用于药品成分的分析和检测。
二、红外光谱1.红外光谱的基本原理红外光谱是利用物质吸收、透射和反射红外光的特性来分析物质结构的一种技术。
物质中的分子在吸收红外光后会发生振动和转动,产生特征的红外光谱图谱。
通过分析这些谱图可以确定物质的结构和成分。
2.红外光谱仪的组成及原理红外光谱仪包括光源、样品室、光路和检测器等组成部分。
当红外光穿过样品时,被吸收的波长和强度会发生改变,检测器可以通过测量这些改变来分析样品的成分和结构。
3.红外光谱的应用红外光谱在化学、材料和生物领域都有着广泛的应用。
红外光谱可以用于药品成分的鉴定和质量控制;在材料领域,红外光谱可以帮助分析材料的组成和结构。
对比原子吸收光谱和红外光谱,可以发现它们在分析原子和分子结构上有着明显的异同点。
原子吸收光谱主要用于分析元素的含量和测定,对于金属元素和其他原子有着较广泛的应用;而红外光谱主要用于分析化合物的结构和成分,可以辅助分析有机化合物和聚合物的结构。
原子吸收光谱法和原子吸收分光光度法

原子吸收光谱法和原子吸收分光光度法原子吸收光谱法和原子吸收分光光度法是分析化学中常用的技术手段,用于测定物质中金属元素的含量。
本文将介绍这两种方法的原理、应用以及比较。
一、原子吸收光谱法原子吸收光谱法是一种基于物质对特定波长的吸收能力进行分析的方法。
它利用原子在吸收特定波长的光线时会发生能量跃迁的特性,通过测量样品对特定波长的光线吸收的强度来确定其中金属元素的含量。
原子吸收光谱法的原理是基于原子的量子力学原理,当金属元素处于基态时,外层电子具有特定的能级跃迁能量,吸收特定波长的光线。
通过测量光线透过样品之前和之后的强度差,可以计算得到金属元素的浓度。
原子吸收光谱法的应用广泛,尤其在环境监测、食品安全、药物分析等领域具有重要意义。
例如,通过原子吸收光谱法可以测定水中重金属元素的含量,用于评估水质的安全性;还可以用于监测土壤中的污染物含量,从而保护农作物的品质。
二、原子吸收分光光度法原子吸收分光光度法是一种基于原子吸收光谱技术的定量分析方法。
它利用物质对特定波长的光线吸收的强度与其浓度呈线性关系的特点,通过测量样品对特定波长光线吸收的强度来确定其中金属元素的含量。
原子吸收分光光度法与原子吸收光谱法相比,其最大的区别在于前者是定量分析方法。
通过建立标准曲线,测定样品吸光度与浓度的线性关系,可以准确计算得到金属元素的含量。
原子吸收分光光度法具有高灵敏度、准确度高以及分析速度快的优点,广泛应用于食品、化妆品、医药等行业中。
例如,原子吸收分光光度法可以用于检测食品中的微量元素,如铜、锌等,帮助评估食品的质量和安全性。
三、原子吸收光谱法与原子吸收分光光度法的比较原子吸收光谱法和原子吸收分光光度法在金属元素的定量分析方面都有重要的应用,但在一些方面存在差异。
1. 灵敏度:原子吸收光谱法的灵敏度更高,可以检测到更低浓度的金属元素,而原子吸收分光光度法的灵敏度相对较低。
2. 准确度:原子吸收分光光度法的准确度更高,可以通过建立标准曲线进行定量分析,而原子吸收光谱法的准确度相对较低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验原子吸收光谱法测定自来水中钙、镁的含量
——标准曲线法
一、实验目的
1. 学习原子吸收光谱分析法的基本原理;
2. 了解火焰原子吸收分光光度计的基本结构,并掌握其使用方法;
3. 掌握以标准曲线法测定自来水中钙、镁含量的方法。
二、实验原理
1. 原子吸收光谱分析基本原理
原子吸收光谱法(AAS)是基于:由待测元素空心阴极灯发射出一定强度和波长的特征谱线的光,当它通过含有待测元素的基态原子蒸汽时,原子蒸汽对这一波长的光产生吸收,未被吸收的特征谱线的光经单色器分光后,照射到光电检测器上被检测,根据该特征谱线光强度被吸收的程度,即可测得试样中待测元素的含量。
火焰原子吸收光谱法是利用火焰的热能,使试样中待测元素转化为基态原子的方法。
常用的火焰为空气—乙炔火焰,其绝对分析灵敏度可达10-9g,可用于常见的30多种元素的分析,应用最为广泛。
2. 标准曲线法基本原理
在一定浓度范围内,被测元素的浓度(c)、入射光强(I0)和透射光强(I)符合Lambert-Beer 定律:A=εcl(式中ε为被测组分对某一波长光的吸收系数,l为光经过的火焰的长度)。
