第28讲 概率小题(解析版)

合集下载

概率的进一步认识 单元综合检测(解析版)-九年级数学(北师大版)

概率的进一步认识 单元综合检测(解析版)-九年级数学(北师大版)

第17讲概率的进一步认识单元综合检测一、单选题A.05a19二、填空题∵共有12种等可能的结果,两球恰好是一个黄球和一个红球的有∴两球恰好是一个黄球和一个红球的为:6 12=故答案为12.【点睛】此题考查了列表法或树状图法求概率.熟练掌握列表法或树状图法求概率是解题的关键.12.从1,2,4这三个数中任取两个数组成没有重复数字的两位数,【答案】1 3【分析】利用列举法进行求解即可.【解析】解:从1,2,4这三个数中任取两个数组成没有重复数字的两位数共有:等可能的结果,其中组成的两位数是奇数的有∴2163 P==;故答案为:1 3.【点睛】本题考查列举法求概率.准确的列举出所有等可能的结果,是解题的关键.13.如图,两个相同的可以自由转动的转盘A【答案】16【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解析】解:列表如下:21-3()2,3()1,3-0()2,0()1,0-2-()2,2-()1,2--共有4种等可能的结果,其中两只雏鸟都为雄鸟结果数为故两只雏鸟都为雄鸟的概率为故答案为:1 4.【点睛】本题考查了画树状图法求概率,熟练掌握树状图法以及概率公式是解答本题的关键.16.历史上数学家皮尔逊曾在实验中掷均匀的硬币图法适合两步或两步以上完成的事件.概率=所求情况数与总情况数之比.熟练掌握画树状图、灵活运用求概率的公式是解题关键.三、解答题B(1)转动转盘一次,转出黄色的概率是(2)转动转盘两次,如果一次转出红色,一次转出蓝色,那么就可以配成紫色.请利用列表或画树状图的方法,求转动转盘两次,可以配成紫色的概率.【答案】(1)1 3(2)29【分析】(1)首先判断出黄色扇形区域的圆心角为(2)根据题意列出表格得出所有等可能的情况数,找出转动转盘两次,可以配成紫色的情况数,然后根据概率公式即可得出答案.【解析】(1)解:∵红色扇形区域的圆心角为∴黄色扇形区域的圆心角为∴转动转盘一次,转出黄色的概率是故答案为:1 3;(2)解:∵红色和黄色扇形区域的圆心角都是∴两个蓝色扇形区域总的扇形的圆心角也是一共有9种等可能的情况,其中符合题意的有6种,P(他俩诵读两个不同材料)62 93 ==.共有12种等可能的结果数,其中取出的两个球上的汉字能组成所以取出的两个球上的汉字能组成“历城”的概率2 12 ==(1)现小明随机选择一个空座位坐下,直接写出选择(2)用画树状图或列表的方法,求小明和小军坐在相邻位置的概率.【答案】(1)1 4。

中考数学复习考点知识与题型专题讲解28---命题与证明(解析版)

中考数学复习考点知识与题型专题讲解28---命题与证明(解析版)

中考数学复习考点知识与题型专题讲解专题28 命题与证明【知识要点】命题的概念:像这样判断一件事情的语句,叫做命题。

命题的形式:“如果…那么…”。

(如果+题设,那么+结论)真命题的概念:如果题设成立,那么结论一定成立,这样的命题叫做真命题。

假命题的概念:如果题设成立,不能保证结论一定成立,这样的命题叫做假命题。

如何说明一个命题是假命题:只需要举出一个反例即可。

定义、命题、公理和定理之间的关系:这四者都是句子,都可以判断真假,即定义、公理和定理也是命题,不同的是定义、公理和定理都是真命题,都可以作为进一步判断其他命题真假的依据,而命题不一定是真命题,因而它不一定能作为进一步判断其它命题真假的依据。

