2018年秋高中数学第三章函数的应用3.1.1方程的根与函数的零点课件新人教A版必修1
2018-2019学年人教A版高中数学必修1课件:3.1.1函数的应用

(6)在(k1,k2)内有且仅有一个实根的充要条件是
Δ=0, f(k1)f(k2)<0,或k1<-2ba<k2.
例3 方程x2-2ax+4=0的两根均大于1,求实数a的取值范 围.
【解析】 方法一:设f(x)=x2-2ax+4,由于方程x2-2ax
由于相邻两个零点之间的所有函数值保持同号,函数的图 像如图所示.
(2)不等式xf(x)<0同解于
x>0, f(x)<0
或xf(<0x,)>0,
结合函数图
像得不等式的解集为(0,2)∪(-2,0).
探究 根据函数的零点定义与性质,可以用来帮助画函数
的图像,结合函数图像不仅可以直观的研究函数的性质,而且
∴函数y=-x2-2x+3的零点为-3,1. y=-x2-2x+3=-(x+1)2+4. 画出这个函数的简图(如右图),从图像 上可以看出,当-3<x<1时,y>0.
当x<-3或x>1时,y<0. ∴函数y=-x2-2x+3的零点是-3,1. y>0时,x的取值范围是(-3,1); y<0时,x的取值范围是(-∞,-3)∪(1,+∞). 探究2 由于一元二次不等式在前面没有讲过,因此对本题 的解法要正确作出函数的简图,从而解决问题.
课时学案
题型一 求函数的零点 例1 求函数f(x)=(x2+x-2)(x2-2x-8)的零点,并指出使 y<0成立的x的取值范围.
【解析】 y=(x2+x-2)(x2-2x-8)=(x+2)(x-1)(x+2)(x -4)=(x+2)2(x-1)(x-4),
高一数学新人教A版必修1课件:第3章函数的应用3.1.1方程的根与函数的零点

阅读教材 P86~P87“探究”以上部分,完成下列问题. 1.二次函数 y=ax2+bx+c(a>0)的图象与根的关系
Δ>0
Δ=0
二次函数y=ax2 +bx+c(a>0)的 图象
与x轴的交点
(x1,0),(x2,0)
(x1,0)
Δ<0 无交点
2.函数的零点
对于函数 y=f(x),把使 f(x)=0的实数 x 叫做函数 y=f(x)的零点.
法二 由x2-1x=0,得x2=1x. 令h(x)=x2(x≠0),g(x)=1x. 在同一坐标系中分别画出h(x)和g(x)的图象,如图所示.可知两函数图象只有 一个交点,故函数f(x)=x2-1x只有一个零点.
判断函数存在零点的 3 种方法 1.方程法:若方程 f(x)=0 的解可求或能判断解的个数,可通过方程的解来判
函数零点个数的判断
判断下列函数零点的个数. (1)f(x)=x2-7x+12;(2)f(x)=x2-1x. 【精彩点拨】 (1)中f(x)为二次函数,解答本题可判断对应的一元二次方程 的根的个数;(2)中函数零点可用解方程法或转化为两个熟知的基本初等函数y= x2与y=1x的图象交点的个数.
【自主解答】 (1)由f(x)=0,即x2-7x+12=0,得Δ=49-4×12=1>0, ∴方程x2-7x+12=0有两个不相等的实数根3,4.∴函数f(x)有两个零点. (2)法一 令f(x)=0,即x2-1x=0. ∵x≠0,∴x3-1=0.∴(x-1)(x2+x+1)=0. ∴x=1或x2+x+1=0. ∵方程x2+x+1=0的根的判别式Δ=12-4=-3<0, ∴方程x2+x+1=0无实数根. ∴函数f(x)只有一个零点.
【答案】 B
高中数学人教A版必修一第三章3.1.1《方程的根与函数的零点》 课件(共21张PPT)

y=f(x)在区y间(a, b)内有且只有一个零点.
A
(×) yy AA
B
Oa
b x
b
OO aa
b xx
B
B
【探究三】 判断函数的零点、方程的根所在的区间
例2 函数 y 2x x 的零点所在的区间( B )
A.(-2,-1)
B.(-1,0)
C.(0,1)
D.(1,2)
学以致用:
试判断方程 x3 2x 在区间[1,2] 内是否有实数根.
点. 2、函数零点存在性定理
如果函数y=f(x)在区间[a, b]上的图象是连续不断的一条曲线,并且 有f(a)·f(b)<0,那么,函数y=f(x)在区间(a, b)内有零点.
即存在c∈(a, b) ,使得f(c)=0,这个c也就是方程f(x)=0的根.
