二次型在二次曲面研究中的应用

合集下载

二次型与二次曲面

二次型与二次曲面


第六章 二次型与二次曲面
§6.1 二次型
例5. 用配方法化f =x123x222x1x26x2x3+2x1x3 为标准形, 并求所用的可逆线性变换. 解: f = x123x222x1x26x2x3+2x1x3 = [x12 2x1(x2 x3) + (x2 x3)2] (x2 x3)2 3x22 6x2x3 = (x1 x2 + x3)2 (2x2 + x3)2 = y12 y22
§6.1 二次型
二. 化二次型为标准形 1. 矩阵的合同 A与B相合或合同 (记为 A B): 可逆矩阵P, 使得PTAP = B. 注: (1) A B A B. (2) 反身性: A A. ETAE = A

第六章 二次型与二次曲面
§6.1 二次型
二. 化二次型为标准形 1. 矩阵的合同 A与B相合或合同 (记为 A B): 可逆矩阵P, 使得PTAP = B. 注: (1) A B A B. (2) 反身性: A A. (3) 对称性: A B B A. PTAP = B (P 1)TBP 1 = A

第六章 二次型与二次曲面
§6.1 二次型
回忆
定理5.7. AT = A Mn(R) 正交矩阵Q使得 Q1AQ = QTAQ是对角矩阵.
|EA| = 0 特征值 正交化 (EA)x = 特征向量
Q
单位化
定理6.1. 实对称矩阵与对角矩阵合同.

第六章 二次型与二次曲面
§6.1 二次型
最大值为4, 最小值为2.

第六章 二次型与二次曲面
§6.1 二次型
3. 用配方法化二次型为标准形

二次型地性质及指导应用

二次型地性质及指导应用

师学院本科毕业论文题目二次型的正定性及其应用学生王倩柳指导教师王军讲师年级 2012级数学专接本专业数学与应用数学系别数学与信息科学系师学院数学与信息科学系2014 年5月重声明本人的毕业论文(设计)是在指导教师王军的指导下独立撰写完成的。

如有剽窃、抄袭、造假等违反学术道德、学术规和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督。

特此重声明。

毕业论文(设计)作者(签名):2014 年月日目录摘要 (1)前言 (1)1 二次型的历史及概念 (2)1.1二次型的历史 (2)1.1 二次型的矩阵形式 (2)1.2 正定二次型与正定矩阵的概念 (3)2 二次型的正定性判别方法及其性质 (3)3 二次型的应用 (6)3.1 多元函数极值 (6)3.2 证明不等式 (12)3.3 因式分解.................................. (错误!未定义书签。

)3.4 二次曲线 (13)结论 (14)参考文献 (14)致 (14)二次型的正定性及其应用学生:王倩柳指导老师:王军摘要:二次型是高等代数中的主要容之一, 其理论的应用非常广泛。

在中学数学的不等式的证明、求极值及因式分解等问题中, 用初等数学方法处理会相当麻烦, 而如果利用高等代数中二次型的性质去解决, 就会使很多问题化繁为简, 由难转易。

因此, 讨论二次型理论在证明不等式、多项式的因式分解、求极值、计算椭圆面积、判断二次曲线的形状等实际例题中的应用, 是很有意义的。

关键词:二次型;矩阵;正定性;应用The second type of positive definite matrix and its applicationsStudent: Wang qianliuInstructor: Zhang wangjunAbstract: Quadratic form is one of its main content in Higher Algebra, Quadratic form theory is widely used in the middle school mathematics-the proof of inequality, extremum and the factorization problem, It is too cumbersome often using elementary mathematics method, but if solve them using of advanced algebra quadratic form properties, will make a lot of problems change numerous for brief, from difficult to easy. For our students, more should learn to use the knowledge of higher mathematics to guide or understanding of elementary mathematics knowledge content, a deeper understanding of the essence of higher algebra. This paper will discuss quadratic form theory to prove inequality, polynomial factorization, calculation of elliptical area, judge two the shape of the curve and actual examples of application.Key words: Quadratic; Quadratic matrix; Qualitative; Application前言二次型是高等代数中的主要容之一, 其理论的应用非常广泛。

二次型与二次曲面的关系

二次型与二次曲面的关系

二次型与二次曲面的关系1. 引言1.1 概述二次型与二次曲面是数学中重要的概念,它们在代数和几何中发挥着重要的作用。

二次型是一类与二次多项式相关的函数形式,而二次曲面则是由二次方程定义的特定类型的曲线。

本文将探讨二次型与二次曲面之间的关系,并研究它们的特征和性质。

1.2 研究背景随着代数学和几何学的发展,人们对于函数和曲线的研究越来越深入。

而对于二次型和二次曲面的分析更是成为了这个领域中不可忽视的一部分。

通过研究二次型与二次曲面之间的联系,我们可以深入理解它们各自所具有的特征,并且可以推广到更为复杂和抽象的情况。

1.3 目的与意义本文旨在介绍并探讨二次型和二次曲面之间存在的联系,以及它们各自所具有的特征和性质。

通过对这两个概念进行详细阐述和比较分析,读者将能够更加全面地理解它们在数学中的重要性和实际应用。

此外,文章还将对可能未涉及到的研究方向进行简要展望,以期激发更多的学者和研究者对该领域问题的兴趣和探索。

2. 二次型的基本概念:2.1 二次型的定义:在线性代数中,二次型是指包含平方项和交叉乘积项的多元变量的多项式。

具体而言,对于$n$个变量$x_1, x_2, \ldots, x_n$,一个二次型可以表示为如下形式的多项式:$$Q(x)=a_{11}x_1^2 + a_{22}x_2^2 + \ldots + a_{nn}x_n^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3+\ldots+ 2a_{n-1,n}x_{n-1}x_n$$其中,$a_{ij}$是实数系数$(i,j=1, 2, ..., n)$。

二次型可以看作是一个与欧几里得空间中的点对应的实值函数。

它在数学和工程领域中具有广泛的应用,在统计学、物理学、经济学等学科中也有重要意义。

2.2 二次型矩阵表示:每个二次型都可以通过一个对称矩阵来表示。

对于给定的$n$维向量$\mathbf{x}=(x_1, x_2, \ldots, x_n)^T$,可以将其与一个对称矩阵$\mathbf{A}$相乘得到相应的二次型:$$Q(\mathbf{x}) = \mathbf{x}^T \cdot \mathbf{A} \cdot \mathbf{x} $$其中,$\mathbf{A}$的元素$a_{ij}$表示二次型中$x_i$和$x_j$的系数。