一个命题的正确性需经过推理,才能作出判断,这个推理过程叫做证明。

证明的依据:可以是已知条件,也可以是学过的定义、基本事实或定理等。

【考查题型】考查题型一判断是否命题及命题真假典例1.(2021·广西贵港市·中考真题)下列命题中真命题是( )A 的算术平方根是2B .数据2,0,3,2,3的方差是65C .正六边形的内角和为360°D .对角线互相垂直的四边形是菱形【答案】B【分析】A.根据算术平方根解题;B.根据方差、平均数的定义解题;C.根据多边形的内角和为180(n 2)︒⨯-解题;D.根据菱形、梯形的性质解题.【详解】A. 2=,2,故A 错误;B. 数据2,0,3,2,3的平均数是20323=25++++,方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦,故B 正确; C. 正六边形的内角和为180(62)720︒⨯-=︒,故C 错误;D. 对角线互相垂直的四边形不一定是菱形,可能是梯形,故D 错误,故选:B .【点睛】本题考查判断真命题,其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识,是基础考点,难度较易,掌握相关知识是解题关键.变式1-1.(2021·四川雅安市·中考真题)下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =【答案】B【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A 、对顶角相等,故选项是命题;B 、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C 、三角形任意两边之和大于第三边,故选项是命题;D 、如果a b a c ==,,那么b c =,故选项是命题;故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.变式1-2.(2021·内蒙古通辽市·中考真题)从下列命题中,随机抽取一个是真命题的概率是( ) (1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-; (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1 【答案】C分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题, (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =,∵面积是2240cm π,则2360n r π=240π,则2nr =360×240, 则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题, 则随机抽取一个是真命题的概率是34, 故选C.【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.变式1-3.(2021·湖北宜昌市·中考真题)能说明“锐角α,锐角β的和是锐角”是假命题的例证图是( ).A .B .C .D .【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.【详解】解:A 、如图1,∠1是锐角,且∠1=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;B 、如图2,∠2是锐角,且∠2=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C 、如图3,∠3是钝角,且∠3=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D 、如图4,∠4是锐角,且∠4=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.故选:C .【点睛】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.变式1-4.(2021·安徽中考真题)已知点,,A B C 在O 上.则下列命题为真命题的是( ) A .若半径OB 平分弦AC .则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形.则120ABC ∠=︒C .若120ABC ∠=︒.则弦AC 平分半径OBD .若弦AC 平分半径OB .则半径OB 平分弦AC【答案】B【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.【详解】A .∵半径OB 平分弦AC ,∴OB ⊥AC ,AB=BC ,不能判断四边形OABC 是平行四边形,假命题;B .∵四边形OABC 是平行四边形,且OA=OC,∴四边形OABC 是菱形,∴OA=AB=OB ,OA ∥BC ,∴△OAB 是等边三角形,∴∠OAB=60º,∴∠ABC=120º,真命题;C .∵120ABC ∠=︒,∴∠AOC=120º,不能判断出弦AC 平分半径OB ,假命题;D .只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是假命题,故选:B .【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.考查题型二写一个命题的逆命题典例2.(2021·广东广州市·九年级二模)下列命题的逆命题成立的是()A.全等三角形的对应角相等B.两个角都是45,则这两个角相等C.有两边相等的三角形是等腰三角形D.