浅谈胰岛素样生长因子

合集下载

胰岛素样生长因子-1 标准

胰岛素样生长因子-1 标准

胰岛素样生长因子-1 标准胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)是一种多肽激素,由肝脏和其他组织细胞分泌,主要通过自身的内源性受体IGF-1R在体内发挥作用。

它对细胞增殖、分化和代谢调节起着重要的作用,对于身体的生长发育、修复和维持正常机能具有至关重要的影响。

IGF-1是由191个氨基酸组成的聚肽,在体内主要由肝脏合成,并受到多种生理和病理条件的调节。

IGF-1的合成受到生长激素(GH)的调控,生长激素刺激肝脏分泌IGF-1,促进骨骼、软骨、肌肉和脏器的生长和发育。

此外,IGF-1合成还受到营养状况、胰岛素、甲状腺素和性激素等多种因素的调节。

IGF-1通过与其受体IGF-1R结合,触发一系列下游信号通路,从而发挥其生物学作用。

IGF-1R是一种酪氨酸激酶受体,其激活能够通过PI3K/Akt和MAPK/ERK等信号通路,促进细胞增殖、增加蛋白质合成、降低蛋白质降解和调节细胞凋亡等。

因此,IGF-1在维持细胞功能和组织建构中发挥着重要的作用。

在生长发育过程中,IGF-1能够促进骨骼线条的增长和韧带的织修,有助于儿童和青少年的骨骼发育和成长。

此外,IGF-1还对于肌肉发育和修复具有重要作用,能够促进蛋白质合成,增加肌肉细胞的数量和肌纤维的直径,改善肌肉力量和质量。

在老年人中,IGF-1的水平下降可能与肌肉萎缩和骨质疏松相关。

除此之外,IGF-1也在心血管系统、神经系统、免疫系统和代谢调控中发挥着重要作用。

IGF-1能够促进内皮细胞的增生和迁移,改善血管功能,对血压和心肌功能具有保护作用。

在神经系统中,IGF-1对于神经元的生长和突触形成起到重要作用,与记忆力和学习能力相关。

此外,IGF-1还能够调节免疫细胞的功能和应激反应,对于维持免疫系统的平衡和调节有着重要作用。

IGF-1在多种疾病的发生和发展中也发挥着重要作用。

高水平的IGF-1与肿瘤的发生和生长相关,一些研究表明IGF-1能够促进肿瘤细胞的增殖和凋亡逃逸。

儿童胰岛素样生长因子1标准

儿童胰岛素样生长因子1标准

儿童胰岛素样生长因子1标准
儿童胰岛素样生长因子1(IGF-1)是一种由肝脏和其他组织分泌的蛋白质,它在儿童的生长和发育中起着重要作用。

儿童胰岛素样生长因子1的标准通常是根据年龄和性别来确定的。

在临床上,医生会根据儿童的IGF-1水平是否处于正常范围来评估其生长和发育情况。

针对儿童胰岛素样生长因子1的标准,通常会考虑以下几个方面:
1. 年龄和性别,儿童的IGF-1水平会随着年龄和性别的不同而有所变化。

一般来说,男孩和女孩在不同年龄阶段的IGF-1水平标准是不同的。

2. 生长曲线,医生会根据儿童的IGF-1水平与所谓的“生长曲线”进行比较。

这是根据同龄儿童的平均水平所建立的标准曲线,可以帮助医生判断一个儿童的IGF-1水平是否正常。

3. 生长潜力,除了单纯的IGF-1水平,医生还会综合考虑儿童的家族遗传、生长潜力等因素,来评估儿童的生长发育情况。

总的来说,儿童胰岛素样生长因子1的标准是一个综合性的评估体系,需要考虑多个因素。

医生会根据儿童的具体情况来判断其IGF-1水平是否正常,从而评估其生长和发育情况,并采取相应的干预措施。

儿童胰岛素样生长因子标准值

儿童胰岛素样生长因子标准值

儿童胰岛素样生长因子标准值儿童胰岛素样生长因子(IGF)是一种重要的生长因子,对于儿童的生长和发育起着至关重要的作用。

在医学上,儿童胰岛素样生长因子标准值是指儿童在不同芳龄和性别下的正常生长因子水平范围。

这个标准值是用来评估儿童的生长状态,以及是否存在生长发育方面的异常情况。

让我们来了解一下儿童胰岛素样生长因子的作用。

IGF是由肝脏和其他组织产生的一种激素,它与生长激素密切相关,能够促进骨骼和软组织的生长。

而儿童胰岛素样生长因子标准值则是根据儿童的芳龄、性别和生长发育情况来设定的,这些标准值的设定是通过大量的调查和数据分析得出的。

这些标准值的设定对于评估儿童的生长发育状态非常重要,可以帮助医生判断儿童是否存在生长发育方面的异常情况,以及采取相应的干预措施。

儿童胰岛素样生长因子标准值的设定考虑了儿童的芳龄和性别因素,因为不同芳龄段和性别的儿童,其生长发育情况是有所差异的。

在实际应用中,医生会根据儿童的IGF水平与标准值范围进行比对,从而评估儿童的生长发育情况。

如果儿童的IGF水平低于标准值范围,可能表明存在生长发育不良的情况,需要进行进一步的检查和治疗。

而如果儿童的IGF水平高于标准值范围,可能会提示存在生长激素过多分泌或其他疾病的情况,也需要引起医生的重视。

对于一些特殊情况的儿童,比如早产儿、低出生体重儿、患有生长激素缺乏症的儿童等,其生长发育情况可能会受到一定影响,因此在评估这些儿童的生长发育状态时,医生需要结合实际情况进行综合评估,有时需要重新调整标准值的参考范围,以更好地适应这些特殊儿童的生长情况。