化二次型为实用标准形地几种方法

化二次型为实用标准形地几种方法

化二次型为标准形的几种方法摘要二次型是代数学要研究的重要容,我们在研究二次型问题时,为了方便,通常将二次型化为标准形.这既是一个重点又是一个难点,本文介绍了一些化二次型为标准形的方法:正交变换法,配方法,初等变换法,雅可比方法,偏导数法.正文详细介绍了几种方法的定义以及具体步骤,并举出合适的例题加以说明.其中,偏导数法与配方法又相似,只是前者具有固定的步骤,而配方法需要观察去配方.关键词:正交变换法配方法初等变换法雅可比方法偏导数法reduce the quadratic forms to the standard forms Abstract:Quadratic is the important content should study algebra, in our studies of quadratic problem, for convenience, will usually be quadratic into standard form. This is both a key is a difficulty, this paper introduces some HuaEr times for the standard form of orthogonal transform method, method: match method, elementary transformation, jacobian method, partial derivative method. The text introduces several methods defined and concrete step, simultaneously gives appropriate examples to illustrate. Among them, the partial derivative method and match method and similar, but the former has the fixed steps, and match method need to observed to formula.Keywords:orthogonal transform method match method elementary transformation jacobian method partial derivative method一、 引言二次型的本质是一个关于n 个变量二次齐次函数,在它的表达式中除了平方项就是交叉项,没有一次项或常数项,其具体定义为:设P 是一个数域,一个系数在数域P 中12,n x x x ⋯的二次齐次多项式2121112121211222222f(,,,,)2...2...2...n n n n n nn n x x x a x a x x a x x a x a x x a x =++++++++= 11n n ij ij j i a x x ==∑∑,称为数域P 上的一个n 元二次型.二次型具有广泛的应用性,在工程技术、经济管理、社会科学以及数学的其他分支中均需要运用到二次型,在实际运用过程中经常需要将二次型化为标准形,很多同学能够根据标准的步骤将二次型化为标准形,但是却不能很好地根据所给的题目运用最适宜的方法进行解决.本文参考已有的研究结果,总结化二次型为标准形的几种方法,分析每种方法的解题原理和过程,归纳其应用特点,帮助《线性代数》的初学者根据题目的特点和要求采取最佳的方法解决问题,达到简明快速的目的.关于二次型化为标准型的问题,许多数学学者作了较深入的研究,获得了许多具有研究价值和参考价值的成果.庄瓦金在文【11】中给出了二次型的定义及其若干性质.惠汝、红超在文【12】中将二次型和非退化线性替换用矩阵形式表示,对二次型化为标准形问题采取两种转化思路:一是联系矩阵的初等变换,把问题转化为矩阵合同变换问题;二是借助实对称矩阵特征值与特征向量的有关理论,把问题转化为用正交变换化实对称矩阵为对角形的问题.这两种转化思路产生了二次型化为标准形的两种方法,即合同变换法(也称初等变换法)和正交变换法.五明,永金,栋春在【7】中给出了实二次型化为标准形的方法.通过观察各项进行配方,其实质就是运用非退化的线性替换.使用配方法将二次型化为标准形问题时采取两种转化思路:一是含有平方项时,把平方项集中,然后配方,化为标准形;二是不含平方项时构造平方项,进行逆变换,继续第一步进行配方,这种转化思路产生了二次型化为标准形的方法,即配方法.明琼在【9】中给出了二次型化为标准形的方法.此方法是利用二次型的矩阵的顺序主子式来确定标准形中各项平方和项的系数.它要求二次形的矩阵所有的顺序主子式必须都不为零.这种转化思路产生了又一种二次型化为标准形的方法,即合雅可比方法.郭佑镇在【8】中给出了实二次型的化简及应用偏导数法与配方法的实质是相同的,但是它是根据函数与其偏导数之间关系这一原理,依据配方法而提出的化二次型为标准行的新方法,解题思路与配方法极为相似.把问题转化为用偏导数法实解决问题.这种转化思路产生了二次型化为标准形的另一种方法,即偏导数法.秀花在文【13】讨论了化二次型为标准形的两种常用方法的区别:正交变换法的第一步是将二次型写成矩阵形式,然后将二次型的矩阵通过单位正交化方法进行对角化,最后利用正交矩阵得到正交变换,利用特征值得到标准形.正交变换法需要求出二次型矩阵的全部特征值,即求特征方程的根,由于代数方程没有统一的求根公式,因此在操作上存在一定的困难.而配方法避免了求解矩阵特征值的问题,因而使用起来比较方便.以上学者的研究为本文介绍的化二次型为标准形的六种方法奠定了基础,为以后的研究工作做出了重要贡献.本文梳理了已有的研究成果,并对六种方法做出总结,希望能够对未来的相关研究作出贡献.二、 化二次型为标准形的六种方法(一)正交变换法由于实对称矩阵必定与对角矩阵合同,因此任何实二次型必定可以通过一个适当的正交线性替换将此实二次型化为标准形.定理1 任意一个实二次型T AX f X ==11n nij i j i j a x x ==∑∑(其中ij ji a a =)都可以经过正交线性替换变成平方和2221122...n n y y y λλλ+++,其中平方项的系数12,...,n λλλ就是矩阵的全部特征根.由此定理得到的化二次型为标准形的方法称为正交变换法,此法的解题步骤为:1. 将实二次型表示成矩阵形式T AX f X =,并写出矩阵A ;2. 求出矩阵A 的所有特征值12,...,i λλλ,它们的重数分别记为21,...,ik k k (21...i k k k +++=n )○3求出每个特征值所对应的特征向量,因为21...i k k k +++=n ,所以共有n 个特征向量21...,,i ξξξ.具体方法是:列出方程1()0E A X λ→-=,解出与1λ对应的1k 个线性无关的特征向量;同理求出其他的特征值23,...,i λλλ所对应的特征向量. ○4将n 个特征向量21...,,i ξξξ,先后施行正交化和单位化,得到单位正交向量组21,,,n ηηη,并记C =21)(,,T n ηηη;○5作正交变换X CY =,则二次型f 化为标准形f =2221122...n ny y y λλλ+++. 例1 用正交变换方法化二次型222212341234121314232434,,,)264462(x x x x x x x x x x x x x x x x x x x f x =+++-+--+-为标准形.解:(1)二次型的矩阵为A =1132112332112311⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭-------- 由A 的特征多项式E A λ-=1132112332112311λλλλ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭--------=(3)(7)(1)(1)λλλλ+--+ 得A 的特征值为1λ=-3,2λ=7,3λ=-1,4λ=1.(2)将1λ=-3代入1()0E A X λ-=中,得到方程组12341234123412324320423032402340x x x x x x x x x x x x x x x x -+-+=⎧⎪-+-=⎪⎨-+-+=⎪⎪-+-=⎩ 解此方程组可得出基础解系1α=(1,1,1,1)T --,同样地,分别把2λ=7,3λ=-1,4λ=1代入()0E A X λ-=中,求解方程组得与2λ=7,3λ=-1,4λ=1对应的基础解系依次为2α=(1,1,1,1)T --,3α=(1,1,1,1)T --,4α=.(3)将正交化:1α=1β=2β=2α-21111(,)(,)αββββ= 3β=3α-3132121122(,)(,)(,)(,)αβαβββββββ-=4β=4α-434142123112233(,)(,)(,)(,)(,)(,)αβαβαββββββββββ--= 将正交向量组,单位化得单位正交向量组:,,,(4)令C =121111111111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭------,于是正交线性替换1234x x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=121111111111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭------1234y y y y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭将二次型化为标准形f =2222123173y y y y +-+-. (二) 配方法使用配方法化二次型为标准形时,最重要的是要消去像()i j x x i j ≠这样的交叉项,其方法是利用两数的平方和公式及平方差公式逐个消去非平方项,并构造新的平方项.定理 数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和2221122...n nd x d x d x +++的形式. 用配方法化二次型为标准形的关键是构造平方项,其方法是利用完全平方公式、平方差公式逐步消去交叉项,同时构造新的平方项.具体解题思路可分两种情形来处理:(1) 若二次型中含有某变量i x 的平方项和交叉项,则可先将含i x 的交叉项合并在一起,使之与2i x 配方成为完全平方项,然后类似地对剩下的1n -个变量进行配方,直到各项全部化为平方项为止;(2) 若二次型中没有平方项,则可先利用平方差公式将二次型化为含有平方项的二次型,例如,当二次型中出现交叉项i j x x 时,先作可逆线性替换i i j x y y =+,j i j x y y =-,k k x y =(,k i j ≠),使之成为含有2i y ,2j y 的二次型,然后按照情形(1)的方法进行配方.例2 用配方法化二次型23(,,)f x x x =22112223224x x x x x x +++为标准形,并写出所用的线性替换矩阵.解:原二次型中含有1x 的平方项,先将含有1x 的项集中,利用平方和公式消去12x x , 然后对配平方,消去23x x 项.此过程为23(,,)f x x x =221122(2)x x x x +++222233(44)x x x x ++-234x ()()2221223324x x x x x =+++- 于是作非退化线性替换11221233+2y x x y x x y x =+⎧⎪=⎨⎪=⎩,由此得11232233322x y y y x y y x y =-+⎧⎪=-⎨⎪=⎩, 即123x x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=112012001-⎛⎫ ⎪- ⎪ ⎪⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭,于是二次型化为标准形23(,,)f x x x =2221234y y y +-, 所用的线性替换矩阵为C =112012001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.例3 将二次型23(,,)f x x x =121323422x x x x x x -++化为标准形,并写出所用的线性替换矩阵.解:由于所给的二次型中无平方项,故需要构造出平方项,令11221233x y y x y y x y =+⎧⎪=-⎨⎪=⎩ 即123x x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=110110001⎛⎫ ⎪- ⎪ ⎪⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭ 代入原二次型得23(,,)f x x x =12121231234()()2()2()y y y y y y y y y y -+-+++-221213444y y y y =-++此时就可以按照情形(1)中的步骤进行,将含有1y 的项集中,消去13y y ,再分别对 23,y y 配平方即可.所以有23(,,)f x x x =221213444y y y y -++2222113332444y y y y y y =-++-+()222133224y y y y =--++ 作非退化线性替换11322332z y y z y z y =-⎧⎪=⎨⎪=⎩,或写成11222331122y z z y z y z ⎧=+⎪⎪=⎨⎪=⎪⎩, 即123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=11022010001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭123z z z ⎛⎫ ⎪ ⎪ ⎪⎝⎭于是二次型化为标准形23(,,)f x x x =2221234z z z -++,所用的线性替换矩阵为C =110110001⎛⎫ ⎪- ⎪ ⎪⎝⎭11022010001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=1112211122001⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭ 从以上配方法的过程可以看出,将一般二次型通过配方法化成标准形,实际上就是通过一系列的非退化线性替换将n 个元逐渐配方的过程,这个过程用矩阵的形式表示出来就是将二次型化为标准形的第三种方法------初等变换法.这种方法的实质就是将二次型矩阵通过一系列的合同变换(即进行矩阵的初等行、列变换),逐步地化成与它合同且在形式上又比较简单的矩阵,最后得到对角矩阵的过程.定理 在数域上,任意一个对称矩阵都合同于一对角矩阵.即对于任意一个对称矩阵,都可以找到一个可逆矩阵使T C AC 成对角形.根据初等矩阵的有关性质知,用初等矩阵左乘A 相当于对A 作一次初等行变换;用初等矩阵右乘A 相当于对A 作一次初等列变换,任意对称矩阵都可用同样类型的初等行变换和初等列变换化成与之合同的对角阵,对初等矩阵施行一个初等行变换,同时要对矩阵作一次相应的列变换,以保证每对变换作过以后得到的矩阵与原来的矩阵合同.具体的解题步骤为:(1)写出二次型()12,n f x x x 的矩阵A ,A 与E 构成2n n ⨯矩阵A E ⎛⎫ ⎪⎝⎭(2)对A 进行初等行变换和相同的初等列变换,化成与A 合同的但是形式较为简单的矩阵,直至将A 化成对角矩阵;但是对E 只进行其中的列变换.,用分别表示变化后的矩阵.(3)写出正交变换过程中所进行的一系列非退化线性替换X CY =,此线性替换将化原二次型化为标准形()12,n f x x x ='Y DY .此过程可简单表示为:A E ⎛⎫ ⎪⎝⎭A E −−−−−−−−−→对进行同样的初等行、列变换对只进行其中的列变换D C ⎛⎫⎪⎝⎭. 例4 用初等变换法将二次型23(,,)f x x x =22211213223322243x x x x x x x x x +-+++变为标准形.解:首先写出二次型23(,,)f x x x 的矩阵A =111122123-⎛⎫⎪ ⎪ ⎪-⎝⎭然后构造出63⨯矩阵A E ⎛⎫ ⎪⎝⎭=111122123100010001-⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪⎝⎭2113-r ,+r r r −−−−→111013032100010001-⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭2113-,+j j j j −−−−→100013032111010001⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭26364656-3,i -9,i +3,-3i i i i i i −−−−−−−→100010037114013001⎛⎫⎪ ⎪ ⎪-⎪- ⎪ ⎪- ⎪ ⎪⎝⎭32-3,i i −−−→ 100010007114013001⎛⎫⎪ ⎪ ⎪- ⎪- ⎪ ⎪- ⎪ ⎪⎝⎭从以上过程可以看出C =114013001-⎛⎫⎪- ⎪ ⎪⎝⎭,最后作可逆线性替换X CY =,则23(,,)f x x x = '100010007Y Y ⎛⎫⎪ ⎪⎪-⎝⎭(四)雅可比(Jacobi)方法此方法利用二次型的矩阵的顺序主子式(也即雅可比行列式)来确定 标准形中各平方项的系数 .