3、求函数的零点、方程的根的方法 直接法 利用零点存在性定理 图像法
作业布置
解析:令f (x) x3 2x , 函数f (x) x3 2x的图像在区间[1,2]上是连续曲线, 且f (1) 1 2 1 0, f (2) 8 4 4 0, f (1) f (2) 0,由零点存在性定理知, 函数f (x) x3 2x 在区间[1,2]内有零点 即方程x3 2x 在区间[1,2]内有实数根.
函
y
yy
yy
y
数
2
5
的
1 方程f (x)2 0有实数根 4
-1 0 1 2 3 x
1
3
图 象
x 0-1
1 -2
-3 -4
x2 函x 数-1 0y0x11、f (2xx2)的xx 图像-1 与0120 x1 轴2 有3 xx交点
方方程程的的实根数根 x1=-x11、,xx22=3
(教师参考)高中数学 3.1.1 方程的根与函数的零点课件1 新人教A版必修1

1.若f(a)·f(b)<0,则f(x)在(a,b)内就有零点吗?
2.若f(x)在(a,b)内有零点,一定能得出f(a)·f(b)<0吗?
精选ppt
11
对函数零点存在性的判定要注意四点:
1.函数的图象既要在区间[a,b]上连续, 又要在区间[a,b]端点处的函数值异号,则存在零点。
2.函数在区间[a,b]上连续,且存在零点, 在区间[a,b]端点的函数值可能异号也可能同号。
2.函数f (x)ex 5的零点的个1数是
精选ppt
14
课堂小结:
1、函数零点的定义; 2、函数的零点与方程的根的关系; 3、确定函数的零点的方法。
精选ppt
15
3.函数f(x)在[a,b]上是单调函数,
如果f(a)f(b)<0,那么这个函数在(a,b)上恰好有唯一的零点; 如果f(a)f(b)>0,那么这个函数在区间(a,b)上没有零点。
4.只能用来判断函数零点的存在性,不能用来 判断函数零点的个数。
精选ppt
12
例2 求函数f(x)=lnx+2x-6的零点个数。
函数y=f(x)的图象与x轴有交点
函数y=f(x)有零点
精选ppt
7
例1 求下列函数的零点
(1) f ( x) 4 x 3 (2) f (x) x2 2x 3 (3) f (x) 2 x 1 (4) f ( x) log 3 x 2
3
X=
4
X=3或x=-1 X=0 X=9
精选ppt
种关-2系? -3 -4
3
<
>
<
精选ppt
9
(Ⅱ)观察下面函数的图象
由以上两步探索,
2018学年高中数学必修一课件:第三章3.1-3.1.1方程的根与函数的零点 精品

3.方程 x3-x-1=0 在[1,1.5]内的实数解( )
A. 1 个
D.有 0 个
解析:令 f(x)=x3-x-1,则 f(1)=-1<0,f(1.5)=
1.53-1.5-1=1.53-2.5>0.
答案:C
4.函数 f(x)=34x+6 的零点是________. 解析:由34x+6=0 得 x=-8,即函数 f(x)=34x+6 的零点是-8. 答案:-8
3.函数零点的存在性定理 如果函数 y=f(x)在区间[a,b]上的图象是连续不断的 一条曲线,并且有 f(a)·f(b)<0,那么,函数 y=f(x)在区间 (a,b)内有零点,即存在 c∈(a,b),使得 f(c)=0,这个 c 也就是方程 f(x)=0 的根. 温 馨提 示 (1)函 数 y = f(x)在 (a , b)内 有零 点 ,
2.下列函数没有零点的是( )
A.f(x)=0
B.f(x)=3
C.f(x)=x2-2
D.f(x)=x-1x
解析:函数 f(x)=3 不能满足 f(x)=0,因此没有零点;
函数 f(x)=0 有无数个零点;函数 f(x)=x2-2 有两个零点,
为± 2;函数 f(x)=x-1x有两个零点,为±1. 答案:B
解析:因为 f(x)=ax-b 的零点是 3, 所以 f(3)=0,即 3a-b=0,也就是 b=3a.
所以 g(x)=bx2+3ax=bx2+bx=bx(x+1).所以方程 g(x)=0 的两个根为-1 和 0,即函数 g(x)的零点为-1 和 0.
答案:-1 和 0
类型 2 探求零点所在区间
5.函数 f(x)=x3-3x2+2x 的零点个数为________. 解析:由 x3-3x2+2x=0 得 x(x-1)(x-2)=0, 得 x=0 或 x=1 或 x=2.故函数 f(x)有 3 个零点. 答案:3
人教版高中数学第三章1《方程的根与函数的零点》 (共27张PPT)教育课件

看图填空
在区间(a,b)上
y
___(有/无)零点;
a
f(a)·f(b) ___ 0
b x (“<”或
“>”).