菱形的对角线互相垂直【答案】C【分析】写出每个命题的逆命题,然后逐一判断逆命题的真假,即可.【详解】A.全等三角形的对应角相等的逆命题是:“对应角相等的三角形是全等三角形”,不成立;B. 两个角都是45,则这两个角相等的逆命题是:“两个角相等,则这两个角都是45°”不成立;C. 有两边相等的三角形是等腰三角形的逆命题是:“等腰三角形有两边相等”,成立D. 菱形的对角线互相垂直的逆命题是:“对角形相互垂直的四边形是菱形”,不成立故选C.【点睛】本题主要考查命题的逆命题,熟练掌握全等三角形的性质,等腰三角形的定义,菱形的性质,是解题的关键.变式2-1.(2021·莆田擢英中学九年级零模)下列命题中,逆命题为真命题的是()A.对顶角相等B.邻补角互补C.两直线平行,同位角相等D.互余的两个角都小于90°【答案】C【分析】先写出各个命题的逆命题,再进一步判断真假,即可.【详解】A.对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题;B.邻补角互补的逆命题是互补的角是邻补角,逆命题是假命题;C.两直线平行,同位角相等逆命题是同位角相等,两直线平行,逆命题是真命题;D.互余的两个角都小于90°的逆命题是都小于90°的角互余,逆命题是假命题;故选:C.【点睛】本题主要考查逆命题与真假命题,能写出原命题的逆命题是解题的关键.变式2-2.数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a >2,那么a2>4.下列命题中,具有以上特征的命题是()A.两直线平行,同位角相等B.如果|a|=1,那么a=1C.全等三角形的对应角相等D.如果x>y,那么mx>my【答案】C【分析】分别判断原命题和其逆命题的真假后即可确定正确的选项.【详解】解:A、原命题正确,逆命题为同位角相等,两直线平行,正确,为真命题,不符合题意;B 、原命题错误,是假命题;逆命题为如果a =1,那么|a |=1,正确,是真命题,不符合题意;C 、原命题正确,是真命题;逆命题为:对应角相等的三角形全等,错误,是假命题,符合题意;D 、当m =0时原命题错误,是假命题,不符合题意,故选:C .【点睛】考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,难度不大. 考查题型三 用反证法证明命题典例3.(2021·河北九年级二模)求证:两直线平行,内错角相等如图1,若//AB CD ,且AB 、CD 被EF 所截,求证:AOF EO D '∠=∠以下是打乱的用反证法证明的过程①如图2,过点O 作直线A B '',使A OF EO D ''∠=∠,②依据理论依据1,可得//A B CD '',③假设AOF EO D '∠≠∠,④AOF EO D '∴∠=∠.⑤与理论依据2矛盾,∴假设不成立.证明步骤的正确顺序是( )A .①②③④⑤B .①③②⑤④C .③①④②⑤D .③①②⑤④【答案】D【分析】根据反证法的证明步骤分析即可.【详解】解:假设AOF EO D '∠≠∠,如图2,过点O 作直线A B '',使A OF EO D ''∠=∠,∴//A B CD '',这与平行公理“过直线外一点,有且只有一条直线与已知直线平行”矛盾,∴假设不成立,∴AOF EO D '∠=∠.故选:D【点睛】本题考查了反证法,反证法的证明步骤一般先假设与要求证结的相反的命题,再根据已知条件进行正面,最后得出的结论与已知或数学定理矛盾,从而说明要求证命题正确.变式3-1.(2021·浙江九年级其他模拟)能说明命题“若a >b ,则3a >2b “为假命题的反例为( )A .a =3,b =2B .a =﹣2,b =﹣3C .a =2,b =3D .a =﹣3,b =﹣2【答案】B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a =﹣2,b =﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a >b 时,3a =2b ,∴命题“若a >b ,则3a >2b ”为假命题,故选:B .【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.变式3-2.(2021·浙江杭州市·八年级其他模拟)用反证法证明“ABC 中,若A B C ∠∠∠>>,则A 60∠>”,第一步应假设()A .A 60∠=B .A 60∠<C .A 60∠≠D .A 60∠≤【答案】D【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断;需注意的是∠A >60°的反面有多种情况,应一一否定.【详解】解:∠A 与60°的大小关系有∠A >60°,∠A=60°,∠A <60°三种情况,因而∠A >60°的反面是∠A≤60°.因此用反证法证明“∠A >60°”时,应先假设∠A≤60°.故选:D变式3-3.(2021·河北唐山市·中考模拟)已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC ,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.变式3-4.(2021·浙江宁波市·九年级一模)能说明命题“若一次函数经过第一、二象限,则k+b >0”是假命题的反例是( )A .y 2x 3=+B .y 2x 3=-C .y 3x 2=--D .y 3x 2=-+【答案】D【分析】利用命题与定理,首先写出假命题进而得出答案.【详解】解:一次函数y=kx+b的图象经过第一、二象限,则k>0,b>0或k<0,b>0,故选D.【点睛】此题主要考查了反证法的证明举例,训练了学生对举反例法的掌握情况.。