根据上述关系,配制已知浓度的标准溶液系列,在一定的仪器条件下,依次测定其吸光度,以加入的标准溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。
试样经适当处理后,在与测量标准曲线吸光度相同的实验条件下测量其吸光度,在标准曲线上即可查出试样溶液中被测元素的含量,再换算成原始试样中被测元素的含量。
三、仪器与试剂
1. 仪器、设备:
TAS-990型原子吸收分光光度计;钙、镁空心阴极灯;无油空气压缩机;乙炔钢瓶;容量瓶、移液管等。
2. 试剂
碳酸镁、无水碳酸钙、1mol⋅L-1盐酸溶液、蒸馏水
3. 标准溶液配制
(1)钙标准贮备液(1000μg⋅mL-1)准确称取已在110℃下烘干2h的无水碳酸钙0.6250g于100mL 烧杯中,用少量蒸馏水润湿,盖上表面皿,滴加1mol⋅L-1盐酸溶液,至完全溶解,将溶液于250mL 容量瓶中定容,摇匀备用。
(2)钙标准使用液(50μg⋅mL-1)准确吸取5mL上述钙标准贮备液于100mL容量瓶中定容,摇匀备用。
(3)镁标准贮备液(1000μg⋅mL-1)准确称取已在110℃下烘干2h的无水碳酸钙0.8750g于100mL烧杯中,盖上表面皿,滴加5mL 1mol⋅L-1盐酸溶液使之溶解,将溶液于250mL容量瓶中定容,摇匀备用。
(2)镁标准使用液(25μg⋅mL-1)准确吸取2.5mL上述镁标准贮备液于100mL容量瓶中定容,摇匀备用。
四、实验条件
钙镁吸收线波长(nm) 422.7 285.2
空心阴极灯电流(mA) 3 2
燃烧器高度(mm) 6 6
气体流量(mL/min)1700 1500
五、实验步骤
1. 配制标准溶液系列
(1)钙标准溶液系列:准确吸取1mL、2mL、3mL、4mL、5mL钙标准使用液(50μg⋅mL-1),分别置于5只25mL容量瓶中,用蒸馏水稀释至刻度,摇匀备用。
该标准系列钙质量浓度一次为2.0μg⋅mL-1、4.0μg⋅mL-1、6.0μg⋅mL-1、8.0μg⋅mL-1、10.0μg⋅mL-1。
(2)镁标准溶液系列:准确吸取0mL、0.5mL、1mL、1.5mL、2mL镁标准使用液(25μg⋅mL-1),分别置于5只25mL容量瓶中,用蒸馏水稀释至刻度,摇匀备用。
该标准系列镁质量浓度一次为0μg⋅mL-1、0.5μg⋅mL-1、1.0μg⋅mL-1、1.5μg⋅mL-1、2.0μg⋅mL-1。
2. 自来水水样准备:将自来水置于25mL容量瓶中待用。
3. 吸光度的测定
(1)开机:将主机排水管槽加满水;开启电脑,开启主机电源,稳定30min。
(2)实验条件设定:双击电脑桌面上“AAwin”控制软件,进入仪器“自动初始化窗口”;待仪器自检结束,按提示依次进行“工作灯”和“预热灯”的选择、“寻峰”、“扫描”过程,工作灯设定完成后,进入“设置”,并根据实验条件“测量参数”。
根据标准液类型、浓度和待测样品类型等已知信息,“设置”“样品测量向导”相关信息,“完成”后测量窗口中显示出实验过程提示信息。
(注意:此时所选工作灯仅为钙或镁元素灯之一,待测元素改变需要重新选择工作灯。
)
(3)仪器点火:检查乙炔钢瓶使之处于关闭状态,打开无油空气压缩机工作开关和风机开关,调节压力表为0.2~0.25MPa,打开乙炔钢瓶调节压力至0.07MPa,点击控制软件界面上“点火”。
(注意:空压机使用1h需按下排水阀排水;点火及实验过程中要远离燃烧器,其上避免遮盖。
)(4)制作标准曲线并测定自来水样品
在设定实验条件下,以蒸馏水为空白样品“校零”,再依次由稀到浓测定所配制的标准溶液、待测自来水样品吸光度值。
最后打印测定数据,绘制标准曲线,计算水样中钙、镁含量。
(注意:待测元素溶液必须与工作灯中元素相一致。
)
(5)实验完毕,吸取蒸馏水5min以上,关闭乙炔,火灭后退出测量程序,关闭主机、电脑和空压机电源,按下空压机排水阀。
六、数据处理
1. 根据钙、镁标准液系列吸光度值,以吸光度为纵坐标,质量浓度为横坐标,利用计算机绘制标准曲线,作出回归方程,计算出相关系数。
2. 根据自来水样吸光度值,依据标准曲线计算出钙、镁的含量。
七、思考题
1. 简述原子吸收光谱分析的基本原理。
2. 原子吸收光谱分析为何要用待测元素的空心阴极灯做光源?
3. 空白溶液的含义是什么?
4. 标准溶液系列配制对实验结果有无影响?为什么?
5. 从实验安全上考虑,在操作时应注意什么问题?为什么?。