函数零点存在性定理
如果函数y=f(x)在区间[a,b]上
的图象是连续不断的一条曲线,
并且有f(a)·f(b)<0,
那么,函数y=f(x)在区间(a,b) 内有零点,
即存c∈(a,b),使得f(c)=0,这个c也
函数 y=x2-2x-3 y=x2-2x+1
无实数根
y=x2-2x+3
y
y
y
y
函数图像 -1O
3x 1 O1
2 x O1 x
与图思象函x与轴数x轴考交交图点 :点像 方两((个-3程1,交0,)点0根) 与相一应个(交1函,点0)数图没象有有交点什 么联系?
一元二次方程如果有实数根,
那么方程的实数根就是相应二次函
就是方程f(x)=0的根。
例1:求函数f(x)=lnx+2x-6的零点个数.
解:用计算器或计算机作出x、f(x)的对应值表3-1和 图象3.1-3
x
1
2
3
4
56
7
8
9
f(x) -4 -1.3069 1.0986 3.3863 5.6094 7.7918 9.9459 12.0794 14.1972
之前有个网友说自己现在紧张得不得了 ,获得 了一个 大公司 的面试 机会, 很不想 失去这 个机会 ,一天 只吃一 顿饭在 恶补基 础知识 。不禁 要问, 之前做 什么去 了?机 会当真 就那么 少?在 我看来 到处都 是机会 ,关键 看你是 否能抓 住。运 气并非 偶然, 运气都 是留给 那些时 刻准备 着的人 的。只 有不断 的积累 知识, 不断的 进步。 当机会 真的到 来的时 候,一 把抓住 。相信 学习真 的可以 改变一 个人的 运气。 在当今社会,大家都生活得匆匆忙忙, 比房子 、比车 子、比 票子、 比小孩 的教育 、比工 作,往 往被压 得喘不 过气来 。而另 外总有 一些人 会运用 自己的 心智去 分辨哪 些快乐 或者幸 福是必 须建立 在比较 的基础 上的, 而哪些 快乐和 幸福是 无需比 较同样 可以获 得的, 然后把 时间花 在寻找 甚至制 造那些 无需比 较就可 以获得 的幸福 和快乐 ,然后 无怨无 悔地生 活,尽 情欢乐 。一位 清洁阿 姨感觉 到快乐 和幸福 ,因为 她刚刚 通过自 己的双 手还给 路人一 条清洁 的街道 ;一位 幼儿园 老师感 觉到快 乐和幸 福,因 为他刚 给一群 孩子讲 清楚了 吃饭前 要洗手 的道理 ;一位 外科医 生感觉 到幸福 和快乐 ,因为 他刚刚 从死神 手里抢 回了一 条人命 ;一位 母亲感 觉到幸 福和快 乐,因 为他正 坐在孩 子的床 边,孩 子睡梦 中的脸 庞是那 么的安 静美丽 ,那么 令人爱 怜。。 。。。 。
秋高中数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点学案新人教A版必修1(20
2018年秋高中数学第三章函数的应用3.1 函数与方程3.1.1 方程的根与函数的零点学案新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋高中数学第三章函数的应用3.1 函数与方程3.1.1 方程的根与函数的零点学案新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋高中数学第三章函数的应用3.1 函数与方程3.1.1 方程的根与函数的零点学案新人教A版必修1的全部内容。
3.1。
1 方程的根与函数的零点学习目标:1。
理解函数零点的概念以及函数零点与方程根的关系.(易混点)2。
会求函数的零点.(重点)3。
掌握函数零点的存在性定理并会判断函数零点的个数.(难点)[自主预习·探新知]1.函数的零点对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.思考1:函数的零点是函数与x轴的交点吗?[提示]不是.函数的零点不是个点,而是一个数,该数是函数图象与x轴交点的横坐标.2.方程、函数、函数图象之间的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.3.函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)〈0。
那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.思考2:该定理具备哪些条件?[提示]定理要求具备两条:①函数在区间[a,b]上的图象是连续不断的一条曲线;②f(a)·f (b)〈0。
高中数学 3.1.1方程的根与函数的零点课件 新人教A版必修1
∆=b2-4ac
ax2+bx+c=0的实根
y=ax2+bx+c图象与x轴的 交点
∆>0
有两个不等的实根x1,x2 (x1,0),(x2,0)
∆=0
有两个相等的实根x1=x2
(x1,0)
∆<0
无实数根
无交点
思考2:一般地,方程f(x)=0与函数y=f(x) 对上述关系适应吗?