高考数学经典错题深度剖析及针对训练专题28互斥事件和对立事件的概率(含答案)

高考数学经典错题深度剖析及针对训练专题28互斥事件和对立事件的概率(含答案)

高考数学经典错题深度剖析及针对训练专题28互斥事件和对立事件的概率(含答案)专题28 互斥事件和对立事件的概率【标题01】没有准确理解互斥事件的定义不能准确判断两个事件在一次试验中是否可以同时发生【习题01】给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”;③甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”;④甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,其中属于互斥事件的有()A .1对B .2对C .3对D .4对【经典错解】①、③、④属于互斥事件,所以选择C . 【详细正解】对于②、④中的两个事件可以同时发生;①、③中的两个事件不可能同时发生;根据互斥事件的定义知①、③中的两个事件为互斥事件.【习题01针对训练】从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是() A. A 与C 互斥 B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥【标题02】没有理解()P A B +的含义导致计算错误【习题02】抛掷一枚均匀的骰子,若事件A :“朝上一面为奇数”,事件B :“朝上一面的点数不超过3”,求()P A B +.【经典错解】事件A :朝上一面的点数是1,3,5;事件B :朝上一面的点数为1,2,3,∴33()P(A)P(B)166P A B +=+=+= 【详细正解】事件A :朝上一面的点数是1,3,5;事件B :朝上一面的点数为1,2,3,A B +包含朝上一面的点数为1,2,3,5四种情况,∴42()63P A B +== 【深度剖析】(1)经典错解错在没有理解()P A B +的含义导致计算错误.(2)事件A :朝上一面的点数是1,3,5;事件B :趄上一面的点数为1,2,3,很明显,事件A 与事件B 不是互斥事件.因为当朝上的点数是1或3时,事件A 和事件B 同时发生,所以事件A 和事件B 不是互斥事件,所以不能用互斥事件的概率公式()P(A)P(B)P A B +=+.只能利用古典概型的概率公式解答.(2)对于字母表示的事件的含义一定要弄清楚,如事件A B +表示事件A 发生或事件B 发生,也可以说事件A ,B 至少有一个发生.事件A B ×表示事件A 和B 同时发生.只有把它们的含义弄明白了,你才有可能正确解答.【习题02针对训练】某射手在一次射击中射中10环,9环,8环的概率分别为0.24,0.28,0.19计算这一射手在一次射击中:(1)射中10环或9环的概率;(2)不够8环的概率.【标题03】互斥事件和对立事件的概念和关系没有理解透彻【习题03】从装有2个红球和2个白球的口袋内任取2个球,那么互斥但不对立的两个事件是( )A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是红球【经典错解】C【详细正解】A ,B 选项中的两个事件不互斥,当然也不对立;C 选项中的两个事件互斥,但不对立;D 选项中的两个事件不但互斥,而且对立,所以正确答案应为C.【习题03针对训练】从一批产品中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品不全是次品},则下列结论正确的序号是________.①A 与B 互斥;②B 与C 互斥;③A 与C 互斥;④A 与B 对立;⑤B 与C 对立.【标题04】忽略了公式()()()P A B P A P B +=+的使用前提导致出错【习题04】抛掷一枚均匀的骰子,若事件A :“朝上一面为奇数”,事件B :“朝上一面的点数不超过3”,求()P A B +.【经典错解】事件A :朝上一面的点数是1,3,5;事件B :朝上一面的点数为1,2,3,∴()P(A)P(B)P A B +=+=33166+= 【详细正解】事件A :朝上一面的点数是1,3,5;事件B :朝上一面的点数为1,2,3,A B +包含朝上一面的点数为1,2,3,5四种情况,∴()P A B +=3264=【习题04针对训练】某射手在一次射击中射中10环,9环,8环的概率分别为0.24,0.28,0.19计算这一射手在一次射击中:(1)射中10环或9环的概率;(2)不够8环的概率.。

25.1.2概率-九年级数学人教版(上)(解析版)

25.1.2概率-九年级数学人教版(上)(解析版)