总结而言,儿童胰岛素样生长因子标准值是对儿童生长发育情况进行评估的重要指标,它能够帮助医生判断儿童的生长发育状态是否正常,发现和干预生长发育异常情况。

孩子们的生长发育是家长们和整个社会都非常关注的话题,因此我们需要更深入地了解和关注儿童胰岛素样生长因子标准值这一重要的指标。

希望大家都能关注儿童的生长发育情况,及时发现和处理问题,让孩子们健康快乐地成长。

胰岛素样生长因子(Insulin-like growth factor)

胰岛素样生长因子(Insulin-like growth factor)

胰岛素样生长因子(Insulin-like growth factor)Insulin-like growth factorBasic conceptShanghai Ya Xi (International) snow America authorized biomedical technology services center marketing P DepartmentInsulin-like growth factors (IGFs) is a class of multifunctional cell proliferation regulating factors. It plays an important role in cell differentiation, proliferation and individual growth and development. This paper reviews the general situation of IGFs and its relationship with growth and development.History of IGFSGrowth hormone and Daughaday on 1957 Salmon (growth hormone, referred to as GH) in the process of giving first found in hypophysectomized rats after GH serum can stimulate S into cultured cartilage, but directly into the liquid culture of GH has no effect, so that GH itself can directly stimulate the growth of cartilage, but through a "SF" role, this factor became known as growth regulator. 1963 Froesh found in the serum insulin like effect on muscle and fat cells are only a small part of the insulin antiserum inhibited the remaining soluble insulin like activity was not inhibited in acidified ethanol, and named NSILAS which is inhibited by insulin like activity (nonsuppressible insulin-like activity). In 1972, Pieron and Temin purified a cytokine from bovine serum that stimulated cell division, called proliferation stimulating activity".After the above three experiments were completed, it was found that the above three substances had an inhibitory insulin-like activity and a growth stimulatory effect. With the development of molecular biology, 1978 people purified two kinds of NSILA (I, II) and found its structure and proinsulin were named as similar, insulin-like growth factor I and II (IGF I, II) to emphasize their homology with insulin structure. It was also confirmed that the sulfation factor and the proliferation stimulating activity were members of the same polypeptide family as IGF.Composition, physical and chemical properties of IGFs systemThe IGFs family is composed of two low molecular polypeptides (IGF-, I, IGF- II), two specific receptors and six binding proteins. IGF- I is a single nucleotide protein with 70 amino acids, the molecular weight of 7649Da, heat resistance, while IGF- II is a single stranded weak acid protein with 67 amino acids, with a molecular weight of 7471Da and stable for 0.1%SDS. Both 70% are homologous, approximately 50% of the structure and function of human proinsulin. The biological function of IGFs is achieved by binding to receptors on specific target cell surfaces. At present, two kinds of IGF receptors with different structures are found: IGF- I receptor and IGF- II receptor (mannose -6 phosphate receptor), also known as type I receptor, type II receptor. The former structure and insulin receptor (Insulin receptor Ir) is similar to that of 2 beta 2 glycoprotein four dimer consisting of alpha and beta two subunit alpha, alpha subunit is a ligand binding site, beta subunit with intrinsic tyrosine kinase activity and tyrosinase activity. IGF and insulin (Insulin, Ins) on IGF receptoraffinity of the order of Ir is Ins > > IGF- I IGF- II; on IGF- receptor: IGF- I IGF- II > > Ins; on IGF- II receptor: IGF- > IGF- I and Ins II, with no cross reaction.Unlike other growth factors, IGFs is associated with a specific binding protein (Binding, Proteins, BPs) in serum, in extracellular fluid and in cell cultures, and in the form of inactive complexes. So far, 6 IGFBP1, 2, 3, 4, 5 and 6 have been found, and their characteristic structures constitute a correlation. The secretory protein families are low molecular peptides, similar in structure to 50%. They are high affinity with two IGF without binding to insulin. In the blood and tissue fluid, the IGFBP3 content is highest, and more than 80% of the IGF in the cycle is combined with IGFBP3 to form the 150kDa three molecular complex (an unstable acid subunit, a binding subunit and IGF peptide). IGFBP2,5,6 has a higher affinity with IGF- II, and IGFBP1, 3, and 4 are similar in affinity to IGF- I and IGF- ii. IGFBP has the function of prolonging the circulating level of IGF half-life and stabilizing IGF serum concentration. Normally, the affinity of IGF with its binding protein is greater than or approximately equal to its receptor binding. In addition, the low expression of the high affinity receptor leads to a balance between a small amount of free IGF and a large number of IGF/IGFBP complexes. At present, there are at least three mechanisms involved in the activation of IGF:(1) parallel movement. In specific cases, such as growth, development, or damage to the organism, high affinity receptors are abundantly expressed, competing for IGF and separating it from binding proteins;(2) chemical modification of IGF or IGFBP, such as phosphorylation, to reduce the affinity of the complexes and dissociate them;(3) binding protein hydrolase specific water samples IGFBP to release the IGF.IGFs and growth and