这种方法较为简便,但是有条件限制,它需要二 次型的矩阵所有的顺序主子式必须都不为零.1. 几个相关定义是数域P 上一个线性空间,是上一个二元函数,如果有下列性质:(1); (2);其中1212,,,,,αααβββ是中任意向量,12k ,k 是中任意数,则称为上的一个双线性函数.线性空间上的一个双线性函数,如果对中任意两个向量α,β都有=,则称为对称双线性函数.设是数域上n 维线性空间上的一个双线性函数.12n ,,...,εεε是V 的一组基,则矩阵11)1n n 1)n n)f (,f (,)A=f (,f (,εεεεεεεε⎛⎫⎪⎪⎪⎝⎭称为 在12n ,,...,εεε下的度量矩阵.2. 解题步骤雅可比方法的计算步骤归纳如下:(1)在矩阵A 的非对角线元素中选取一个非零元素 ija .一般说来,取绝对值最大的非对角线元素;(2) 由公式jj ii ija a a tan -=22θ求出θ,从而得平面旋转矩阵IJ P P =1; (3) 111AP P A T=,1A 的元素由公式(9)计算. (4) 以1A 代替A ,重复第一、二、三步求出2A 及2P ,继续重复这一过程,直到m A 的非对角线元素全化为充分小(即小于允许误差)时为止.(5) m A 的对角线元素为A 的全部特征值的近似值,m P ...P PP 21=的第j 列为对应于特征值j λ(jλ为m A 的对角线上第j 个元素)的特征向量.例5 用雅可比方法将二次型123(,,)f x x x =2221231213234x x x x x x x ++++化为标准形.解:二次型的矩阵32223A =102201⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭,顺序主子式1=2∆,21=-4∆,31=-44∆都不等于零,所以能采用雅可比方法.设1231000,1,0001εεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,双线性函数关于基的矩阵为, 则 A=()()()()()()()()()111213212223313233f ,f ,f ,f ,f ,f ,f ,f ,f ,εεεεεεεεεεεεεεεεεε⎛⎫⎪ ⎪ ⎪⎝⎭=32223102201⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭再设111121212223131232333c c c c c c ηεηεεηεεε=⎧⎪=+⎨⎪=++⎩系数11c 可由条件()11f ,1ηε=求出,即()111111c f ,2c 1εε==,从而得出1112c =,所以11111121020c ηεε⎛⎫ ⎪ ⎪=== ⎪ ⎪⎪⎝⎭,系数1222,c c 可由方程组()()()()1211221212122222,,0,,1c f c f c f c f εεεεεεεε+=⎧⎪⎨+=⎪⎩求出,并可得到122268c c =⎧⎨=-⎩,所以2121222c c ηεε=+=680⎛⎫ ⎪- ⎪ ⎪⎝⎭,系数132333,,c c c 可由方程组132333132313333220230221c c c c c c c ⎧++=⎪⎪⎪+=⎨⎪+=⎪⎪⎩求出,即1323338171217117c c c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩,所以38171217117η⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪⎪ ⎪⎝⎭.由此可得,由基123,,εεε到123,,ηηη的过渡矩阵为18621712081710017C ⎛⎫ ⎪⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪⎝⎭.因此123(,,)f x x x 经线性替换能够化成标准形:22222201212312312311z z z 8217z z z ∆∆∆++=-+∆∆∆. (五)偏导数法偏导数法与配方法的实质是相同的,但是它是根据函数与其偏导数之间的关系这一原理,依据配方法提出的化二次型为标准形的新方法,配方法需要仔细观察然后进行配方,而这种方法具有固定的程序,可以按步骤一步一步进行计算.因此,能够提高准确性,且易于理解,求解过程也更加简单.利用偏导数法将二次型()12,...n f x x x =11nnij i j i j a x x ==∑∑化为标准形的解题步骤如下:(注意,运用该方法时,要将二次型分为两种情形来进行讨论.)1. 情形1: 二次中含有i x 的平方项,即ii a ()1,2,...i n =中至少有一个不为零的情形.(1) 不妨设11a 不等于零,将f 对1x 的偏导数1f x ∂∂求出来,并记1112ff x ∂=∂. (2)根据偏导数法()2121111,...(f )g n f x x x a =+,通过计算得出g .此时g 中已经不再含有1x .(3)求出g 对2x 的偏导数2g x ∂∂,并记1212gg x ∂=∂,又可得()12,,...n f x x x =()()2211'112211f g ua a ++, 此时u 中不再含有2x .(4)按照这种程序继续运算,最终可以将二次型化为标准形.2. 情形2:二次型中不含i x 的平方项,即所有iia ()1,2,...i n =都等于零,但是至少有一1(1)j a j >不等于零的情形.(1)不妨设12a 不等于零,首先求出f 对1x 的偏导数1fx ∂∂,以及f 对2x 的偏导数2f x ∂∂,并记1112f f x ∂=∂,2212ff x ∂=∂, (2)将(1)结果代入,此时得到()22121212121,,...[()()]n f x x x f f f f a ϕ=+--+,其中ϕ中不含12,x x 的项.(3)进行观察:如果ϕ中含有i x 的平方项,则按照情形1中的方法去进行计算,如果ϕ中仍然不含有i x 的平方项,则按照上述步骤继续计算,直到将二次型化为标准形为止.例6 用偏导数法化二次型23(,,)f x x x =22212312232422x x x x x x x +-+-为标准形.解:原二次型中含有1x 的平方项,符合情形1,首先求出f 对1x 的偏导数1fx ∂∂=1222x x +,所以可以得到:1112ff x ∂=∂=12x x +23(,,)f x x x =()21111f g a +=()212x x g ++ 整理可得到:22232342g x x x x =--接下来求出g 对2x 的偏导数2g x ∂∂=()232x x -, 1212gg x ∂=∂=23x x -23(,,)f x x x =()()222113'1122115f g x a a +- ()()222122335x x x x x =++--令11222333y x x y x x y x=+⎧⎪=-⎨⎪=⎩经过变形可以得到112322333x y y y x y y x y =--⎧⎪⇒=+⎨⎪=⎩于是原二次型化为标准形23(,,)f x x x =2221235y y y +-所得的变换矩阵为111011001C --⎛⎫⎪= ⎪⎪⎝⎭,例7 用偏导数法化二次型23(,,)f x x x =121323422x x x x x x -++为标准形.解:由于所给的二次型中不含i x 的平方项,符合情形2,所以分别求出f 对1x 的偏导数1f x ∂∂,以及f 对2x 的偏导数2fx ∂∂,其结果如下:1f x ∂∂=2342x x -+,2fx ∂∂=1342x x -+1112f f x ∂=∂=232x x -+,2132122ff x x x ∂==-+∂23(,,)f x x x =()()221212121f f f f a ϕ⎡⎤+--+⎣⎦整理上式可得:ϕ=23x于是得到23(,,)f x x x =()()2223121231222224x x x x x x ⎡⎤-----+⎣⎦=()()222312123x x x x x x ---+-+=222123y y y -++ 令经过整理可以得到1123212333111222111222x y y y x y y y x y ⎧=-++⎪⎪⎪=--+⎨⎪=⎪⎪⎩可以得到所用的可逆矩阵为111222111222001C ⎛⎫- ⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪⎝⎭,(六)顺序主子式法对于二次型'12,1(,,...,)nn ij iji j f x x x X AX a x x===∑ (1)其中,,1,2,...,ij ji a a i j n ==,以上介绍了五种化二次型为标准形的方法,本文第六部分介绍顺序主子式法.对于二次型(1)矩阵()A=ijn na ⨯假如11121,-121222,-1111211221221-1-1,n-1-1,-1-1,-10,-0,,=n n n n n n n n a a a a a a a a a ααααα∆=≠∆=≠∆≠则二次型可化为标准形12222211111(,,...,)...n n n n f x x x y y y -∆∆=∆+++∆∆例8 化二次型32212132145),,(x x x x x x x x f -+=为标准形解:二次型的矩阵为51025022020A ⎛⎫⎪ ⎪⎪=- ⎪ ⎪- ⎪⎪⎝⎭方法一:4,425,1321-=∆-=∆=∆ 所以1222231232516(,,)425f x x x y y y =-+方法二: 32218125255101022252502024402016025r r r r A --⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪−−−→-−−−−→- ⎪ ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以1,23251,44-∆=∆=∆=-1222222231231232542516(,,)2544254f x x x y y y y y y -=-+=-+-雅可比方法是利用二次型的矩阵的顺序主子式来确定标准形中各项平方和项的系数.它要求二次形的矩阵所有的顺序主子式必须都不为零.3.1二次型在二次曲面研究中的应用二次曲面的一般方程为:2221122331213231232220a x a y a z a xy a xz a yzb x b y b zc +++++++++=其中都是实数.我们记,,其中利用二次型的表示方法,方程(1)可表示成下列形式:(2)为研究一般二次曲面的性态,我们需将二次曲面的一般方程转化为标准方程,为此分两步进行. 第一步,利用正交变换 将方程(2)左边的二次型的部分化成标准形:其中为正交矩阵,,相应地有于是方程(2)可化为第二步, 作平移变换,将方程(3)化为标准方程, 其中这里只要用配方法就能找到所用的平移变换.以下对是否为零进行讨论:1)当时,用配方法将方程(3)化为标准方程:(6-1)根据与d 的正负号,可具体确定方程(6-1)表示什么曲面.例如与d 同号,则方程(6-1)表示椭球面.(2)当中有一个为0,设方程(3)可化为(6-2)(6-3)根据与d 的正负号,可具体确定方程(6-2)、(6-3)表示什么曲面.例如当同号时,方程(6-2)表示椭圆抛物面.当异号时,方程(6-2)表示双曲抛物面,(6-3) 表示柱面.(3) 当中有两个为0,不妨设,方程(3) 可化为下列情况之一:此时,再作新的坐标变换:(实际上是绕x ~轴的旋转变换),方程可化为:02221='++'y q p x λ表示抛物柱面;)0(0~~)(21≠=+p y p x b λ表示抛物柱面;)0(0~~)(21≠=+q z q x c λ表示抛物柱面;若与异号,表示两个平行平面;若与同号,图形无实点,若,表示坐标面.例 二次曲面由以下方程给出,通过坐标变换,将其化为标准型,并说明它是什么曲面.222234444212100x y z xy yz x y z +++++-++= 解:将二次曲面的一般方程写成矩阵形式:,⎪⎪⎪⎭⎫ ⎝⎛=z y x x ,1224⎪⎪⎪⎭⎫ ⎝⎛-=b ⎪⎪⎪⎭⎫ ⎝⎛=420232022A )6)(3(18923---=-+-=-λλλλλλλE A的特征值为,分别求出它们所对应的特征向量,并将它们标准正交化:1132323p ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,2231323p ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪⎝⎭,⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=3132323p取 P= ( p 1 , p 2 , p 3 ) , 则 P 为正交矩阵. 作正交变换x = P y , 其中(),,,111Tz y x y =则有: 212136y x x A x T +=111868)(z y x y P b b T T +-==因此,原方程可化为:配方得:令则原方程化为标准方程:0~8~3~622=++z y x该曲面为椭圆抛物面.四、总结不同方法化简的优劣对于初学者来说,配方法是最基础的方法,它的原理很容易被学生消化吸收,因此,这种方法需要熟练掌握,灵活应用.配方法是推导二次型重要理论的基础,要熟悉它的推导过程.对于简单的二次型也可以灵活使用合同变换法,有时候这种方法更具简便性,节约计算量和计算时间.正交变换法由于具有保持几何形状不变的优点而备受青睐.在用正交变换法化二次型为标准型中,如何求正交矩阵是一个难点,常见的求法只有一种,求解过程大致如下:先用二次型矩阵A的特征方程求出A的n个特征值,然后通过直接求矩阵方程的基础解系,得到对应于征值的线性无关的特征向量,再用施密特正交化过程将它们正交化、单位化,进而得到n个两两正交的单位特征向量,最后由这n 个两两正交的单位特征向量构成正交矩阵,即得所要求的正交变换和对应的标准型.这种方法综合性比较强,算比较复杂.雅可比方法是一种新的方法,它的过程与施密特正交化过程类似,思想上也有相似之处.用它解决正定性问题时比较方便.体会并深刻理解各种方法的实质与技巧,才能帮助我们快速并正确解决二次型问题.这需要多做练习,熟能生巧,方可以不变应万变.二次型是高等代数的重要容之一,二次型的基本问题是要寻找一个线性替换把它变成平方项,即二次型的标准型.二次型的理论来源于解析几何中二次曲线、二次曲面的化简问题,其理论也在网络、分析、热力学等问题中有广泛的应用.将二次型化为标准型往往是困惑学生的一大难点问题,而且它在物理学、工程学、经济学等领域有非常重要的应用,因此探索将实二次型化为标准型的简单方法有重要的理论与应用价值通过典型例题,更能体会在处理二次型问题时的多样性和灵活性,我们应熟练掌握各种方法.致谢我衷心感谢我们论文指导老师,她在论文选题和写作过程中,给予了许许多多认真细致的指导和鼓励 .我也要感谢多年来家人和朋友对我学习工作上的支持,这是我继续在求学路上不断前进的动力之一.大学生活一晃而过,回首走过的岁月,心中倍感充实,当我写完这篇毕业论文的时候,有一种如释重负的感觉,感慨良多.请允许我以此文来纪念大学四年的美好时光,时间的前进是无法挽回的,四年的求学生活让我明白了一切都来之不易,得到成果的前提是你要不断地脚踏实地地付出自己的努力本文主要就二次型化标准型的方法进行了一定的探讨,在前人的基础上综合了六种化二次型为标准型的方法,这对于二次型的研究和教学都有一定意义!参考文献[1]王萼芳,石生明.高等代数(第三版)[M]:高等教育,2007.[2]同济大学数学教研室.线性代数(第三版)[M]:高等教育,1999.[3]丘维声.高等代数(上册)[M].:高等教育,2002.[4]屠伯.线性代数-方法导引[M].:科技,1986.[5]蓝以中.高等代数简明教程[M].:大学,2003.[6]王琳.用正交变换化实二次为标准形方法研究.[J]数学通讯,1990(3).[7]五明,永金,栋春.实二次型化为标准形的几种方法[J]和田师专科学校学报(汉文综合版)2007,27(5)[8]郭佑镇.实二次型的化简及应用[J]师专学报(自然科学版)2000(2).[9]明琼.把二次型化为标准形的方法[J]工程数学.1998,14(1).[10]大学数学系几何与代数教研室小组编.高等代数(第三版)[M].高等教育.2007:205-234.[11]庄瓦金编.高等代数教程[M].高等教育.2004:427.[12]惠汝,红超.浅淡二次型标准形的两种方法[J].师学院报,2004,23(2):13-15.[13]秀花.二次型的应用[J].学院报,2010,10(6):28-29[14]鱼浩,戴培良.二次型在不定方程中的应用[J].常熟理工学院报,2009,23(10):38-42[15]文杰.实二次型半正定性及应用[J].渤海大学学报,2004,25(2):127-129[16]华盛.二次型半正定性在不等式证明中的应用[J].科技通报,2002,18(30):227[17]袁仕芳,云长,曾丽容.关于二次型XAX最大值和最小值的教学思考[J].考试周刊,2010,35:74[18]JaneM.Day,DanKalmanTeachingLinearAlgebra:IssuesandResources[J]. TheCollegeMathematicsJournal.2001.。