第二十五章概率25.1.2概率一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是A.16B.13C.12D.23【答案】C【解析】由题意可得,点数为奇数的概率是:36=12,故选C.2.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是A.23B.16C.13D.12【答案】D3.现有四张扑克牌:红桃A、黑桃A、梅花A和方块A.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为A.1 B.14C.12D.34【答案】B【解析】∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为14,故选B.4.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【答案】A5.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n的值是A.6 B.7 C.8 D.9 【答案】A【解析】根据题意得2n=13,解得n=6,所以口袋中小球共有6个.故选A.二、填空题:请将答案填在题中横线上.6.农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为__________.【答案】1 2【解析】由题意可得,小明随意吃了一个,则吃到腊肉棕的概率为:5325++=12,故答案为:12.7.在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是__________.【答案】3 10【解析】∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是3 10,故答案为:3 10.8.在“Wish you success”中,任选一个字母,这个字母为“s”的概率为__________.【答案】2 7【解析】任选一个字母,这个字母为“s”的概率为:414=27,故答案为:27.9.有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是__________.【答案】1 4三、解答题:解答应写出文字说明、证明过程或演算步骤.10.判断下列说法是否正确,并说明理由.(1)“从布袋中取出一只红球的概率是1”,这句话的意思是说取出一个红球的可能性很大.(2)在医院里看病注射青霉素时,说明书上说发生过敏的概率大约为0.1%,小明认为这个概率很小,一定不会发生在自己的身上,不需要做皮试.(3)小华在一次实验中,掷一枚均匀的正六面体骰子掷了6次,有3次出现了“3”,小华认为“3”出现的频率为12.【解析】(1)错误,“取出一只红球的概率是1”,说明这是一个必然事件,而不是可能性很大的,是100%.(2)错误,虽然发生的概率只有0.1%,发生的可能性很小,但它仍有可能发生,而且有关生命,因此,小明应做皮试.(3)错误,虽然小华在一次实验中,掷一枚均匀的正六面体骰子掷了6次,有3次出现了“3”,但是“3”出现的概率为16.11.投掷一枚正六面体骰子,六个面上依次标有1,2,3,4,5,6.(1)掷得“6”的概率是多少?(2)掷一次“不是6”的概率是多少?(3)掷得数“小于4”的概率是多少?(4)掷得数“小于或等于4”的概率是多少?。