developmentIGF- I and IGF- II have similar structures and in vitro activity, but their biological effects are not the same. The biological functions of IGFs are not limited to mitogenic stimuli, but they can also induce differentiation or promote the expression of differentiated functions. The precise biological effects depend on the state of cell development and the presence of other hormones or growth factors. Especially in different tissues and different growth stages, there is a considerable difference in the function and level of IGF- I and IGF- ii. IGF- I, dependent on GH, can promote proliferation of many cells in vitro and promote protein and DNA synthesis. Many tissues and cells in the body can autocrine and paracrine IGF- I. IGF- II, known as the major growth factor before birth, does not require growth hormone regulation and is expressed in a variety of tissues and organs.Studies have shown that in early pregnancy, trophoblast cells invade the endometrium is strictly controlled by the micro environment; progesterone regulating endometrium and decidua and villus development and promote embryo implantation are mediated by IGFs, the mechanism was to increase the adhesion of the extracellular matrix, invasion and migration of humantrophoblast cells to stimulate, promote early embryo cultivation. In vitro experiment of Kniss and IGFs could promote early pregnancy decidua and villi on transport of glucose and amino acids, in a dose-dependent manner, suggesting that the fetal circulation before the embryo mainly from the surrounding environment and nutrition, through the role of IGFs. At the same time, a large number of studies have shown that during embryonic development, the level of IGF- II mRNA is much higher than that of IGF- I and mRNA, and has higher expression in embryonic tissues. With the increase of differentiation degree, the expression of it decreases. The expression of mRNA and IGF-I is affected by many factors, a large increase in liver, heart and kidney after birth than before birth; and significantly decreased in muscle, stomach and testis after birth than before birth; only IGF- in the brain and lung of mRNA showed a wavy change. Clinical studies have shown that the concentration of IGF- I in maternal circulation increases during pregnancy, and that fetal IGF- I is approximately 15 weeks pregnant. The levels of IGF-, I and IGFBP1 in umbilical artery and umbilical vein were similar. There was no significant difference between the two groups, indicating that the secretion of IGF- I in the mother and fetus was independent, and that IGF- I might not pass through the placenta. Some scholars detected the concentration of cord blood IGF- I, and the results showed that intrauterine fetal growth retardation, IGF- in cord blood was lower than that in gestational age group by about 40%, while that of gestational age IGF- was 8% to 10% higher than that in gestational age group. IGFBP1 increased significantly in preterm infants and small in gestational age infants, and negatively correlated with birth weight. There are serum levels and neonatal IGF- I reported the birth weight andlength were positively correlated, and as the main growth factor before the birth of IGF- II and the neonatal birth height and weight have no obvious correlation, and decreased rapidly after birth. Arsio IGF- concentration was measured in umbilical cord blood of 131 gestational age between 19 and 40 weeks of gestation by umbilical vascular puncture. The results showed that IGF- I was positively correlated with gestational age. In conclusion, the mechanism of IGFs's action on the fetus is not very clear, but its role in fetal growth and development has been widely recognized. This is also confirmed by genetic studies. Growth inhibition was first observed at 10.5 days after the mutation of IGF- I and IGF- II genes, and the weight of newborn rats at birth was only 30% of the normal weight of wild species. Another report: IGF- I and IGF- II deficient mice or IGF- II R and IGF- I R have defects in animal performance not only dwarf more serious, only 45% wild mice, these small animal have obvious muscle hypoplasia, the number of fiber cells in skeletal muscle and reduce serious skin hypoplasia. Births often die of respiratory failure. In conclusion, the expression of each of the IGF and IGF receptors is essential for normal embryo and fetal growth, and indicates that the two are absent and very few other components are up and down. Daughaday pointed out in 1988 that postnatal human plasma IGF- I and IGF- II concentration is inversely related to possible mechanisms for the competition between IGF-BP3 (1); (2) both inhibit the secretion of GH, and the GH of IGF- I IGF- II positive regulation; through the secretion of GH play a role of indirect inhibition of IGF-I. It can be assumed that it is precisely because of the interaction between IGF- I and IGF- II that the body's response is balanced. The process of growth and development of IGF- I was regulated by GH and other growthfactors. The expression level of IGF- I increased after birth was related to GH, and the tissue with decreased expression was related to specific factors. A large number of studies on the IGF- I