二次型与二次曲面

二次型与二次曲面
1 1 A 1 1 1 2 2 1 2 2 0
.
例2 将二次型 f x1x2 x3 x4 写成矩阵形式. 解:f 是一个四元二次型,先写出二次型的矩阵
0 1 2 A 0 0 1 2 0 0 0 0 0 0 0 , 1 2 0 x1 x2 X x3 x4
的特征值全大于 ,使
是实二次型,由定理7.1知 正交变换
由定理7.3知, 正定 推论7.2 实二次型 证 维实向量 所以 是正定二次型. 已知 是正定二次型,由推论7.1知, 正交阵 ,使 正定 实可逆阵 使, 可逆, . .
, 其中
.

, 则
所以 由 可逆及 可逆,知 可逆.
定理7.4 实对称阵 为正定的 于零. 即
(1)可变为 X CY . 但不惟一. (2) 当C 是可逆阵时. (1)式是可逆线性变换.
注1º 的秩 f 的标准形中系数不为0的 平方项的个数. 2º任一个实二次型都可通过可逆线性变换化为标准形. 元二次型的标准形不惟一,有三种方法化标准形. 7.2.1 用正交变换化实二次型为标准形 对于实二次型,最实用的方法是正交变换法,即所作的 可逆线性变换中可逆矩阵 不只是可逆,还是正交矩阵. 这个正交阵的存在是由实对称矩阵的性质决定的,值得注 意的是这种方法仅限于实二次型. 定理7.1 对 (不惟一) 元实二次型 , 正交线性变换: ,使二次型 化为标准形. 是 的 个特征值.a22 A an1 an 2 a1n a 2n , aij a ji ann x1 x2 X xn
则二次型的矩阵形式为 f ( x1 , x2 ,, xn ) X AX , A 为二次型 f 的矩阵, r ( A)为二次型 f 的秩. |~| 3.二次型 f A 对称阵 对应 注:讨论二次型问题,首要的问题是给定二次型能准确 地写出二次型的矩阵,反之,给定一个对称阵,会写出以 它为矩阵的二次型. 这里的关键概念是二次型的矩阵是一 个对称矩阵.

二次型在二次曲面研究中的应用

二次型在二次曲面研究中的应用

1 2
,
2
1 2
,
3 0 , 分别
求出它们所对应的特征向量, 并单位化得:
1 2
p1
1
2
,
0
1 2
p1
1
2
,
0
0 p3 0
1
取P= ( p1 , p2 , p3 ) ,则P为正交矩阵. 作正交变换
x = Py , y x1, y1, z1T , 则有:
xT
A
x
1 2
其中P为正交矩阵,y =(x1, y1, z1)T,相应地有
bT x bT Py bT P y k1x1 k2 y1 k3z1
于是方程(2)可化为
1x12 2 y12 3z12 k1x1 k2 y1 k3z1 c 0 (3)
第二步, 作平移变换 ~y y y0 ,将方程(3) 化为标准方程, 其中 ~y ( x~, ~y, ~z ) , 这里只要用
方程, 并说明它是什么曲面.
解 z = x y 可写成 xy – z = 0 , 令
x
0
0
1 2
0
x y , b 0 ,
z
1
A
该曲面方程用矩阵形式表示为:
1 2 0
0 0
0
0
xT A x bT x 0
A E ( 1)( 1)
22
A的特征值为
1
其中 aij a ji 利用二次型的表示方法,方程
(1)可表示成下列形式:
xT Ax bT x c 0 (2)
为研究一般二次曲面的性态,我们需将二次 曲面的一般方程转化为标准方程,为此分两步进 行.
第一步,利用正交变换x = Py 将方程(2)左 边的二次型xTAx的部分化成标准形:

第六章 二次型与二次曲面


二、线性变换
在平面解析几何中,为了确定二次方程
ax 2bxy cy d
2 2
所表示的曲线的性态,通常利用转轴公式:
x x cos y sin y x sin y cos
选择适当的 ,消去交叉项,可使上面的方程化为
ax 2 by 2 d , 上述 x , y 由 x , y 的线性表达式给出,通常称为
a22 x 2a23 x2 x3 2a2 n x2 xn
2 2

f ( x1 , x2 , , xn ) 2 a11 x1 a12 x1 x2 a13 x1 x3 a1n x1 xn
2 a21 x2 x1 a22 x2 a23 x2 x3 a2 n x2 xn
n
n

a11 a 21 A a n1
a12 a1n a22 a 2 n , an 2 ann
T
x1 x2 X , x n
则上述二次型可以用矩阵形式表示为
f ( x1 , x2 ,, xn ) X AX ,
2 a nn x n
2 an1 xn x1 an 2 xn x2 ann xn
2014-1-23 南京邮电大学 邱中华
a
i 1 j 1
n
n
ij
xi x j ,
4
f ( x1 , x2 ,, xn ) aij xi x j
i 1 j 1
例1 用正交变换将二次型 2 2 2 f 17 x1 14 x2 14 x3 4 x1 x2 4 x1 x3 8 x2 x3 化为标准形,并求所作的正交变换。 二次型的矩阵

正定二次型的性质与应用论文

河北师范大学本科生毕业论文(设计)文献综述河北师范大学本科生毕业论文(设计)翻译文章本科生毕业论文设计正定二次型的性质与应用作者姓名:指导教师:所在学院:数学与信息科学学院专业(系):数学与应用数学班级(届):2013届数学B班二〇一三年四月二十八日目录中文摘要、关键字 (2)1 正定二次型与正定矩阵的概念 (3)1.1 二次型的概念 (3)1.2 二次型的矩阵形式 (3)1.3 正定二次型与正定矩阵的概念 (3)2 实正定矩阵的判定方法及证明 (4)2.1 利用定义判定 (4)2.2 利用标准型判定 (4)2.3 利用主子式判定 (8)2.4 其他常用判定 (11)3 实正定矩阵的应用 (15)3.1 用正定矩阵的定义来证明一些结论 (15)3.2 正定矩阵在数学分析上的应用 (17)3.2.1 多元函数的极值问题 (17)3.2.2 正定矩阵在积分中的应用 (19)3.3 正定矩阵在运筹中的应用 (19)3.3.1 具有约束方程的最优化问题 (19)3.4 用正定矩阵来证明不等式 (20)3.5 正定矩阵在几何中的应用 (21)3.5.1二次曲面的标准型 (21)参考文献 (23)英文摘要、关键字 (24)正定二次型的性质及应用数学与信息科学学院数学与应用数学专业指导教师高锁刚作者王敬摘要:本文以矩阵和向量为工具,研究了一种特殊的函数,即二次型。