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

【经典例题】【例 1】( 2012 湖北) 如图,在圆心角为直角的扇形 OAB 中,分别以 OA , OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是21 121 A .1- πB . 2 - πC . πD . π【答案】 A【解析】 令 OA=1,扇形 OAB 为对称图形, ACBD 围成面积为 S 1,围成 OC 为 S 2,作对称轴 OD ,则过 C 点. S 2 即为以 OA2 π 1 2 111 π -2 S2(2)-2×2×2=1为直径的半圆面积减去三角形OAC 的面积, S =8 .在扇形 OAD 中 2 为扇形面积减去三角S 2 S 1 1 21 S 2π -2 π -2π形 OAC 面积和 2 , 2 = 8 π×1 - 8 - 2 =16 , S 1+S 2= 4 ,扇形 OAB 面积 S= 4 ,选 A .【例 2】( 2013 湖北) 如图所示,将一个各面都涂了油漆的正方体,切割为 125 个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则 X 的均值 E(X) = ( )1266 1687 A. 125B. 5C.125D. 5【答案】 B27 54 36 8 27【解析】 X 的取值为 0,1, 2,3 且 P(X = 0) =125,P(X = 1) =125,P(X = 2) = 125,P(X = 3) = 125,故 E(X) =0× 125+1× 54 36 8 6+2× +3× =,选B.125 125 125 5【例 3】( 2012 四川) 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通 电后的 4 秒内任一时刻等可能发生,然后每串彩灯以 4 秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过 2 秒的概率是 ()1 1 3 7 A. 4B. 2C. 4D. 8【答案】 C【解析】 设第一串彩灯在通电后第 x 秒闪亮, 第二串彩灯在通电后第 y 秒闪亮,由题意 0≤ x ≤ 4,满足条件的关系式0≤y ≤4,根据几何概型可知, 事件全体的测度 ( 面积 ) 为 16 平方单位,而满足条件的事件测度( 阴影部分面积 ) 为 12 平方单位,123故概率为 16= 4.【例 4】( 2009 江苏) 现有 5 根竹竿,它们的长度(单位: m )分别为 2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2 根竹竿,则它们的长度恰好相差 0.3m 的概率为 .【答案】 0.2 【解析】 从 5 根竹竿中一次随机抽取 2 根的可能的事件总数为 10,它们的长度恰好相差 0.3m 的事件数为 2,分别是:2.5 和 2.8 , 2.6 和 2.9 ,所求概率为 0.2【例 5】( 2013 江苏) 现有某类病毒记作 X m Y n ,其中正整数 m , n(m ≤7, n ≤ 9)可以任意选取,则 m , n 都取到奇数的概率为 ________.20【答案】【解析】 基本事件共有 7×9= 63 种, m 可以取 1, 3, 5,7, n 可以取 1, 3,5, 7, 9. 所以 m ,n 都取到奇数共有 2020种,故所求概率为63.【例 6】( 2013 山东) 在区间 [- 3,3] 上随机取一个数 x ,使得 |x + 1|- |x - 2| ≥1成立的概率为 ________.【答案】13【解析】 当 x<- 1 时,不等式化为- x - 1+ x -2≥1,此时无解;当- 1≤x ≤2 时,不等式化为 x +1+ x -2≥1,解之得 x ≥1;当 x>2 时,不等式化为 x + 1- x +2≥1,此时恒成立, ∴|x + 1| - |x -2| ≥1的解集为 [ 1,+∞ ) . 在 [ -3, 3]上使不等式有解的区间为 [ 1,3] ,由几何概型的概率公式得 P = 3- 1 1 .3-(- 3) =3【例 7】( 2013 北京)下图是某市 3 月 1 日至 14 日的空气质量指数趋势图, 空气质量指数小于 100 表示空气质量优良, 空气质量指数大于 200 表示空气重度污染. 某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市, 并停留 2 天.( 1)求此人到达当日空气重度污染的概率;( 2)设 X 是此人停留 期间空气质量优良的天数,求 X 的分布列与数学期望;( 3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明 )【答案】 132; 1213; 3 月 5 日【解析】 设 Ai 表示事件“此人于3 月 i 日到达该市” (i = 1, 2, , 13) .1(i ≠j) .根据题意, P(Ai) = ,且 Ai ∩Aj =13( 1)设 B 为事件“此人到达当日空气重度污染”,则B =A5∪A8.2所以 P(B) =P(A5∪A8)= P(A5) + P(A8) = .13( 2)由题意可知, X 的所有可能取值为 0,1, 2,且P(X= 1) =P(A3∪A6∪A7 ∪A11)4=P(A3) + P(A6) + P(A7) + P(A11) =13,P(X= 2) =P(A1∪A2∪A12∪A13)4=P(A1) + P(A2) + P(A12) + P(A13) =13,5P(X= 0) = 1- P(X= 1) - P(X= 2) =13.所以 X 的分布列为X 0 1 2P 5 4 4 13 13 135 4 4 12故 X 的期望 E(X) =0×+1×+2×= .13 13 13 13( 3)从 3 月 5 日开始连续三天的空气质量指数方差最大.【例 8】(2013 福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为2,中奖可以3 获得 2 分;方案乙的中奖率为2,中奖可以获得 3 分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中5奖与否互不影响,晚会结束后凭分数兑换奖品.( 1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求 X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.2 2【解析】方法一:( 1)由已知得,小明中奖的概率为3,小红中奖的概率为5,且两人中奖与否互不影响.