and -GH axis have recently suggested that GH stimulates liver secretion of IGF- I, and IGF- I, in turn, inhibits GH. The complex of IGF and binding proteins in the cycle constitutes the major repository of IGF- I in circulation, and GH regulates its cycle levels. In the past, somatic cell theory suggested that most of GH's action was mediated by cyclic IGF- I during the linear growth of the organism,But recently, GH has been found to stimulate the production of IGF- I, a autocrine or paracrine action of IGF- I, which is important for normal growth in rodents, liver, and other tissues. Molecular biology studies were conducted using animal experiments to examine malnutrition in children due to inadequate caloric and protein intake. The results showed that malnutrition in children caused by growth arrest, the key is the diminutive of IGF- gene transcription level decreased, liver cell IGF- I decreased mRAN level, decrease of plasma IGF- content of clear, too fast. The mechanism of action may be the regulation of GH on the expression of IGF- I gene. Therefore, IGF- I is closely related to the growth and development of children.In addition, Urderwood reported the use of IGFs in the treatment of GH insensitive short stature patients, including Laron's syndrome and GH deficiency. Laron's patients lack GH receptors and do not respond to GH. Such patients have low levels of IGF- I, slow growth, but high levels of circulating GH, which is due to a decrease in GH feedback inhibition by IGF- I. The GHdeficient person mistakenly identified GH as an exotic protein, producing a large number of antibodies that weakened or disappeared the body's response to GH. One case of Laron's boys treated with GH showed no improvement in growth rate, but was treated with IGF- I for 2 years and grew at a rate of 10cm/ years. In addition, recent studies have shown that GH itself is not directly required for growth, and all the height development described by GH is actually done by IGF- I.The research of IGFs is a hotspot in the field of cell biology, and has been paid more and more attention to. It will probably become an important breakthrough for human beings to explore the mysteries of life. IGF is closely related to human embryo development and individual growth and development. However, the effect of IGF on many system tissues is only in vitro and animal experiments, so there is still much work needed to do further research on IGFs.ReferenceWH., Salmon, WD, Daughaday, A, hormonally, controlled, serum, factor, which, stimulates, sulfate, in, corporation, by,, cartilage, in, vitro., J,, Lab, Clin, Med, 1957,49:825-836.2 Froech ER. Antibody-suppressible and nosuppressible insulin-like acitivities in human serum and their physiologic significance. An insulin assay with adipose tissue of incneased precision and specificity. J Clin Invest, 1963,42:1816-1834.3 Pierson RW, Jr.The partial purification from calf serum ofa fraction with multiplication-stimulating activity forchicken firoblasts in cell culture and with non-suppressible insulin-like activity. J Cell Physiol, 1972,79:319-329., Grudice, IC.Insulin-like, factors, and, growth, ovarian, follicular, development.Endocrine, Reviews, 1992,13:641-665., Froesch, ER., of, insulin-like, Action, growth, factors., Ann, Rev, Physiol, 1985,47:443-467., Stylianopoulou, F.Pattern, of, the, insulin-like, growth, factor, II, gene, expression, during, rat, embryogenesis., Development, 1988103:497-506.Suface, Irving, JA, Lala, PK.Function, role, of, cell, integrins, on, human, trophoblast, cell, migration:regulation, by, TGF-beta,, IGF-, II, and, IGFBP1.Exp, Cell, Res, 1995217:419-427.The "Kniss DA.Insulin-like grouth factors:Their regulation of glucose and amino acid transport in placental trophoblasts isolated 1994,39:249-25. from first-trimester chorionic villi.J Report Med"9 Liu Baoying, Wang Li. Advances in the study of insulin growth factors. Foreign Medical Sciences, molecular biology section,.1996, 18:103-106.10 HS, Qu Xinzhong, Li Guilin. Effects of growth factors and hormones on the fetus. Foreign medical * maternal and Child Health Sciences, 1996, 7:162-163., Steven, D.The, growth, hormone/insulin-like, factor, axis, in, intrauterine, growth, growth, retardation:, Pathophysiological, and, therapeutic, implications., Endocrinology, 1996,6:294-300.,...12 children's longevity. Malnutrition molecular basis affect the children's growth: insulin-like growth factor gene expression in.Advances in Physiological Sciences, 1995, 26:144.1993,75:73-82., Julie, Baker, Liu, JP, Robertson, EJ, et, al.Role, of, insulin-like, growth, factors, in,, embryonic, and, postnatal, growth.Cell,...Perkins, Liu, JP, Baker, J, AS, et, al., Mice, carrying, null, mutations, of, the, genes, encoding, insulin-like, growth,, factor, I, and, the, typy,,, IGF, receptor.Cell,1993,75:59-72.15 Plilippe F, Backel Jauw. Louis E, Underwood et al. Prolonged treatment with recombinant insulin-like growth factor I in children with growth hormone insensitivity syndrome-A clinical research center study.J Clin Endocrinology and Metab.1996,8: 3312-3314.Shanghai Ya Xi (International) snow America authorized biomedical technology services center marketing P Department。