然而在它的实际应用中许多二次型都是实二次型,其中最重要的一类是正定二次型。

本文主要阐述的是实矩阵的正定性以及应用,文中给出了实对称正定矩阵的多个判定定理和重要结论,从而使人们能够更好地使用正定矩阵这个工具。

全文共分三章,第一章主要叙述二次型及正定二次型、正定矩阵的定义;第二章主要列举说明正定性矩阵的几个判别方法;第三章简单地罗列一些实例来阐述实矩阵正定性的应用。

关键字:正定矩阵正定二次型特征值实对称矩阵1 正定二次型与正定矩阵的概念1.1[1] 二次型的概念设P 是一个数域,ij a ∈P, n 个文字1x ,2x ,…,n x 的二次齐次多项式()n n n x x a x x a x x a x a x x x f 11311321122111212...22,...,,++++=n n x x a x x a x a 22322322222...2++++......+2n nn x a +=∑∑==n i nj jiij xx a 11()n j i a a ji ij ,...2,1,,==称为数域P 上的一个n 元二次型,简称二次型.当ij a 为实数时, f 称为实二次型.当ij a 为复数时,称f 为复二次型.如果二次型中只含有文字的平方项,即),,,(21n x x x f =2221112...n n d x d x d x +++则称f 为标准型. 1.2 二次型的矩阵形式二次型),,,(21n x x x f 可唯一表示成),,,(21n x x x f =T x Ax ,其中12(,,...,)T n x x x x =,()ij n n A a ⨯=为对称矩阵,称上式为二次型的矩阵形式,称A 为二次型的矩阵(A 必是对称矩阵),称A 的秩为二次型f 的秩.1.3 正定二次型与正定矩阵的概念设),,,(21n x x x f =Tx Ax 是n 元实二次型(A 为实对称矩阵),如果对任意不全为零的实数12,,...,n c c c 都有12(,,...)0n f c c c >,则称f 为正定二次型,称A 为正定矩阵;如果12(,,...)0n f c c c ≥,则称f 为半正定二次型,称A 为半正定矩阵;如果12(,,...)0n f c c c <,则称f 为负定二次型,称A 为负定矩阵;如果0),,,(21≤n c c c f ,称f 为半负定二次型,称A 为半负定矩阵;既不是正定又不是负定的实二次型称为不定的二次型,称A 为不定矩阵.2 实正定矩阵的判定方法及证明2.1 利用定义判定定理1 实对称矩阵A ∈n n R ⨯是正定矩阵的充分而且必要条件是对于任意的n 维非零列向量x , 即n R x ∈≠0,使0>Ax x T .定理2[2] 实对称矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n d d 1是正定矩阵的充分而且必要条件是0>i d , n i ,2,1=.证明:实对称矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n d d 1是正定的充要条件是对任意的n 维非零列向量x , 即n R x ∈≠0,有T x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n d d 10>x , 令T x )0,,0,1( =,则得01>d ,同理,分别令x 为所有的单位列向量,则可得0>i d ,n i ,,2,1 =,所以定理可证.定理3 实对称矩阵n n R A ⨯∈是正定矩阵的充分而且必要条件是对任意的n R x ∈≠0,使二次型Ax x T 的秩和符号差均等于n .证明:因为实对称矩阵A 是正定矩阵,所以存在二次型Ax x T 为正定二次型,其规范形为22221n y y y +++ ,所以正惯性指数为n ,即得二次型Ax x T 的秩和符号差均等于n .所以A 是正定矩阵.2.2 利用标准型判定定理 4 [2] 实对称矩阵n n R A ⨯∈是正定矩阵的充分而且必要条件是A 与单位矩阵E合同,即存在实非奇异矩阵C ,使E AC C T =.证明:必要性,因为实对称矩阵A 是正定矩阵,所以矩阵A 对应的二次型Ax x T为正定二次型,可经过一适当的非退化线性替换TY X =化为规范形22221ny y y +++ ,对应的矩阵为单位矩阵E . 即()()TY A TY T EY Y T =,所以()EY Y Y AT T Y T T T =,故可证得A 合同于单位矩阵E . 充分性, 若A 合同于矩阵E ,则存在可逆矩阵B ,使得A =T B EB .任意取X≠0, BX Y ==()12,,T n y y y ,则有Y ≠0.于是有Y Y EBX B X AX X T T T T ===22212n y y y ++ >0,定理可以得证.定理5 实对称矩阵n n R A ⨯∈是正定矩阵的充分而且必要条件是A 的所有特征根都大于零.证明:必要性, A 为正定矩阵,若A 的全部特征值n λλλ,,,21 不全大于0,不妨设01≤λ. 则存在正交矩阵P 使得有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n TAP P λλλ21成立. 令(),,,,21n P ααα = 则有i i i A αλα=()n i ,,2,1 =,即i α为A 的属于特征值i λ的特征向量.特别的,取单位特征向量01≠β,即111βλβ=A .于是11111βλβββT T A =01≤=λ,而这与A 为正定矩阵相矛盾,所以A 的全部特征值n λλλ,,,21 都大于0.充分性,A 的特征值为n λλλ,,,21 ,则存在正交矩阵T ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==-n T AT T AT T λλλ 211则有121-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=T T A n λλλ. 任意取0≠X ,则有Y Y X T TX AX X n T T n T T ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλλλλλ2121, 其中T X Y T T =()0,,,21≠=n y y y ,于是得AX X T 02222211>+++=n n y y y λλλ ,即有A 为正定矩.定理6[3] 实对称矩阵n n R A ⨯∈为正定矩阵的充要条件是A 是半正定矩阵且0≠A . 证明:必要性, 因为A 是正定矩阵,则A 一定是半正定矩阵,且0≠A .充分性, 设A 的特征值为n λλλ,,,21 ,由于A 是半正定矩阵可知,i λ()n i ,,2,10 =≥,又021≠⋅⋅⋅=n A λλλ ,故()n i i ,,2,10 =>λ,所以A 是正定矩阵.定理7 实对称矩阵n n R A ⨯∈ 是正定矩阵的充分而且必要条件是存在实可逆矩阵C ,使得C C A T=.证明:必要性,若A 是实对称正定矩阵,则存在实可逆矩阵C 使得EC C A T =C C T =,其中E 为n 阶单位矩阵.充分性,因为存在实可逆矩阵C ,使得C C A T =,并且有C C A T =EC C T=,其中E 为n 阶单位矩阵.即实对称矩阵A 合同于E ,所以可得A 为正定矩阵.定理8 实对称矩阵n n R A ⨯∈为正定矩阵的充分而且必要条件是存在实列满秩矩阵n m P ⨯, 使P P A T =.证明:必要性, 因为A 为正定矩阵, 则存在n 阶实可逆矩阵C , 使得C C A T =()()n m n TnnC -⨯⨯=0()⎪⎪⎭⎫⎝⎛⨯-⨯n n m n n C 0. 令 =P ()⎪⎪⎭⎫⎝⎛⨯-⨯n n m n n C 0,则 P P A T =, 其中P 为n m ⨯列满秩矩阵. 充分性,n m P ⨯为实列满秩矩阵,则P P T 为n 阶可逆矩阵, 故对任意的n R X ∈,0≠X , 则由秩m C =, 知,0≠CX 并且有0)(>==PX PX PX P X AX X T T T T ,即A 为正定矩阵.定理9[4] 对称矩阵A 是正定矩阵的充分而且必要条件是对任意的实n 阶可逆方阵C ,使得AC C T 都是正定的.证明:必要性,首先()TT AC C AC C T =,对任意n R X ∈,0≠X ,由秩n C =,知,0≠CX 由于A为正定矩阵,故()()(),0>=CX A CX X AC C X TT T即AC C T 为正定矩阵.充分性,AC C T 正定,则对任意的n R X ∈,0≠X ,由秩C n =,知,0≠TX 并且()()CX A CX T =()0>X AC C X T T ,即可得A 为正定矩阵.定理10 实对称矩阵A 是正定矩阵的充分而且必要条件是存在实可逆上三角矩阵R ,使R R A T =.证明:必要性,由于A 是实对称正定矩阵,所以存在实可逆矩阵P ,使得P P A T =.且存在矩阵Q 和R 使得QR P =,其中Q 为n 阶正交矩阵,R 为n 阶主对角元素都大于零的上三角矩阵,从而有P P A T =QR Q R T T =R R T =.充分性,因为存在n 阶主对角元素都大于零的上三角矩阵R ,使得R R A T =. 则显然矩阵R 可逆, 即可证得A 是正定矩阵.定理11 实对称矩阵n n R A ⨯∈为正定矩阵的充分而且必要条件是存在n 阶主对角元素都大于零的下三角矩阵U ,使得U U A T =.(证明同上)2.3 利用主子式判定定理12 实对称矩阵nn R A ⨯∈ 是正定矩阵的充分而且必要条件是A 的各阶顺序主子式都大于零.证明:必要性, 因为A 是实对称正定矩阵,所以存在二次型()n x x x f ,,,21 ∑∑===ni nj j i ij x x a 11是正定的.且对于每个k ,n k ≤≤1令()k k x x f ,,1 ∑∑===ki kj j i ij x x a 11.对于任意一组不全为零的实数k b b ,,1 ,有()k k b b f ,,1 ∑∑===k i kj j i ij b b a 11=()0,,0,,,1 k b b f .0>所以()k k x x f ,,1 是正定的. 由正定矩阵的行列式大于零可知,k f 的行列式,01111>kkk k a a a a n k ,,1 =. 所以可证得矩阵A 的一切顺序主子式都大于0.充分性, 对n 作数学归纳法.当1=n 时, ().21111x a x f =由条件中011>a ,显然可得()1x f 是正定的. 假设对于1-n 元二次型成立,现在来证明n 元二次型的情形.令 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=----1,11,11,1111n n n n a a a a A ,=β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-n n n a a ,11 , 于是矩阵A 可以分块写成A ⎥⎦⎤⎢⎣⎡=nn Ta A ββ1. 由于A 的顺序主子式全大于零,所以1A 的顺序主子式也全大于零. 由归纳法假设可以知道,1A 是正定矩阵,即存在可逆的1-n 阶矩阵P 使得11-=n T E P A P ,此处1-n E 可代表1-n 阶单位矩阵.令⎥⎦⎤⎢⎣⎡=1001P C , 则有⎥⎦⎤⎢⎣⎡100T P ⎥⎦⎤⎢⎣⎡nn T a A αα1⎥⎦⎤⎢⎣⎡100P ⎥⎦⎤⎢⎣⎡=-nn TT n a P P E αα1. 再令⎥⎦⎤⎢⎣⎡-=-1012αT n P E C , 则有2112C AC C C T T ⎥⎦⎤⎢⎣⎡-=-101P E T n α⎥⎦⎤⎢⎣⎡-nn T T n a P P E αα1⎥⎦⎤⎢⎣⎡--101αT n P E ⎥⎦⎤⎢⎣⎡-=-ααT T nn n PP a E 001.最后再令21C C C =, ,ααT T nn PP a a -=则有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a AC C T 11 . 两边同时取行列式,可有a A C =2.因为0>A ,所以0>a . 于是可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡a 11 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡a 11 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡a 11 . 所以矩阵A 可与单位矩阵E 合同,并且可以证得矩阵A 是正定矩阵.定理13 实对称矩阵A 是正定矩阵的充分而且必要条件是A 的一切主子式均大于零.证明:必要性, (利用反证法)设A =()ij n n a ⨯是正定矩阵,假如可存在k 阶主子矩阵111212122212,0k k k k k k k ki i i i i i i i i i i i i i i i i i i i a a a a a a A A a a a =<则可根据k i A 是k 阶实对称矩阵,并由引理知可存在k 阶正交矩阵P ,使得P P A k T i k ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=βββ21 此处k βββ,,,21 为k i A 的特征值.由于k i A <0,且k i A =k βββ 21可知k i A 的特征值k βββ,,,21 中至少有一个小于0.推至一般性,设1β<0,令T Y =()1,0,,0 ,则可有Y ≠0并且k T i Y A Y =1u <0,再令T X =12(,,,)n x x x ,则有当{}12,,,k i i i i ∈ 时,可得i i x y =;当i 为其他时,得0i x =.则有X ≠0,且T X AX =k T i Y A Y =1u <0,而这与A 为正定矩阵的假设相矛盾.充分性, 假设k i A 是A 的一个k 阶主子矩阵, 则由于k i A 任意的一个顺序主子式均是A 的一个主子式,所以可知它们都大于0.所以可得k i A 为正定矩阵.定理可以得证.定理14[5] 实对称矩阵n n R A ⨯∈为正定矩阵的充分而且必要条件是A 的一切主子矩阵均为正定矩阵.证明:必要性,A 正定, 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n a a a a A 1111,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111, 其中 k A 为A 的主子矩阵, n i i k ≤<<≤ 11()n k ,,2,1 =.显然 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111()n k ,,2,1 =也是实对称矩阵.由于⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111的k 个顺序主子式均为A 的k 个主子式,所以k 个主子式都大于零, 从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k k k k i i i i i i i i k a a a a A 1111()n k ,,2,1 =为正定矩阵.充分性,若实对称矩阵A 的一切主子矩阵均是正定矩阵,则矩阵A 的一切主子式全都大于零,即可证得A 是正定矩阵.2.4 其他常用判定定理15 若A 是实对称正定矩阵,则1-A 也是实对称正定矩阵. 证明:由于A 是实对称正定矩阵,则0>A ,所以A 可逆.又因()(),111---==A A A T T所以可得1-A 也是实对称矩阵.设A 的特征值为n λλλ,,,21 ,由A 正定有()n i i ,,2,10 =>λ,1-A 的全部特征值为01>iλ()n i ,,2,1 =,即可得1-A 为正定矩阵.定理16 若A 是实对称正定矩阵,则对于任意的整数m ,m A 都是正定矩阵. 证明:I 当0=m 时,显然是正定矩阵.II 当0<m 时,由于m m -=,则有()mm A A 1-=,且1-A 也是正定矩阵,故只需假定m 为正整数即可.(i )当m 为偶数时,由于A A T =,并且⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=22m Tm m A A A ,所以可得m A 是正定的; (ii )当m 为奇数时,由于A 是正定矩阵,所以存在实可逆矩阵C ,使得C C A T=; 由此可得:2121212122----==⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=m m m m CA C A AA A A A A A Tm m Tm m ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=--2121m m CA CA T从而m A 是正定矩阵.定理17 若A 是n 阶实对称正定矩阵,则有*A 也是正定矩阵(其中*A 表示A 的伴随矩阵).证明:已知*A =,1n n R A A ⨯-∈且()(),***==A A A T T又由于A 是正定矩阵,所以0>A .设A 的特征值为n λλλ,,,21 ,则由A 是正定矩阵有()n i i ,,2,10 =>λ,于是有*A 的n 个特征值11211,,,---n A A A λλλ 也都大于零,即可证得*A 也是正定矩阵.定理18 实对称正定矩阵的合同矩阵一定是正定矩阵. 证明:设实对称矩阵A 是正定矩阵,矩阵B 与矩阵A 合同,即存在可逆矩阵P ,使有AP P B T =成立,由于A 是正定矩阵,可知对于任意的n 维非零列向量X , 即nR X ∈≠0,有0>AX X T ,所以令PX Y =,则有0≠PX ,有0)()(>=CX A CX BY Y T T ,所以矩阵B 是正定矩阵,所以定理可得证.定理19 任意两个同阶实对称正定矩阵的和还是正定矩阵,更一般地,正定矩阵的正线性组合也是正定矩阵.证明:设A 、B n n R ⨯∈ 都是正定矩阵,同时又可设0,>b a , 因而对于任意的n R x ∈≠0, 可有0)(>+=+Bx bx Ax ax x bB aA x T T T .所以对于任意的两个同阶的正定矩阵的和仍是正定矩阵.而多于两个矩阵时,可以按照相同的方式进行处理, 并且可以利用数学归纳法给出具体的证明:(1)当2=n 时,由上可知命题结论成立;(2)假设当1+<k n 时有命题结论成立,以下可以证明1+=k n 时命题结论仍成立. 设121,,,+k k A A A A 是同阶的正定矩阵,并且有0,,,,121>+k k b b b b .下证1111+++++k k k k A b A b A b 也为正定矩阵.因而可得对于任意的n R x ∈≠0 有0)(11111111>+++=+++++++x A x b x A x b x A x b x A b A b A b x k T k k T k T k k k k T ,此式中的每一项均为正.所以可以得到当1+=k n 时, 结论成立.综合以上的(1)、(2)可知,对于一切的自然数n ,正定矩阵的正线性组合也仍为正定矩阵.定理20 对于任何的实对称矩阵A ,必存在实数0,0>>βα,使得A E α+与A E +β都是正定矩阵.证明:实对称矩阵A 的所有的特征根都是实数,所以不妨记其中一个绝对值最大的特征根为ολ,只要取οβλ>,则可有A E +β是正定矩阵.假设Q 是正交矩阵,使得⎪⎪⎪⎭⎫⎝⎛=n TAQ Q λλ 1则AQ Q EQ Q Q A E Q T T T +=+ββ)(=ββ⎛⎫ ⎪ ⎪ ⎪⎝⎭ +1n λλ⎛⎫ ⎪⎪ ⎪⎝⎭=1n βλβλ+⎛⎫⎪ ⎪ ⎪+⎝⎭由于0i βλ+>()1,2,,i n = ,可得A E +β也是正定矩阵.而当取1αβ=时,则有0α>,()1E A E A αββ+=+也是正定矩阵,于是定理可以得证.定理21 若A 、B 都是实对称矩阵,并且BA AB =,则AB 也必为正定矩阵. 证明:易知AB 的特征根均大于零,且有当AB BA =时,可有AB BA A B AB T T T ===)(,所以AB 又是对称矩阵,从而可得AB 是正定的.定理22 实对称矩阵=A ⎥⎦⎤⎢⎣⎡3221A A A A T为正定矩阵的充分而且必要条件是1A 和21123A A A A T --都是正定矩阵.证明:当1A 可逆时,有⎥⎦⎤⎢⎣⎡--E A A ET 1120⎥⎦⎤⎢⎣⎡3221A A A A T ⎥⎦⎤⎢⎣⎡--E A A E 0211⎥⎦⎤⎢⎣⎡-=-21123100A A A A A T 必要性, 若A 正定,那么1A 也正定,11-A 存在. 令⎥⎦⎤⎢⎣⎡-=-E A A E P 0211, 则P 可逆,所以AP P T 也正定.从而⎥⎦⎤⎢⎣⎡--21123100A A A A A T 为正定矩阵,因此它的主子矩阵1A 和21123A A A A T--都为正定矩阵.充分性,由于1A 和21123A A A A T --都是正定矩阵,且两个正定矩阵的和也是正定矩阵,可知 ⎥⎦⎤⎢⎣⎡--211231A A A A A T 为正定矩阵. 又可得⎥⎦⎤⎢⎣⎡=3221A A A A A T=()TP 1-⎥⎦⎤⎢⎣⎡--2112300A A A A A T 1-P ,即可证得A 为正定矩阵.定理23 实对称矩阵n n R A ⨯∈为正定矩阵的充分而且必要条件是存在正交的向量组n ααα,,,21 使得.2211Tn n T T A αααααα+++=证明:必要性,因为A 是正定矩阵,所以存在正交矩阵Q ,使得Q Q A n T ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλλ 21,T n Q ),,(21βββ =, 令 i i i βλα=()n i ,,2,1 =为正交向量组, 则可得.2211Tn n T T A αααααα+++=充分性,Tn n T T A αααααα+++= 2211= )(21T n TT ααα ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n ααα 21 T T T = (T 为正交矩阵), 显然可证得A 是正定矩阵.3 正定矩阵的应用3.1 用正定矩阵的定义来证明一些结论例 3.1 设A ,B 是n n ⨯实对称矩阵,A 是正定阵,证明:存在实可逆阵T ,使T B A T )(+'为对角阵.证 由于A 是正定阵,从而合同于单位阵E ,即可知存在实可逆阵Q ,使E AQ Q ='. 而BQ Q '仍是实对称矩阵,从而存在正交阵P ,使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=''n P BQ Q P λλ 1)(,其中n λλ,,1 是BQ Q '的特征值,若令QP T =,则可有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++=+'n T B A T λλ11)(1 . 例 3.2 设B 为n 阶实对称矩阵,且正定. A 为m n ⨯实矩阵, T A 为A 的转置矩阵.试证:BA A T 为正定矩阵的充分而且必要条件是秩m A =)(.证 充分性 因为BA A BA A T T T =)(.0,1≠∈∀⨯x R x n ,由秩m A =,知()n j i a a ji ij ,...2,1,,==,而A 为正定阵,故0)()()(>=Ax B Ax x BA A x T T T ,此即BA A T 为正定阵.必要性 利用反证法.若秩m A <,则有0=Ax 有非零实数解0x 存在,即00=Ax ,但00≠x ,并且由BA A T 为正定矩阵,可知)()()(00000Ax B Ax x BA A x T T T=< ①另一方面,因为00=Ax ,所以m A =.0)()(00=Ax B Ax T ②由于①、②矛盾,故秩m A =)(.例 3.3 设A 是n 阶正定矩阵,B 是n 阶半正定矩阵,求证: A B A B +≥+,当且仅当0B =或n 1=时等号成立.证 由A 0>可知,存在n 阶的可逆矩阵P ,使得T P BP n E =成立,所以有()T T n P A B P E P BP +=+,且T T n P A B P E P BP +=+又因为T P BP 是半正定矩阵,设T P BP C ==()ij C ,则可有Tn E P BP +=11121212221211nnn n nnc c c c c c c c c ++=12121111n n n n n c c c c ---+++++其中i c 是C 的所有i 阶主子式之和,1,2,,i n = .而又因为0T C P BP =≥,并且它的所有主子式都是非负的,因此可得T n E P BP +≥1n +n c =n E +T P BP =T P AP +T P BP所以T P A B P +≥()TP A B P +由此可得A B A B +≥+当0B =或1n =时,显然有A B A B +≥+成立;当0B ≠且1n >时,易知T P BP C =0n n ⨯≠,于是可得至少有一个ij c ≠0,此时C 的一阶主子式ii c ,jj c 均不能为零,否则00ijijc c =2ij c -0<,这与C 是半正定矩阵矛盾.于是1c 0>,进一步可有T n E P BP +1>n c +,从而得A B A B +≥+成立.3.2 正定矩阵在数学分析上的应用3.2.1 多元函数的极值问题例3.4 求函数321232221321212),,(x x x x x x x x x f ++++=的极值.解 因为2211123x x x f +=∂∂,212212x x x f +=∂∂,2233+=∂∂x x f,令01=∂∂x f ,02=∂∂x f,03=∂∂x f ,得驻点T x )1,0,0(0-=,T x )1,144,24(1--=.又)(x f 的各二阶偏导数为12126x xf =∂∂,12212=∂∂∂x x f ,2312=∂∂∂x x f ,2222=∂∂xf ,0322=∂∂∂x x f ,2232=∂∂xf ,得(黑塞)矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=20202122126)(1x x H .在点0x 处,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=20202122120)(0x H ,而)(0x H 的顺序主子式:0det 1=H ,0144212120det 2<-==H ,0296)(det det 03<-==x H H ,因此)(0x H 不定,0x 不是极值点.在点1x 处,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2020212212144)(1x H ,而)(1x H 的顺序主子式:0144det 1>=H ,014421212144det 2>==H , 0280220212212144det 3>==H , 故)(1x H 为正定矩阵,T x )1,144,24(1--=为极小值点,极小值为6913)1,144,24()(1-=--=f x f .3.2.2 正定矩阵在积分中的应用例3.5 证明:椭球体331j 11ij i j i a x x ==Ω=∑∑:的体积等于1/24/3,Aπ-其中()33ijA a ⨯=是正定矩阵.证明 A 是正定矩阵,∴∃正交矩阵T ,使得⎪⎪⎪⎭⎫⎝⎛=321λλλAT T T,0>i λ,)3,2,1(=i 为A 的特征值 令⎪⎪⎪⎪⎭⎫⎝⎛=---131211λλλB 作变换TBY y y y TB x x x X =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=321321,则此变换的Jacobi 行列式为2121321)(--=====AB B T TB J λλλ13312321j 13()ij iji x a x xx x x A x x ==⎛⎫ ⎪= ⎪ ⎪⎝⎭∑∑=Y Y BY B Y ATBY T B Y AX X TTT T T T T =⎪⎪⎪⎭⎫⎝⎛==321λλλ 1/212312312311T T X AX Y Y dx dx dx dx dx dx Ady dy dy -Ω≤≤∴===⎰⎰⎰⎰⎰⎰⎰⎰⎰1/24/3Aπ-3.3 正定矩阵在运筹中的应用3.3.1 具有约束方程的最优化问题例 3.6 某地区计划明年修建公路x 百公里和创建工业园区y 百公顷,假设收益函数为xy y x f =),(,受所能提供的资源(包括资金、设备、劳动力等)的限制,x 和y 需要满足约束条件369422≤+y x ,求使),(y x f 达到最大值的计划数x 和y .解 由于约束方程369422=+y x 刻画的不是坐标平面上单位向量的集合,我们需要做变量变换.将这个约束方程写成1)2()3(22=+yx , 再设31x x =,22yx =,即13x x =,22x y =,则约束方程可以写成 12221=+x x ,而目标函数变成2121216)2)(3()2,3(x x x x x x f ==.现在的问题就成为求216)(x x x F =在1=x x T下的最大值,其中⎪⎪⎭⎫⎝⎛=21x x x .设⎥⎦⎤⎢⎣⎡=0330A ,则 Ax x x F T =)(,A 的特征值是3±.属于31=λ的单位特征向量是⎪⎪⎭⎫⎝⎛2121.由此得,当211=x ,212=x 时,)(x F 取得最大值3,即当12.22331≈==x x 百公里,41.1222≈==x y 百公顷时,收益函数),(y x f 去的最大值3.3.4 用正定矩阵来证明不等式例3.7 证明不等式2224222x y z xy xz ++>-(其中,,x y z 是不全为零的实数)证明 令⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=--++=z y x z y x xz xy z y x f 301051111),,(2235222则有⎪⎪⎪⎭⎫⎝⎛----=301051111P 的各阶顺序主子式为 01>,045111>=--,0731051111>=----, 所以P 是正定矩阵00,0x y z ⎛⎫⎛⎫ ⎪ ⎪∴∀≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭有0f >故可得原不等式成立.3.5 正定矩阵在几何中的应用3.5.1二次曲面的标准型 例3.8 在3R 中化简二次方程03828322620828102222=-++-+-++-z y x zx yz xy z y x ,并判断其曲面形状.解 二次项相应的对称矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=10410421410141A .A 的特征多项式为)18)(18)(9(+--=-λλλλI A ,特征值为91=λ,182=λ,183=λ,对应的单位特征向量构成的正交矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=12221222131P .令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x P z y x ,方程化为 0938316343222222=-'-'+'-'-'+'z y x z y x , 配方得1)34(2)31(2)31(222=+'-+'+-'z y x .令31-'=x X ,31+'=y Y ,34+'=z Z ,得122222=-+Z Y X ,故原方程表示的曲面为单叶双曲面.参考文献[1] 北京大学数学系几何与代数教研室前代数小组.高等代数(第三版)[M],北京:高等教育出版社,2003.[2] 线性代数/余长安编著.—武汉:武汉大学出版社,2010.1[3] 胡跃进.广义正定矩阵的一个不等式[J],阜阳师范学院学报(自然科学版),2001.18(1):10-11.[4] 张禾瑞,郝丙新. 高等代数(第三版)[M],北京:高等教育出版社,1983.[5] 钱吉林.高等代数解题精粹(修订版)[M],北京:中央民族大学出版社,2002.Properties and Applications of positive definite quadratic form Summary: Based on the matrix and vector tool, we study a kind of special function, quadratic form. However many quadratics in practical application are real quadratic form, with one of the most important class being positive definite quadratic form. This paper focuses on the positive definiteness and application of the real matrix. This paper presents several discrimination methods of the real symmetric positive definite matrix and important conclusions, which allow people to make better use of this tool in the positive definite matrix. The paper is divided into three chapters, the first chapter mainly describes the definition of the quadratic, positive definite quadratic form and the positive definite matrix; the second chapter cited several matrix discrimination method of the description positive definiteness; the third chapter simply list some examples to illustrate the application of the positive definiteness of a real matrix.Keyword: positive definite quadratic form positive definite matrixcharacteristic value necessary and sufficient condition real symmetric matrix。