结论
方程f (x)=0有实数根 函数y=f (x)的图象与x轴有交点
讲授新课
一、函数零点的概念: 对于函数y=f(x),我们把使f(x)=0
的实数x叫做函数y=f(x)的零点.
注意:1、函数的零点是一个实数,而不是点。 2、函数的零点就是对应方程的根。
探究1 如何求函数的零点?
探究1 如何求函数的零点? 探究2 零点与函数图象的关系怎样?
探究1 如何求函数的零点?
y
.
2
.1
-1 0 1 2 -1 -2 -3 . -4
.
.
3x
y
.2
.
1. .
. -1 0 1 2
x
y
.5 .4
. .
3 2
.
1
-1 0 1 2 3 x
方程的实数根 x1=-1,x2=3
函数的图象 与X轴的交
(-1,0)、(3,0)
点
x1=x2=1 (1,0)
无实数根 无交点
一元二次方程ax2+bx+c=0(a≠0)与二次函数 y=ax2+bx+c(a≠0)的关系.
两不相等实根
两相等实根
没有实根
函数 y=ax2+bx+c 的零点
人教版高中数学第三章第一节方程的根与函数的零点(共26张PPT)教育课件
通
不
第
一
为
什
么
很
头
试
常
变
成
我
自
己
你
部
多
时
完
弄
。
但
戏
候
在
这
样
做
时 现 镜 有
场
一
个
就
穿
我
不
想
后
不
好
的
后
和
尔
是
等
我
果
就
戴 。
是 东
得
你
可
希
当
你
真
以 的
•■ 电 你 是 否 有 这 样 经 历 , 当 你 在 做 某 一 项 工 作 和 学 习 的 时 候 , 脑 子 里 经 常 会 蹦 出 各 种 不 同 的 需 求 。 比 如 你 想 安 心 下 来 看 2 小 时 的 书 , 大 脑 会 蹦 出 口 渴 想 喝 水 , 然 后 喝 水 的 时 候 自 然 的 打 开 电 视 。 。 。 。 。 。 , 一 个 小 时 过 去 了 , 可 能 书 还 没 看 2 页 。 很 多 时 候 甚 至 你 自 己 都 没 有 意 思 到 , 你 的 大 脑 不 停 地 超 控 你 的 注 意 力 , 你 就 这 么 轻 易 的 被 你 的 大 脑 所 左 右 。 你 已 经 不 知 不 觉 地 变 成 了 大 脑 的 奴 隶 。 尽 管 你 在 用 它 思 考 , 但 是 你 要 明 白 你 不 应 该 隶 属 于 你 的 大 脑 , 而 应 该 是 你 拥 有 你 的 大 脑 , 并 且 应 该 是 你 可 以 控 制 你 的 大 脑 才 对 。 一 切 从 你 意 识 到 你 可 以 控 制 你 的 大 脑 的 时 候 , 会 改 变 你 的 很 多 东 西 。 比 如 控 制 你 的 情 绪 , 无 论 身 处 何 种 境 地 , 都 要 明 白 自 己 所
「精品」人教A版高中数学必修一:3.1.1《方程的根与函数的零点》课件(新人教版A)-精品课件
等价关系 判断函数零点或相 应方程的根的存在性 例题分析 课堂练习 小结 布置作业
思考:一元二次方程
ax2+bx+c=0(a≠0)的根与二次函数 y=ax2+bx+c(a≠0)的图象有什么关系?
方程 函数
函 数 的 图 象
x2-2x-3=0 x2-2x+1=0 x2-2x+3=0
(x1,0) , (x2,0)
(x1,0)
没有交点
函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点。
等价关系 方程f(x)=0有实数根
函数y=f(x)的图象与x轴有交点
函数y=f(x)有零点
观察二次函数f(x)=x2-2x-3的图象:
y
.
.
2
[-2,1] f(-2)>0 f(1)<0 f(-2)·f(1)<0
2(1)解:作出函数的图象,如下:
因为f(1)=1>0,f(1.5)=-2.875<0, 所以f(x)= -x3-3x+5在区间(1, 1.5) 上有零点。又因为f(x)是(-∞,+∞) 上的减函数,所以在区间(1, 1.5)上有 且只有一个零点。
.y .
5
.4
3
2.
1
0 1 23 x
-1
.
2(2) f(x)=2x ·ln(x-2)-3
(3) x2=4x-4
1(3)解:x2=4x-4可化为x2-4x
+4=0,令f(x)= x2-4x+4,作出
函数f(x)的图象,如下:
y
它与x轴只有一个交点,所以方
.6