生长激素和胰岛素样生长因子在细胞分化中的作用

生长激素和胰岛素样生长因子在细胞分化中的作用

生长激素和胰岛素样生长因子在细胞分化中的作用细胞分化是指原始细胞逐渐演化成具有复杂功能的特化细胞的过程。

这一过程需要依赖一系列生长因子、激素等物质的参与,其中生长激素和胰岛素样生长因子(IGF)是重要的参与者之一。

一、生长激素在细胞分化中的作用生长激素(GH)是由垂体前叶分泌的一种蛋白质激素。

它能够促进细胞分裂、增殖和分化,对于维持正常的细胞分化和增殖过程具有非常重要的作用。

1、生长激素的LIF信号通路能够促进细胞分化LIF(Leukemia Inhibitory Factor)信号通路是一种可以促进干细胞分化的信号通路。

生长激素可以通过LIF通路促进干细胞的分化,这对于组织修复和再生具有非常重要的意义。

例如,在肌肉损伤的修复过程中,生长激素可以促进干细胞向肌肉细胞方向分化。

2、生长激素能够调控基因表达并影响细胞分化生长激素能够通过激活JAK/STAT信号通路来调控基因的表达,这对于细胞分化、增殖和存活都非常重要。

生长激素能够影响多个基因的表达,包括肌肉生长因子、骨形态转化因子等,进而影响细胞分化和骨骼、肌肉、胰岛等器官的发育和修复。

3、生长激素可以促进神经元的分化和成熟神经细胞是非常特化的细胞,它们对于身体运动、感知和认知等功能至关重要。

生长激素可以促进神经元的细胞分化和成熟过程,并影响神经元活动的稳定性和适应性。

因此,生长激素对于神经系统的发育和修复具有非常重要的作用。

二、IGF在细胞分化中的作用胰岛素样生长因子(IGF)是一类由肝脏等细胞分泌的蛋白质,它们能够和受体结合,从而促进细胞的增殖和分化。

1、IGF能够促进肌肉分化IGF能够促进干细胞向肌肉细胞方向分化,并刺激成熟的肌肉细胞合成肌肉蛋白质。

这对于肌肉发育、修复和生长来说非常重要。

2、IGF能够促进骨骼细胞分化和骨形态发生IGF能够刺激骨骼细胞分化,并促进骨骼的生长和形态发生。

IGF的这一作用与多种骨代谢调节因子有关,包括骨形态生长因子和维生素D等。

igf-1

igf-1

IGF-1IGF-1(Insulin-like Growth Factor-1,胰岛素样生长因子-1)是一种多肽蛋白质,起源于胰岛素样生长因子家族。

IGF-1在人体内起着重要的生物学作用,特别是对细胞的生长、增殖和分化具有调节作用。

本文将介绍IGF-1的结构、功能和相关的研究进展。

结构IGF-1由70个氨基酸残基组成,与胰岛素结构相似,因此被称为胰岛素样生长因子。

IGF-1的氨基酸序列与胰岛素的A 链和B链相似,但在第3位和第12位氨基酸上有差异。

IGF-1的三维结构显示出一条单链的α螺旋,有两个二硫键连接。

它的C端包含一个亲和性较高的IGF结合蛋白(IGFBP)结构域。

功能IGF-1通过结合细胞膜上的IGF1受体(IGF-1R)发挥生物学功能。

IGF-1激活IGF-1R,导致一系列的细胞信号途径被激活,最终影响细胞生长和分化。

IGF-1的主要功能包括:1.促进细胞生长和增殖:IGF-1通过促进细胞核内DNA的合成和细胞增殖的过程,促进细胞的生长和分裂。

它在胚胎发育、儿童生长和成人组织修复中起到关键作用。

2.调节蛋白合成和细胞代谢:IGF-1通过激活细胞内的蛋白质合成途径,增加细胞内蛋白质的合成和降解,以调节细胞代谢。

它在肌肉生长和组织修复过程中具有重要作用。

3.促进骨骼生长和骨密度的维持:IGF-1促进骨细胞增殖和分化,对骨骼生长和骨密度的维持具有重要作用。

它通过调节骨骼细胞的功能,促进骨骼发育和骨骼修复。

研究进展随着对IGF-1的研究深入,人们发现IGF-1在许多生理和病理状态中起着重要的作用。

以下是一些与IGF-1相关的研究进展:1. IGF-1在肿瘤生长中的作用IGF-1在许多肿瘤类型中被发现具有生长促进作用。

它能够促进肿瘤细胞的增殖和转移,并与肿瘤的恶性程度、预后和治疗反应相关。

因此,IGF-1及其受体已成为肿瘤治疗的重要研究领域。

2. IGF-1在衰老过程中的作用IGF-1对人体的生长和发育起到重要作用,随着年龄的增长,IGF-1的水平逐渐下降。

胰岛素样生长因子对细胞增殖的调控作用

胰岛素样生长因子对细胞增殖的调控作用

胰岛素样生长因子对细胞增殖的调控作用胰岛素样生长因子(insulin-like growth factor,IGF)是一种低分子量的多肽激素,与胰岛素结构相似,但功能不同。