二次型与二次曲面的关系知乎

二次型与二次曲面的关系知乎二次型和二次曲面是线性代数中两个非常重要的概念,它们之间存在着紧密的联系。

本文将从二次型的定义、二次曲面的定义、二次型与二次曲面的关系等方面展开探讨,并通过具体的例子来加深理解。

首先,我们来回顾一下二次型的定义。

在线性代数中,一个二次型可以用一个对称矩阵来表示。

设有一个n元二次型,即一个n维向量x经过一个n×n的对称矩阵A的线性变换后的值,表示为Q(x)=x^T·A·x,其中x=[x1, x2, ..., xn]^T是一个n维向量,A是一个n×n的对称矩阵。

二次型的值可以理解为向量x在二次曲面上的高度或者说是该位置点的能量。

接下来,我们来回顾一下二次曲面的定义。

一个二次曲面可以用一个二次齐次方程来表示。

一个n维二次曲面可以表示为F(x)=x^T·C·x=0,其中x=[x1, x2, ..., xn]^T是一个n维向量,C是一个n×n的对称矩阵。

如果F(x)>0,那么点x在二次曲面的外部;如果F(x)<0,那么点x在二次曲面的内部;如果F(x)=0,那么点x在二次曲面上。

现在,我们来探讨二次型与二次曲面的关系。

通过观察二次型Q(x)=x^T·A·x和二次曲面F(x)=x^T·C·x=0的定义式,我们可以发现它们有很多相似之处。

首先,它们都涉及到n维向量x的平方项,因此它们都具有二次的特点。

其次,它们的系数矩阵A和C都是对称矩阵,这是因为二次型和二次曲面的定义式都要求它们的系数矩阵是对称的。

最后,它们的形式非常相似,只是等式左边是一个二次型,右边是一个常数或者是零。

通过进一步观察,我们可以发现更深层次的联系。

具体来说,二次型的矩阵A可以影响二次曲面的方程的形状和位置。

首先,矩阵A的特征值和特征向量决定了二次型Q(x)的主轴方向和主轴长度,进而影响了二次曲面的形状。

化二次型为标准形的几种方法

化二次型为标准形的几种方法摘要二次型是代数学要研究的重要内容,我们在研究二次型问题时,为了方便,通常将二次型化为标准形.这既是一个重点又是一个难点,本文介绍了一些化二次型为标准形的方法:正交变换法,配方法,初等变换法,雅可比方法,偏导数法.正文详细介绍了几种方法的定义以及具体步骤,并举出合适的例题加以说明.其中,偏导数法与配方法又相似,只是前者具有固定的步骤,而配方法需要观察去配方.关键词:正交变换法配方法初等变换法雅可比方法偏导数法reduce the quadratic forms to thestandard formsAbstract:Quadratic is the important content should study algebra, in our studies of quadratic problem, for convenience, will usually be quadratic into standard form. This is both a key is a difficulty, this paper introduces some HuaEr times for the standard form of orthogonal transform method, method: match method, elementary transformation, jacobian method, partial derivative method. The text introduces several methods defined and concrete step, simultaneously gives appropriate examples to illustrate. Among them, the partial derivative method and match method and similar, but the former has the fixed steps, and match method need to observed to formula.Keywords:orthogonal transform method match method elementary transformation jacobian method partial derivative method一、 引言二次型的本质是一个关于n 个变量二次齐次函数,在它的表达式中除了平方项就是交叉项,没有一次项或常数项,其具体定义为:设P 是一个数域,一个系数在数域P 中12,n x x x ⋯的二次齐次多项式2121112121211222222f(,,,,)2...2...2...n n n n n nn n x x x a x a x x a x x a x a x x a x =++++++++= 11n n ij ij j i a x x ==∑∑,称为数域P 上的一个n 元二次型.二次型具有广泛的应用性,在工程技术、经济管理、社会科学以及数学的其他分支中均需要运用到二次型,在实际运用过程中经常需要将二次型化为标准形,很多同学能够根据标准的步骤将二次型化为标准形,但是却不能很好地根据所给的题目运用最适宜的方法进行解决.本文参考已有的研究结果,总结化二次型为标准形的几种方法,分析每种方法的解题原理和过程,归纳其应用特点,帮助《线性代数》的初学者根据题目的特点和要求采取最佳的方法解决问题,达到简明快速的目的.关于二次型化为标准型的问题,许多数学学者作了较深入的研究,获得了许多具有研究价值和参考价值的成果.庄瓦金在文【11】中给出了二次型的定义及其若干性质.陈惠汝、刘红超在文【12】中将二次型和非退化线性替换用矩阵形式表示,对二次型化为标准形问题采取两种转化思路:一是联系矩阵的初等变换,把问题转化为矩阵合同变换问题;二是借助实对称矩阵特征值与特征向量的有关理论,把问题转化为用正交变换化实对称矩阵为对角形的问题.这两种转化思路产生了二次型化为标准形的两种方法,即合同变换法(也称初等变换法)和正交变换法.李五明,张永金,张栋春在【7】中给出了实二次型化为标准形的方法.通过观察各项进行配方,其实质就是运用非退化的线性替换.使用配方法将二次型化为标准形问题时采取两种转化思路:一是含有平方项时,把平方项集中,然后配方,化为标准形;二是不含平方项时构造平方项,进行逆变换,继续第一步进行配方,这种转化思路产生了二次型化为标准形的方法,即配方法.胡明琼在【9】中给出了二次型化为标准形的方法.此方法是利用二次型的矩阵的顺序主子式来确定标准形中各项平方和项的系数.它要求二次形的矩阵所有的顺序主子式必须都不为零.这种转化思路产生了又一种二次型化为标准形的方法,即合雅可比方法.郭佑镇在【8】中给出了实二次型的化简及应用偏导数法与配方法的实质是相同的,但是它是根据函数与其偏导数之间关系这一原理,依据配方法而提出的化二次型为标准行的新方法,解题思路与配方法极为相似.把问题转化为用偏导数法实解决问题.这种转化思路产生了二次型化为标准形的另一种方法,即偏导数法.孙秀花在文【13】讨论了化二次型为标准形的两种常用方法的区别:正交变换法的第一步是将二次型写成矩阵形式,然后将二次型的矩阵通过单位正交化方法进行对角化,最后利用正交矩阵得到正交变换,利用特征值得到标准形.正交变换法需要求出二次型矩阵的全部特征值,即求特征方程的根,由于代数方程没有统一的求根公式,因此在操作上存在一定的困难.而配方法避免了求解矩阵特征值的问题,因而使用起来比较方便.以上学者的研究为本文介绍的化二次型为标准形的六种方法奠定了基础,为以后的研究工作做出了重要贡献.本文梳理了已有的研究成果,并对六种方法做出总结,希望能够对未来的相关研究作出贡献.二、 化二次型为标准形的六种方法(一)正交变换法由于实对称矩阵必定与对角矩阵合同,因此任何实二次型必定可以通过一个适当的正交线性替换将此实二次型化为标准形.定理1 任意一个实二次型T AX f X ==11n nij i j i j a x x ==∑∑(其中ij ji a a =)都可以经过正交线性替换变成平方和2221122...n n y y y λλλ+++,其中平方项的系数12,...,n λλλ就是矩阵A 的全部特征根.由此定理得到的化二次型为标准形的方法称为正交变换法,此法的解题步骤为:1. 将实二次型表示成矩阵形式T AX f X =,并写出矩阵A ;2. 求出矩阵A 的所有特征值12,...,i λλλ,它们的重数分别记为21,...,i k k k (21...i k k k +++=n )○3求出每个特征值所对应的特征向量,因为21...i k k k +++=n ,所以共有n 个特征向量21...,,i ξξξ.具体方法是:列出方程1()0E A X λ→-=,解出与1λ对应的1k 个线性无关的特征向量;同理求出其他的特征值23,...,i λλλ所对应的特征向量. ○4将n 个特征向量21...,,i ξξξ,先后施行正交化和单位化,得到单位正交向量组21,,,n ηηη,并记C =21)(,,T n ηηη;○5作正交变换X CY =,则二次型f 化为标准形f =2221122...n ny y y λλλ+++. 例1 用正交变换方法化二次型222212341234121314232434,,,)264462(x x x x x x x x x x x x x x x x x x x f x =+++-+--+-为标准形.解:(1)二次型的矩阵为A =1132112332112311⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭-------- 由A 的特征多项式E A λ-=1132112332112311λλλλ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭--------=(3)(7)(1)(1)λλλλ+--+ 得A 的特征值为1λ=-3,2λ=7,3λ=-1,4λ=1.(2)将1λ=-3代入1()0E A X λ-=中,得到方程组12341234123412324320423032402340x x x x x x x x x x x x x x x x -+-+=⎧⎪-+-=⎪⎨-+-+=⎪⎪-+-=⎩ 解此方程组可得出基础解系1α=(1,1,1,1)T --,同样地,分别把2λ=7,3λ=-1,4λ=1 代入()0E A X λ-=中,求解方程组得与2λ=7,3λ=-1,4λ=1对应的基础解系依次为2α=(1,1,1,1)T --,3α=(1,1,1,1)T --,4α=222211223344d x d x d x d x +++. (3)将1234,,,αααα正交化:1α=1β=(1,1,1,1)T -- 2β=2α-21111(,)(,)αββββ=(1,1,1,1)T -- 3β=3α-3132121122(,)(,)(,)(,)αβαβββββββ-=(-1,-1,1,1)T 4β=4α-434142123112233(,)(,)(,)(,)(,)(,)αβαβαββββββββββ--=(1,1,1,1)T 将正交向量组1234,,,ββββ,单位化得单位正交向量组:11=(1,1,1,1)2T η--,21(1,1,1,1)2T η=--,31(1,1,1,1)2T η=--,41(1,1,1,1)2T η=(4)令C =121111111111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭------,于是正交线性替换1234x x x x ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=121111111111111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭------1234y y y y ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭将二次型化为标准形f =2222123173y y y y +-+-. (二) 配方法使用配方法化二次型为标准形时,最重要的是要消去像()i j x x i j ≠这样的交叉项,其方法是利用两数的平方和公式及平方差公式逐个消去非平方项,并构造新的平方项.定理92【】 数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和2221122...n nd x d x d x +++的形式. 用配方法化二次型为标准形的关键是构造平方项,其方法是利用完全平方公式、平方差公式逐步消去交叉项,同时构造新的平方项.具体解题思路可分两种情形来处理:(1) 若二次型中含有某变量i x 的平方项和交叉项,则可先将含i x 的交叉项合并在一起,使之与2i x 配方成为完全平方项,然后类似地对剩下的1n -个变量进行配方,直到各项全部化为平方项为止;(2) 若二次型中没有平方项,则可先利用平方差公式将二次型化为含有平方项的二次型,例如,当二次型中出现交叉项i j x x 时,先作可逆线性替换i i j x y y =+,j i j x y y =-,k k x y =(,k i j ≠),使之成为含有2i y ,2j y 的二次型,然后按照情形(1)的方法进行配方.例2 用配方法化二次型23(,,)f x x x =22112223224x x x x x x +++为标准形,并写出所用的线性替换矩阵.解:原二次型中含有1x 的平方项,先将含有1x 的项集中,利用平方和公式消去12x x , 然后对23,x x 配平方,消去23x x 项.此过程为23(,,)f x x x =221122(2)x x x x +++222233(44)x x x x ++-234x ()()2221223324x x x x x =+++- 于是作非退化线性替换11221233+2y x x y x x y x =+⎧⎪=⎨⎪=⎩,由此得11232233322x y y y x y y x y =-+⎧⎪=-⎨⎪=⎩,即123x x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=112012001-⎛⎫ ⎪- ⎪ ⎪⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭,于是二次型化为标准形23(,,)f x x x =2221234y y y +-,所用的线性替换矩阵为C =112012001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.例3 将二次型23(,,)f x x x =121323422x x x x x x -++化为标准形,并写出所用的线性替换矩阵.解:由于所给的二次型中无平方项,故需要构造出平方项,令11221233x y y x y y x y =+⎧⎪=-⎨⎪=⎩即123x x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=110110001⎛⎫ ⎪- ⎪ ⎪⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭代入原二次型得23(,,)f x x x =12121231234()()2()2()y y y y y y y y y y -+-+++-221213444y y y y =-++此时就可以按照情形(1)中的步骤进行,将含有1y 的项集中,消去13y y ,再分别对 23,y y 配平方即可.所以有23(,,)f x x x =221213444y y y y -++2222113332444y y y y y y =-++-+()222133224y y y y =--++ 作非退化线性替换11322332z y y z y z y =-⎧⎪=⎨⎪=⎩,或写成11222331122y z z y z y z ⎧=+⎪⎪=⎨⎪=⎪⎩, 即123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=11022010001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭123z z z ⎛⎫ ⎪ ⎪ ⎪⎝⎭于是二次型化为标准形23(,,)f x x x =2221234z z z -++,所用的线性替换矩阵为C =110110001⎛⎫ ⎪- ⎪ ⎪⎝⎭11022010001⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=1112211122001⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭ 从以上配方法的过程可以看出,将一般二次型通过配方法化成标准形,实际上就是通过一系列的非退化线性替换将n 个元逐渐配方的过程,这个过程用矩阵的形式表示出来就是将二次型化为标准形的第三种方法------初等变换法.这种方法的实质就是将二次型矩阵通过一系列的合同变换(即进行矩阵的初等行、列变换),逐步地化成与它合同且在形式上又比较简单的矩阵,最后得到对角矩阵的过程.定理[7]3 在数域P 上,任意一个对称矩阵都合同于一对角矩阵.即对于任意一个对称矩阵A ,都可以找到一个可逆矩阵C 使T C AC 成对角形.根据初等矩阵的有关性质知,用初等矩阵左乘A 相当于对A 作一次初等行变换;用初等矩阵右乘A 相当于对A 作一次初等列变换,任意对称矩阵都可用同样类型的初等行变换和初等列变换化成与之合同的对角阵,对初等矩阵施行一个初等行变换,同时要对矩阵作一次相应的列变换,以保证每对变换作过以后得到的矩阵与原来的矩阵合同.具体的解题步骤为:(1)写出二次型()12,n f x x x 的矩阵A ,A 与E 构成2n n ⨯矩阵A E ⎛⎫ ⎪⎝⎭(2)对A 进行初等行变换和相同的初等列变换,化成与A 合同的但是形式较为简单的矩阵,直至将A 化成对角矩阵;但是对E 只进行其中的列变换.,用C D 、分别表示A E 、变化后的矩阵.(3)写出正交变换过程中所进行的一系列非退化线性替换X CY =,此线性替换将化原二次型化为标准形()12,n f x x x ='Y DY . 此过程可简单表示为:A E ⎛⎫ ⎪⎝⎭A E −−−−−−−−−→对进行同样的初等行、列变换对只进行其中的列变换D C ⎛⎫ ⎪⎝⎭. 例4 用初等变换法将二次型23(,,)f x x x =22211213223322243x x x x x x x x x +-+++变为标准形.解:首先写出二次型23(,,)f x x x 的矩阵A =111122123-⎛⎫ ⎪ ⎪ ⎪-⎝⎭然后构造出63⨯矩阵A E ⎛⎫ ⎪⎝⎭=111122123100010001-⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭2113-r ,+r r r −−−−→111013032100010001-⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭2113-,+j j j j −−−−→100013032111010001⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭26364656-3,i -9,i +3,-3i i i i i i −−−−−−−→100010037114013001⎛⎫ ⎪ ⎪ ⎪- ⎪- ⎪ ⎪- ⎪ ⎪⎝⎭32-3,i i −−−→ 100010007114013001⎛⎫ ⎪ ⎪ ⎪- ⎪- ⎪ ⎪- ⎪ ⎪⎝⎭从以上过程可以看出C =114013001-⎛⎫ ⎪- ⎪ ⎪⎝⎭,最后作可逆线性替换X CY =,则23(,,)f x x x = '100010007Y Y ⎛⎫⎪ ⎪⎪-⎝⎭(四)雅可比(Jacobi)方法此方法利用二次型的矩阵的顺序主子式(也即雅可比行列式)来确定 标准形中各平方项的系数 .这种方法较为简便,但是有条件限制,它需要二 次型的矩阵所有的顺序主子式必须都不为零.1. 几个相关定义[1]定义 V 是数域P 上一个线性空间,f (,)αβ是V 上一个二元函数,如果f (,)αβ有下列性质:(1)11221122f (,k +)=k f (,)+k f (,)k αββαβαβ;(2)11221122f (k +,)=k f (,)+k f (,)k βββαβαβ;其中1212,,,,,αααβββ是V 中任意向量,12k ,k 是P 中任意数,则称f (,)αβ为V 上的一个双线性函数.[11]定义 f (,)αβ线性空间V 上的一个双线性函数,如果对V 中任意两个向量α,β都有f (,)αβ=f (,)βα,则称f (,)αβ为对称双线性函数.[11]定义 设f (,)αβ是数域P 上n 维线性空间V 上的一个双线性函数.12n ,,...,εεε是V 的一组基,则矩阵11)1n n 1)n n)f (,f (,)A=f (,f (,εεεεεεεε⎛⎫⎪⎪⎪⎝⎭称为 f (,)αβ在12n,,...,εεε下的度量矩阵.2. 解题步骤雅可比方法的计算步骤归纳如下:(1)在矩阵A 的非对角线元素中选取一个非零元素 ija .一般说来,取绝对值最大的非对角线元素;(2) 由公式jj ii ija a a tan -=22θ求出θ,从而得平面旋转矩阵IJ P P =1; (3) 111AP P A T=,1A 的元素由公式(9)计算. (4) 以1A 代替A ,重复第一、二、三步求出2A 及2P ,继续重复这一过程,直到m A 的非对角线元素全化为充分小(即小于允许误差)时为止.(5) m A 的对角线元素为A 的全部特征值的近似值,m P ...P PP 21=的第j 列为对应于特征值j λ(jλ为m A 的对角线上第j 个元素)的特征向量.例5 用雅可比方法将二次型123(,,)f x x x =2221231213234x x x x x x x ++++化为标准形.解:二次型的矩阵32223A =102201⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭,顺序主子式1=2∆,21=-4∆,31=-44∆都不等于零,所以能采用雅可比方法.设1231000,1,0001εεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,双线性函数f (,)αβ关于基123,,εεε的矩阵为A , 则A=()()()()()()()()()111213212223313233f ,f ,f ,f ,f ,f ,f ,f ,f ,εεεεεεεεεεεεεεεεεε⎛⎫⎪ ⎪ ⎪⎝⎭=3222310221⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭再设111121212223131232333c c c c c c ηεηεεηεεε=⎧⎪=+⎨⎪=++⎩系数11c 可由条件()11f ,1ηε=求出,即()111111c f ,2c 1εε==,从而得出1112c =,所以11111121020c ηεε⎛⎫ ⎪ ⎪=== ⎪ ⎪⎪⎝⎭,系数1222,c c 可由方程组()()()()1211221212122222,,0,,1c f c f c f c f εεεεεεεε+=⎧⎪⎨+=⎪⎩求出,并可得到122268c c =⎧⎨=-⎩,所以2121222c c ηεε=+=680⎛⎫ ⎪- ⎪ ⎪⎝⎭,系数132333,,c c c 可由方程组132333132313333220230221c c c c c c c ⎧++=⎪⎪⎪+=⎨⎪+=⎪⎪⎩求出,即1323338171217117c c c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩,所以38171217117η⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪⎪ ⎪⎝⎭.由此可得,由基123,,εεε到123,,ηηη的过渡矩阵为18621712081710017C ⎛⎫ ⎪⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪⎝⎭.因此123(,,)f x x x 经线性替换X CZ =能够化成标准形:22222201212312312311z z z 8217z z z ∆∆∆++=-+∆∆∆. (五)偏导数法偏导数法与配方法的实质是相同的,但是它是根据函数与其偏导数之间的关系这一原理,依据配方法提出的化二次型为标准形的新方法,配方法需要仔细观察然后进行配方,而这种方法具有固定的程序,可以按步骤一步一步进行计算.因此,能够提高准确性,且易于理解,求解过程也更加简单.利用偏导数法将二次型()12,...n f x x x =11nnij i j i j a x x ==∑∑化为标准形的解题步骤如下:(注意,运用该方法时,要将二次型分为两种情形来进行讨论.)1. 情形1: 二次中含有i x 的平方项,即ii a ()1,2,...i n =中至少有一个不为零的情形.(1) 不妨设11a 不等于零,将f 对1x 的偏导数1f x ∂∂求出来,并记1112ff x ∂=∂. (2)根据偏导数法()2121111,...(f )g n f x x x a =+,通过计算得出g .此时g 中已经不再含有1x .(3)求出g 对2x 的偏导数2g x ∂∂,并记1212gg x ∂=∂,又可得()12,,...n f x x x =()()2211'112211f g ua a ++, 此时u 中不再含有2x .(4)按照这种程序继续运算,最终可以将二次型化为标准形.2. 情形2:二次型中不含i x 的平方项,即所有iia ()1,2,...i n =都等于零,但是至少有一1(1)j a j >不等于零的情形.(1)不妨设12a 不等于零,首先求出f 对1x 的偏导数1fx ∂∂,以及f 对2x 的偏导数2f x ∂∂,并记1112f f x ∂=∂,2212ff x ∂=∂, (2)将(1)结果代入,此时得到()22121212121,,...[()()]n f x x x f f f f a ϕ=+--+,其中ϕ中不含12,x x 的项.(3)进行观察:如果ϕ中含有i x 的平方项,则按照情形1中的方法去进行计算,如果ϕ中仍然不含有i x 的平方项,则按照上述步骤继续计算,直到将二次型化为标准形为止.例6 用偏导数法化二次型23(,,)f x x x =22212312232422x x x x x x x +-+-为标准形.解:原二次型中含有1x 的平方项,符合情形1,首先求出f 对1x 的偏导数1fx ∂∂=1222x x +,所以可以得到:1112ff x ∂=∂=12x x +23(,,)f x x x =()21111f g a +=()212x x g ++ 整理可得到:22232342g x x x x =--接下来求出g 对2x 的偏导数2g x ∂∂=()232x x -, 1212gg x ∂=∂=23x x -23(,,)f x x x =()()222113'1122115f g x a a +- ()()222122335x x x x x =++--令11222333y x x y x x y x=+⎧⎪=-⎨⎪=⎩经过变形可以得到112322333x y y y x y y x y =--⎧⎪⇒=+⎨⎪=⎩于是原二次型化为标准形23(,,)f x x x =2221235y y y +-所得的变换矩阵为111011001C --⎛⎫⎪= ⎪⎪⎝⎭,例7 用偏导数法化二次型23(,,)f x x x =121323422x x x x x x -++为标准形.解:由于所给的二次型中不含i x 的平方项,符合情形2,所以分别求出f 对1x 的偏导数1f x ∂∂,以及f 对2x 的偏导数2fx ∂∂,其结果如下:1f x ∂∂=2342x x -+,2fx ∂∂=1342x x -+1112f f x ∂=∂=232x x -+,2132122ff x x x ∂==-+∂23(,,)f x x x =()()221212121f f f f a ϕ⎡⎤+--+⎣⎦整理上式可得:ϕ=23x于是得到23(,,)f x x x =()()2223121231222224x x x x x x ⎡⎤-----+⎣⎦=()()222312123x x x x x x ---+-+=222123y y y -++令112321233y x x x y x x y x =--+⎧⎪=-⎨⎪=⎩经过整理可以得到1123212333111222111222x y y y x y y y x y ⎧=-++⎪⎪⎪=--+⎨⎪=⎪⎪⎩可以得到所用的可逆矩阵为111222111222001C ⎛⎫- ⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪⎝⎭,(六)顺序主子式法对于二次型'12,1(,,...,)nn ij iji j f x x x X AX a x x===∑ (1)其中,,1,2,...,ij ji a a i j n ==,以上介绍了五种化二次型为标准形的方法,本文第六部分介绍顺序主子式法.[1]定理 对于二次型(1)矩阵()A=ij n na⨯假如11121,-121222,-1111211221221-1-1,n-1-1,-1-1,-10,-0,,=n n n n n n n n a a a a a a a a a ααααα∆=≠∆=≠∆≠则二次型可化为标准形12222211111(,,...,)...n n n n f x x x y y y -∆∆=∆+++∆∆例8 化二次型32212132145),,(x x x x x x x x f -+=为标准形解:二次型的矩阵为51025022020A ⎛⎫⎪ ⎪⎪=- ⎪ ⎪- ⎪⎪⎝⎭方法一:4,425,1321-=∆-=∆=∆ 所以1222231232516(,,)425f x x x y y y =-+方法二: 32218125255101022252502024402016025r r r r A --⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪−−−→-−−−−→- ⎪ ⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以1,23251,44-∆=∆=∆=-1222222231231232542516(,,)2544254f x x x y y y y y y -=-+=-+-雅可比方法是利用二次型的矩阵的顺序主子式来确定标准形中各项平方和项的系数.它要求二次形的矩阵所有的顺序主子式必须都不为零.3.1二次型在二次曲面研究中的应用二次曲面的一般方程为:2221122331213231232220a x a y a z a xy a xz a yzb x b y b zc +++++++++=其中,,(,1,2,3)ij i a b c i j =都是实数.我们记x =(x,y,z)T ,123=(,,)b b b b T ,111213212223313233A =a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭其中ij jia a =利用二次型的表示方法,方程(1)可表示成下列形式:0TTx Ax b x c ++= (2)为研究一般二次曲面的性态,我们需将二次曲面的一般方程转化为标准方程,为此分两步进行. 第一步,利用正交变换X =PY 将方程(2)左边的二次型TX AX 的部分化成标准形:222112131T x Ax x y z λλλ=++其中P 为正交矩阵,3=()12y x ,x ,x T,相应地有()112131T T T b x b Py b P y k x k y k z ===++于是方程(2)可化为2221121311121310x y z k x k y k z c λλλ++++++= 第二步, 作平移变换y y y =+,将方程(3)化为标准方程, 其中(,,)y x y z =这里只要用配方法就能找到所用的平移变换.以下对123,,λλλ是否为零进行讨论:1)当123,,0λλλ≠时,用配方法将方程(3)化为标准方程:222123x y z d λλλ++= (6-1) 根据123,,λλλ与d 的正负号,可具体确定方程(6-1)表示什么曲面.例如123,,λλλ与d 同号,则方程(6-1)表示椭球面.(2)当123,,λλλ中有一个为0,设30λ=方程(3)可化为22123(0)x y kz z λλ+=≠ (6-2)22123(0)x y d k λλ+== (6-3)根据12,λλ与d 的正负号,可具体确定方程(6-2)、(6-3)表示什么曲面.例如当12,λλ同号时,方程(6-2)表示椭圆抛物面.当12,λλ异号时,方程(6-2)表示双曲抛物面,(6-3) 表示柱面.(3) 当123,,λλλ中有两个为0,不妨设230λλ==,方程(3) 可化为下列情况之一:21()0(,0)a x py qz p q λ++=≠此时,再作新的坐标变换:2222py qz qy pz x x y z p q p q +-'''===++(实际上是绕x ~轴的旋转变换),方程可化为:02221='++'y q p x λ表示抛物柱面;)0(0~~)(21≠=+p y p x b λ表示抛物柱面;)0(0~~)(21≠=+q z q x c λ表示抛物柱面;21()0d x d λ+=若1λ与d 异号,表示两个平行平面;若1λ与d 同号,图形无实点,若0d =,表示yoz 坐标面.例 二次曲面由以下方程给出,通过坐标变换,将其化为标准型,并说明它是什么曲面.222234444212100x y z xy yz x y z +++++-++= 解:将二次曲面的一般方程写成矩阵形式:010=++x b Ax x T T,⎪⎪⎪⎭⎫ ⎝⎛=z y x x ,1224⎪⎪⎪⎭⎫ ⎝⎛-=b ⎪⎪⎪⎭⎫ ⎝⎛=420232022A )6)(3(18923---=-+-=-λλλλλλλE AA 的特征值为1236,3,0λλλ===,分别求出它们所对应的特征向量,并将它们标准正交化:1132323p ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,2231323p ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪- ⎪⎝⎭,⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=3132323p取 P= ( p 1 , p 2 , p 3 ) , 则 P 为正交矩阵. 作正交变换x = P y , 其中(),,,111Tz y x y =则有: 212136y x x A x T +=111868)(z y x y P b b T T +-==因此,原方程可化为:221111163868100x y x y z ++-++= 配方得:221118176()3(1)8()0372x y z ++-++=令111817,1,372x x y y z z =+=-=+ 则原方程化为标准方程:0~8~3~622=++z y x该曲面为椭圆抛物面.四、总结不同方法化简的优劣对于初学者来说,配方法是最基础的方法,它的原理很容易被学生消化吸收,因此,这种方法需要熟练掌握,灵活应用.配方法是推导二次型重要理论的基础,要熟悉它的推导过程.对于简单的二次型也可以灵活使用合同变换法,有时候这种方法更具简便性,节约计算量和计算时间.正交变换法由于具有保持几何形状不变的优点而备受青睐.在用正交变换法化二次型为标准型中,如何求正交矩阵是一个难点,常见的求法只有一种,求解过程大致如下:先用二次型矩阵A的特征方程求出A的n个特征值,然后通过直接求矩阵方程的基础解系,得到对应于征值的线性无关的特征向量,再用施密特正交化过程将它们正交化、单位化,进而得到n个两两正交的单位特征向量,最后由这n个两两正交的单位特征向量构成正交矩阵,即得所要求的正交变换和对应的标准型.这种方法综合性比较强,算比较复杂.雅可比方法是一种新的方法,它的过程与施密特正交化过程类似,思想上也有相似之处.用它解决正定性问题时比较方便.体会并深刻理解各种方法的实质与技巧,才能帮助我们快速并正确解决二次型问题.这需要多做练习,熟能生巧,方可以不变应万变.二次型是高等代数的重要内容之一,二次型的基本问题是要寻找一个线性替换把它变成平方项,即二次型的标准型.二次型的理论来源于解析几何中二次曲线、二次曲面的化简问题,其理论也在网络、分析、热力学等问题中有广泛的应用.将二次型化为标准型往往是困惑学生的一大难点问题,而且它在物理学、工程学、经济学等领域有非常重要的应用,因此探索将实二次型化为标准型的简单方法有重要的理论与应用价值通过典型例题,更能体会在处理二次型问题时的多样性和灵活性,我们应熟练掌握各种方法.致谢我衷心感谢我们论文指导老师,她在论文选题和写作过程中,给予了许许多多认真细致的指导和鼓励 .我也要感谢多年来家人和朋友对我学习工作上的支持,这是我继续在求学路上不断前进的动力之一.大学生活一晃而过,回首走过的岁月,心中倍感充实,当我写完这篇毕业论文的时候,有一种如释重负的感觉,感慨良多.请允许我以此文来纪念大学四年的美好时光,时间的前进是无法挽回的,四年的求学生活让我明白了一切都来之不易,得到成果的前提是你要不断地脚踏实地地付出自己的努力本文主要就二次型化标准型的方法进行了一定的探讨,在前人的基础上综合了六种化二次型为标准型的方法,这对于二次型的研究和教学都有一定意义!参考文献[1]王萼芳,石生明.高等代数(第三版)[M]北京:高等教育出版社,2007.[2]同济大学数学教研室.线性代数(第三版)[M]北京:高等教育出版社,1999.[3]丘维声.高等代数(上册)[M].北京:高等教育出版社,2002.[4]屠伯.线性代数-方法导引[M].上海:上海科技出版社,1986.[5]蓝以中.高等代数简明教程[M].北京:北京大学出版社,2003.[6]王琳.用正交变换化实二次为标准形方法研究.[J]数学通讯,1990(3).[7]李五明,张永金,张栋春.实二次型化为标准形的几种方法[J]和田师范专科学校学报(汉文综合版)2007,27(5)[8]郭佑镇.实二次型的化简及应用[J]渭南师专学报(自然科学版)2000(2).[9]胡明琼.把二次型化为标准形的方法[J]工程数学.1998,14(1).[10]北京大学数学系几何与代数教研室小组编.高等代数(第三版)[M].高等教育出版社.2007:205-234.[11]庄瓦金编.高等代数教程[M].高等教育出版社.2004:427.[12]陈惠汝,刘红超.浅淡二次型标准形的两种方法[J].长春师范学院报,2004,23(2):13-15.[13]孙秀花.二次型的应用[J].宜宾学院报,2010,10(6):28-29[14]鱼浩,戴培良.二次型在不定方程中的应用[J].常熟理工学院报,2009,23(10):38-42[15]杨文杰.实二次型半正定性及应用[J].渤海大学学报,2004,25(2):127-129[16]郑华盛.二次型半正定性在不等式证明中的应用[J].科技通报,2002,18(30):227[17]袁仕芳,陈云长,曾丽容.关于二次型XAX最大值和最小值的教学思考[J].考试周刊,2010,35:74[18]JaneM.Day,DanKalmanTeachingLinearAlgebra:IssuesandResources[J].Th eCollegeMathematicsJournal.2001.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 x 2 y k z ( z 3 0 )
~2 ~2 ~
(6-2) (6-3)
1 x 2 y d ( k 3 0 )
~2
~2
根据 1 , 2 与d 的正负号, 可具体确定方程(6-2)
(6-3)表示什么曲面. 例如当 1 , 2 同号时, 方程 (6-2)表示椭圆抛物面. 当 1 , 2 异号时, 方程
1 2 1 p1 , 2 0 1 2 1 p1 , 2 0
0 p3 0 1
取P= ( p1 , p2 , p3 ) ,则P为正交矩阵. 作正交变换
4 b 2 12
3 2