胰岛素主要调节葡萄糖代谢,而IGF则主要调节细胞的生长、增殖和分化。

IGF包括IGF-1和IGF-2两种形式,IGF-1是最具生物学活性的一种。

IGF是Insulin(胰岛素)超家族成员,故被称作胰岛素样生长因子。

IGF-1是由肝细胞和其他组织合成的一种多肽激素,在胚胎发育、儿童生长和成人代谢和维持多种生理功能均起到重要作用。

在细胞生长和增殖方面,IGF-1通过与细胞表面上IGF-1受体结合,激活信号转导途径,从而促进细胞生长和增殖。

IGF-1不仅直接作用于细胞,还可以通过诱导其他生长因子的表达或激活,促进细胞的生长和增殖。

IGF-1对细胞的生长和增殖调控在许多生理和病理过程中都起到了重要作用。

例如,IGF-1促进胚胎和儿童生长,维持成人的代谢和健康;在癌症的发生和发展过程中,IGF-1也发挥了重要作用。

IGF-1在癌症中的作用IGF-1对癌症的促进作用已经得到了广泛研究和认识。

IGF-1可以激活多个信号转导通路,如PI3K/Akt、Raf/MEK/ERK和JAK/STAT等,从而促进肿瘤细胞的生长和增殖。

同时,IGF-1还可以抑制细胞凋亡和增强肿瘤细胞的侵袭和转移能力。

在许多类型的癌症中,IGF-1和IGF-1受体的表达量都明显升高。

例如,IGF-1和IGF-1受体在乳腺癌、前列腺癌、胃癌和结直肠癌等多种癌症中都被发现表达水平升高。

此外,IGF-1在肝癌、骨肉瘤和神经母细胞瘤等肿瘤中也表现出促进作用。

因此,IGF-1和IGF-1受体就成为了癌症治疗的重要靶点。

研究人员通过开发针对IGF-1受体的抗体、还原剂和小分子抑制剂等,试图抑制IGF-1在肿瘤中的作用,达到治疗癌症的目的。

IGF-1对干细胞的作用除了在癌症中的作用,IGF-1还对干细胞的生长和增殖起到了重要作用。

胰岛素样生长因子—1对心脏的作用及机制

胰岛素样生长因子—1对心脏的作用及机制

胰岛素样生长因子—1对心脏的作用及机制作者:汪瑾来源:《人间》2016年第09期摘要:IGF-1 对心脏具有重要的生物学效应。

随着IGF-1对心脏作用机制的阐明,将为某些心脏疾病的防治提供有效手段。

关键词:胰岛素样生长因子-1;心肌中图分类号:R541 文献标识码:A 文章编号:1671-864X(2016)03-0157-01胰岛素样生长因子(IGF)是属于胰岛素家族的一类多肽,包括IGF-1和IGF-2。

IGF-1对心脏具有重要的生物学效应。

机体中的IGF-1主要由肝细胞分泌,部分来自组织的自分泌或旁分泌。

在血液中可检测到具有活性的IGF-1。

循环中IGF-1的运载和储存方式主要通过与IGF 结合蛋白(IGFBP)结合。

目前已发现来源于不同组织各6种IGFBP。

IGF-1主要与IGFBP-3结合后对一些生理机能起调节作用。

一、心肌上IGF-1的来源及其受体心肌组织的IGF-1除来自血液循环外,其本身也具有分泌IGF-1的能力。

IGF-1主要与IGF-1受体结合,两者有较高的亲和力,亦能与IGF-IIR结合,但亲和力低。

二、IGF-1对心肌的作用(一)IGF-1参与胚胎和出生后早期心脏的生长发育。

IGF-1为胚胎和产后新生个体生长发育所必需。

IGF-1基因缺失的转基因大鼠,表现为个体小,肌肉严重萎缩,出生时的死亡率增高,心脏重量和体重明显下降。

外源性的IGF-1剂量依赖性地促进新生大鼠心肌细胞蛋白的合成,增强心肌细胞DNA合成及有丝分裂,促进细胞增生。

(二)IGF-1对心脏功能的影响。

IGF-1使离体灌流心脏的左心室收缩压、左心室dp/dt max和左心室收缩压与舒张压之差均明显增高,但在31p核磁共振成像上未见收缩期中细胞内钙增加。

(三) IGF-1和心肌肥厚。

IGF-1在心肌肥厚形成中有重要作用:1.IGF-1促进胚胎和出生后早期心脏生长发育。

2.在肥厚心肌组织中,IGF-1/IGF-IR系统的活性上调。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈胰岛素样生长因子(insulin-like growth factors, igfs)从发觉到此刻已经有40连年了。

其中的igf-?最先曾被称为硫化因子,后来又称之为生长介素。

胰岛素样生长因子参与体内几乎每一个器官的生长和功能。

一、igfs基础生化和生理作用胰岛素样生长因子家族有三种肽类激素(或生长因子):胰岛素(ins)、igf-?、igf-?。

人类igf-?基因位于12号染色体,igf-?基因位于11号染色体。

人体内许多组织可以合成、分泌igfs,但循环中的igfs 则主要是由肝脏分泌的。

igf-?是70个氨基酸的单链多肽,分子量7649,和胰岛素原有50%的序列相同。

但和胰岛素不同的是,它在循环中仍保留相应于胰岛素c肽的那部分,并有一延长的羧基端。

胰岛素的半衰期是几分钟,循环中的浓度在pmol水平;igf-?在循环中的浓度在nmol水平(人约为25nmol/l)。

igf-?和igf-?有70%的序列相同,人血清中的浓度更高(约100nmol/l)。

血中igfs只有1%左右是游离的,其余都和胰岛素样生长因子结合蛋白(insulin-like growth factor binding protein, igfbp)结合,这种蛋白调节igfs作用的发挥。