2 A 2 0
2 3 2
0 2 4
A E 9 18 ( 3 )( 6 )
A 的特征值为 1 6 , 2 3 , 3 0 , 分别求出
T T
x Ax 1 x 2 y z
T 2 1 2 1
2 3 1
其中P为正交矩阵,y =(x1, y1, z1)T,相应地有
b x b Py b P y k 1 x 1 k 2 y 1 k 3 z 1
T T T
于是方程(2)可化为
1 x 2 y z k1 x1 k2 y1 k3 z1 c 0
§6.4 二次型在二次曲面研究中的应用
前面所讲的二次曲面,它们的方程都是特殊 形式,称为二次曲面的标准方程,而二次曲面的 一般方程为:
a11 x a 22 y a 33 z 2a12 xy 2a13 xz
2 2 2
2a 23 yz b1 x b2 y b3 z c 0
因此,所给二次曲面化成标准方程为:

1 2
x
2 1
1 2
y1 z1 0
2

z1
1 2
x
2 1
1 2
y
2 1
表示双曲抛物面(马鞍面).
z( z )
o
y
y1
图6.18 x
x1
注:
所作的正交变换实际上是一个旋转变换,z 轴不动,逆z 轴方向看去,x 轴,y 轴顺时针方向 旋转45 0角. 例15 求 xoy 面上的椭圆
ax
2
2 bxy cy
2
1
的面积. 其中 a
>0
, ac b 2 >0 .
E T
a
b
b
c
( a c ) ac b
2
2

设二次型
f ( x , y ) a x 2 bxy c y
2 2
其系数矩阵
a b b c
a T b
~ x x y ~ ~ py qz p q
2 2
z
~ ~ qy pz p q
2 2
~ (实际上是绕 x 轴的旋转变换), 方程可化为:
2 2 p q y 0 ~2 ~ ( b ) 1 x p y 0 ( p 0 ) 2
1 x
表示抛物柱面;
(1)

其中a ij , b i , c ( i , j 1 , 2 , 3 ) 都是实数.我们记
x ( x , y , z ) , b ( b1 , b 2 , b 3 ) ,
T T
a 11 a 12 a 13 A a 21 a 22 a 23 a 31 a 32 a 33
表示抛物柱面;
~2 ~ ( c ) 1 x q z 0 ( q 0 )
表示抛物柱面;
~2 ( d ) 1 x d 0 若 1与 d 异号,表示两个 平行平面;若
1与 d 同号,图形无实点,若
d 0, 表示 yoz 坐标面 .
例13 二次曲面由以下方程给出, 通过坐标
1
故椭圆的标准方程为
椭圆的两半轴分别为
故其面积为:
1 x 1 2 y1 1
2 2
1

1
1

1 1
,
1
2

,

2
2
ac b
.
2 1 2 1 2 3 1
(3)
~ 第二步, 作平移变换 y y y0 , 将方程(3) ~ ~ ~ ~ y ( x , y , z ) , 这里只要用 化为标准方程, 其中
配方法就能找到所用的平移变换.以下对 1 , 2 , 3 是否为零进行讨论: (1)当 1 , 2 , 3 0 时 , 用配方法将方程(3)化为
(6-2)表示双曲抛物面, (6-3) 表示柱面. (3) 当 1 , 2 , 3中有两个为0 , 不妨设
2 3 0 , 方程(3) 可化为下列情况之一:
~2 ~ ~ ( a ) 1 x p y q z 0 ( p , q 0 )源自此时, 再作新的坐标变换:
2
b , c
由于 a
>0
,
ac b >0
, 知T 正定,故特征值全大于0,
其特征多项式为:
特征方程有两个正的实根: 1 , 2 且 1 2 ac b 2 . 对实对称矩阵T ,存在正交矩阵 P 使得
1 P T P 2
2
该曲面为椭圆抛物面.
例14 将二次曲面 z = x y 的方程化为标准 方程, 并说明它是什么曲面.

z = x y 可写成 xy – z = 0 , 令
0 b 0 1
1 0 0 2 1 A 0 0 2 0 0 0
其中 a ij a ji 利用二次型的表示方法,方程
(1)可表示成下列形式: (2) x Ax b x c 0 为研究一般二次曲面的性态,我们需将二次 曲面的一般方程转化为标准方程,为此分两步进 行. 第一步,利用正交变换x = Py 将方程(2)左 边的二次型xTAx的部分化成标准形:
6 x 1 3 y 1 8 x 1 6 y 1 8 z 1 10 0 8 2 17 2 配方得: 6 ( x 1 ) 3 ( y1 1) 8 ( z1 ) 0 3 72 8 ~ 17 ~ ~ 令 x x 1 , y y1 1 , z z1 3 72 ~2 ~2 ~ 6 x 3 y 8z 0 则原方程化为标准方程:
x = Py ,
T
y x 1 , y 1 , z 1 , 则有:
T
x A x
1 2
x
2 1
1 2
y
2 1
1 2 1 T b x 0 , 0 , 1 2 0
0 2 x1 1 0 y1 z1 2 z 1 0 1 1
取 P= ( p1 , p2 , p3 ) , 则 P 为正交矩阵. 作正交变换
x = Py , 其中
T
y x 1 , y1 , z1 ,
T
则有:
x A x 6 x 1 3 y1
2
2
b
T
( b P ) y 8 x 1 6 y1 8 z1
T 2
因此, 原方程可化为:
标准方程:
1 x 2 y 3 z
~2
~2
~2
d
(6-1)
根据 1 , 2 , 3 与d 的正负号,可具体确定方程 (6-1)表示什么曲面. 例如 1 , 2 , 3 与d 同号, 则方程(6-1)表示椭球面. (2)当 1 , 2 , 3 中有一个为0,设 3 0 方程(3)可化为:
它们所对应的特征向量,并将它们标准正交化:
1 3 2 p1 , 3 2 3 p2 2 3 1 , 3 2 3 p3 2 3 2 3 1 3
x x y z
,
,
该曲面方程用矩阵形式表示为:
x A xb x 0
T T
A E (
1 2
)(
1 2
)
A的特征值为 1 1 , 2 1 , 3 0 , 分别
2 2
求出它们所对应的特征向量, 并单位化得:
变换, 将其化为标准型,并说明它是什么曲面.
2 x 3 y 4 z 4 xy 4 yz 4 x 2 y 12 z 10 0
2 2 2
解 将二次曲面的一般方程写成矩阵形式:
x Ax b x 10 0
T T
x x y, z
相关文档
最新文档