在人脑、血小板、子宫、胎儿和牛奶中还存在一种短链igf-?,它的n端较正常igf-?少3个氨基酸,这样它和igfbp的结合力降低,其生物学活性比正常igf-?要大。

igfs通过igf受体起作用。

igf受体有3种:igf-?受体、igf-?受体和igf/ins杂合受体。

igf-?受体基因位于15号染色体,结构和胰岛素受体的结构相似:是由2个α亚基(706个氨基酸,相对分子质量约140000)和2个β亚基(626个氨基酸,相对分子质量约95000)通过二硫键连接而成的四亚基结构。

α亚基位于细胞外,是配体结合部位,对igf-?的亲和力较高(kd ~l),对igf-?的亲和力要低2~15倍,对胰岛素的亲和力则要低100~1000倍。

β亚基包括两部分:跨膜部分和细胞内部分;细胞内部分具有酪氨酸蛋白激酶活性,当受体和配体结合后,该部分结合并激活胰岛素受体底物-?(insulin receptor substrate-? irs-?),irs-?再和细胞内其它传递信息的物质作用,从而产生生物学效应。

igf-?受体(也是6-磷酸甘露糖的受体)和igf-?受体不同,它是单条肽链结构,且无内在的酪氨酸蛋白激酶活性。

igf-?受体对igf-?的亲和力很高(kd ~ nmol/l),对igf-?的亲和力要低500倍,几乎不结合胰岛素。

它介导igf-?的摄取和降解,至于是否具有信息传导作用,目前还不清楚。

igf/ins 杂合受体,能和胰岛素及igf-?结合,对igf-?的亲和力和igf-?受体相似,对胰岛素的亲和力则要低15~50倍,它在体内到底有何作用仍不清楚。

两种igfs 大多和igf-?受体结合,在浓度较高时,胰岛素和igfs 在各自受体间有交互作用。

激活胰岛素受体和igf-?受体在细胞内引起相似的初始反应。

然而,胰岛素主要调节代谢而igfs主要调节生长和分化,这些激素在细胞内引起生物效应的最后通路仍不清楚。

本世纪80年代中期到90年代初,成功地克隆了igfbp1-6并弄清了它们的氨基酸序列,它们有35%的序列是相同的〔1〕。

最近又发现了至少四种igfbp(igfbp7-10),它们和igf的亲和力较前几种igfbp要低。

igfbp主要作用有:(1)调节igfs的作用;(2)在特定的细胞基质中储存igfs;(3)不依赖igf而发挥作用〔1〕。

igfbp主要在肝脏合成,只和igfs结合,而不和胰岛素结合。

igfbp中,igfbp-3结合血清中75%~80%的igfs。

某些igfbp和胰岛素样生长因子的亲和力要比igf受体更强,因而可阻止igfs的作用。

磷酸化蛋白水解酶能降低igfbp对igfs的亲和力,增加游离igfs 浓度,这样igfs和igf-?受体结合也随之增加,其生物学作用便也增加。

igfs是胚胎发育中必须的。

它在胚胎发育过程中所起的作用比生长激素还重要。

在两细胞阶段就能检测到igf-?及其受体。

它是着床前的最重要的生长因子。

生长激素或生长激素受体基因突变时,胚胎发育仅稍微迟缓,而igf-?基因突变的小鼠胚胎发育严重滞后。

1996年,woods等〔2〕报道了一例igf-?基因缺失的纯合子男孩,胚胎发育严重滞后,出生体重(比正常均值低,身长 cm(比正常均值低。

出生后igf-?对调节生长有重要作用,而igf-?的生理作用还不清楚。

gh/igf-?轴正常时:生长激素通过肝脏生长激素受体促进肝脏igf-?基因的表达从而促进igf-?的合成和释放;igf-?反馈抑制垂体生长激素的释放。

血清igf-?的浓度和血清生长激素水平在24小时内大致平行。

肝脏如何调节igf-?的合成仍不清楚。

igf-?能促进细胞增殖、分化、成熟,并可抑制细胞凋亡;介导生长激素的大部分作用;促进生长和合成代谢;并且有降低血糖、调节免疫等作用。

器官、组织局部也可产生igfs。

它们通过自分泌、旁分泌的方式发挥作用。

这种局部的igfs在肾脏、骨胳和神经等器官、系统有着重要作用。

在肾脏,igf-?扩张微阻力血管、增加肾小球滤过率、增加肾小管钠、磷的吸收。

动物试验发现:igf-?在慢性肾衰可延缓肾衰进展;在急性肾衰,能加速肾功能的恢复〔3〕。

局部igfs仅部分地受生长激素调节。

骨中igf-?的产生受gh、甲状旁腺素(pth)和性激素调节。

而在生殖系统,性激素是局部igf-?生成的主要调节因子。

二、病理状态下igf系统的改变?:多种因素如年龄、性别、营养状态和生长激素的释放都影响血清igf-?浓度。

出生时,其浓度是低的,在儿童和青春期逐渐增长,20岁以后开始下降。

这些变化和gh的释放是平行的:gh不足时,血清igf-?浓度降低,而gh分泌过多时,igf-?浓度增高。

尽管肢端肥大症的临床特征和血清igf-?浓度并非紧密相关,但测定血清igf-?在诊断gh不足和肢端肥大症仍是有用的。

营养状态影响igf-?浓度,它是循环和组织igfs 系统的重要调节因子〔4〕。

空腹和营养不良时,尽管生长激素正常或升高,但血清igf-?水平降低,肝脏、肠道等组织igf-? mrna及igf-?水平降低。

这是由gh 抵抗、igf-?基因转录和翻译缺陷及mrna不稳定等引起的。

进食和营养状态的改善能恢复igf-?水平。

营养状态影响生长激素和igf-?的治疗作用。

在其它状态,如严重创伤和败血症时,也有gh抵抗,此时血清igf-?浓度也降低。

在1型、2型糖尿病,gh/igf-?轴是异常的,gh增高、igf-?降低〔5〕。

在1型糖尿病,肝脏对gh抵抗,肝脏igf-?产生减少;而同时igfbp-?生成增多,igfbp-?能结合并抑制igf-?发挥作用。

这样igf-?作用降低反馈性地引起了生长激素增高。

gh释放增多会通过拮抗外周组织胰岛素的作用而加重高血糖。

同时igf-?作用降低也导致了幼年或青少年起病的1型糖尿病患者生长发育迟缓。

在控制不佳的2型糖尿病,也同样存在gh的高释放,拮抗外周组织胰岛素的作用。

在任何一种糖尿病,给予igf-?都可以改善血糖控制,并通过降低血清gh来改善胰岛素抵抗。

此外,在2型糖尿病病人,igf-?能减少胰岛素的分泌,防止高胰岛素血症,从而提高胰岛素受体的表达。

igf-?是调节骨细胞功能和代谢的重要因子,如:它能减少骨胶原退化、增加骨质沉积,促进成骨细胞分化、成熟及补充〔6〕。

igf-?可能介导pth的作用。

骨质疏松的病人,血清igf-?水平降低,igf-?水平和骨密度相关〔6〕。

最近有研究发现1型糖尿病患者的骨质减少可能和igfs系统异常有关〔7〕。

?〔8〕:一些非胰岛细胞肿瘤分泌:“大igf-?”,而引起低血糖。

这些肿瘤分泌的是igf-?前体,分子量较igf-?大。

它抑制生长激素的释放;同时,受gh调节的igfbp-3和酸不稳定性蛋白亚单位(acid labilesubunit, als)减少,igf-igfbp3-als减少(这种复合体可阻止igfs穿过血管壁);“大igf-?”本身和igfbp3、als形成复合体的能力较差。

这些都使血中游离的“大igf-?”浓度增高。

另外,肿瘤还分泌igfbp-2,它能携带“大i gf-?”穿过血管壁,进入组织,产生低血糖。

肿瘤切除或放疗减少igf-?的过多分泌,能改善低血糖症。

三、igf-?的治疗应用igf-?具有广泛的生物学效应,它促进骨形成、蛋白合成、肌肉糖摄取、神经生存及髓鞘合成。

在禁食时,它可逆转负氮平衡,阻止肌肉蛋白分解。

因此igf-?被提出用于治疗gh不敏感综合症(laron型株儒症)、糖尿病、胰岛素抵抗、骨质疏松、各种分解代谢状态、神经肌肉疾病、gh抵抗。

广泛的生理作用为igf-?作为多种疾病状态的治疗药物提供了基础,但这也在一定程度上促成了igf-?副作用的发生。

不敏感综合症:由gh受体异常引起的gh不敏感综合症是引起身材矮小的一种少见原因。

血清igf-?、igfbp-3降低,gh增高。

因gh受体异常,它对外源性gh不敏感。

用igf-?治疗gh不敏感综合症的最初研究是由laron等对有此综合症的5名儿童进行的〔9〕。

至今,已有较多以igf-?有效治疗gh不敏感综合症的报道。

某些患者在使用gh的过程中,可能发生gh抗体。

这时用igf-?治疗,身高增长速度增加,和gh不敏感综合症的治疗相似。

另外,有研究表明,原发性身材矮小者,也存在gh受体及受体后异常,如果对此要进行治疗,用igf-?治疗可能比用gh好〔10〕。

因为和gh相比,igf-?治疗不增加发生糖耐量异常或糖尿病的风险。

2.糖尿病和胰岛素抵抗:1型糖尿病患者:gh抵抗,igf-?降低,且常有一定的胰岛素抵抗。

因此igf-?被提出和胰岛素联合应用,以治疗控制较差的青少年1型糖尿病。

小剂量igf-?皮下注射能减少胰岛素的日需要量和血糖的波动,降低血胰岛素、c肽和gh水平〔11〕。

对1型糖尿病治疗过程中出现的严重的胰岛素耐药,大剂量的igf-?可控制代谢紊乱,恢复胰岛素的敏感性。

anton-lewis曾先后报道3例此类病人的治疗情况〔12〕。

其中1例为16岁的女性,每小时1000u 的胰岛素用量都不能控制血糖,纠正酮症。

用rhigf-?治疗前,血糖l,ph ,血胰岛素1550mu/l,血酮体强阳性。

用rhigf-?100μg/kg静脉注射(iv),45分钟后再用rhigf-?100μg/kg iv,再45分钟后用rhigf-?500μg/kg iv。

相关文档
最新文档