记“这2 人的累计得分X≤3”的事件为A,则事件 A 的对立事件为“ X=5”,2 2 411因为 P(X=5) =×=,所以P(A)=1-P(X=5)=,3 5 151511即这两人的累计得分X≤3的概率为15.( 2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1) ,选择方案乙抽奖累计得分的数学期望为E(3X2) .2 2由已知可得,X1~ B 2,3, X2~ B 2,5,2 42 4所以 E(X1) =2×3=3, E(X2) =2×5=5,812从而 E(2X1) = 2E(X1) =, E(3X2) = 3E(X2) =.3 5因为 E(2X1)>E(3X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:( 1)由已知得,小明中奖的概率为2,小红中奖的概率为2,且两人中奖与否互不影响.35记“这两人的累计得分 X ≤3”的事件为 A ,则事件 A 包含有“ X =0”“ X =2”“ X =3”三个两两互斥的事件,2 2 1 2 2 22 22, 因为 P(X = 0) = 1-× 1- = ,P(X = 2) = × 1-= ,P(X =3) = 1- × = 15 355355 3 511所以 P(A) = P(X = 0) + P(X = 2) + P(X = 3) =15,11即这两人的累计得分 X ≤3的概率为 15.( 2)设小明、小红都选择方案甲所获得的累计得分为 X1,都选择方案乙所获得的累计得分为X2,则 X1, X2 的分布列如下:X1 0 2 4 X2 0 3 6 P14 4 P912 4 9 9 9 2525251448所以 E(X1) =0× 9+2× 9+4× 9= 3,E(X2) =0× 9 +3× 12+6× 4 = 12.25 25 25 5因为 E(X1)>E(X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例 9】( 2013 浙江) 设袋子中装有 a 个红球, b 个黄球, c 个蓝球,且规定:取出一个红球得1 分,取出一个黄球得2 分,取出一个蓝球得3 分.( 1)当 a = 3, b = 2,c = 1 时,从该袋子中任取 (有放回,且每球取到的机会均等 )2 个球,记随机变量 ξ为取出此 2球所得分数之和,求 ξ的分布列;( 2)从该袋子中任取 (每球取到的机会均等 )1 个球,记随机变量 η为取出此球所得分数. 若 E η= 5,D η=5,求 a ∶ b ∶ c.3 9【答案】 3∶ 2∶ 1【解析】( 1)由题意得,ξ= 2, 3, 4, 5, 6.P(ξ= 2) = 3×3 1= ,6×6 4 P(ξ= 3) =2×3×2= 1,6×6 32×3×1+2×2 5 P(ξ= 4) = 6×6 = 18. P(ξ= 5) = 2×2×1 16×6= 9,P(ξ= 6) = 1×1 1,= 366×6 所以 ξ 的分布列为ξ 2 3 4 5 6 P1 1 5 1 1 4318936( 2)由题意知 η 的分布列为η 1 2 3Pa b ca +b +c a + b + ca +b +ca 2b3c5所以 E η= a + b + c + a +b + c + a +b + c = 3,5 a 5 b 5c5D η= 1- 32· a + b + c +2- 32· a + b + c +3- 32· a + b + c = 9, 2a - b - 4c = 0,解得 a = 3c , b = 2c , 化简得a + 4b -11c = 0,故 a ∶b ∶c =3∶2∶1.【例 10】( 2009 北京理) 某学生在上学路上要经过 4 个路口, 假设在各路口是否遇到红灯是相互独立的,遇到红灯的 概率都是 1,遇到红灯时停留的时间都是2min.3( 1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; ( 2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望 .【答案】4;327 8【解析】 本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础 知识,考查运用概率与统计知识解决实际问题的能力.( 1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件 A ,因为事件 A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为PA11111 4 .333 27( 2)由题意,可得可能取的值为 0,2, 4, 6,8(单位: min ) .事件“2k ”等价于事件“该学生在路上遇到k 次红灯”( k 0, 1, 2,3, 4),k 4 k∴ P2kC k412k 0,1,2,3,4,33∴即 的分布列是0 246 8P16 32 8818181278181∴ 的期望是 E16 32 88 1 82468.818127 81813【课堂练习】1.( 2013 广东) 已知离散型随机变量X 的分布列为X 1 2 3P3 3 151010则 X 的数学期望 E(X) = () 35A. 2B . 2 C. 2 D . 32.( 2013 陕西) 如图,在矩形区域 ABCD 的 A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区 域 ADE 和扇形区域 CBF( 该矩形区域内无其他信号来源,基站工作正常 ).若在该矩形区域内随机地选一地点,则该地点无 信号的概率是 ( ).A .1- π π π D . π4 B . -1 B .2- 42 23.在棱长分别为 1, 2, 3 的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离 大于 3的概率为 ()4 3 2 3A .7B . 7C . 7D . 144.( 2009 安徽理) 考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这6 个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于12 34?BA .B .C .D .75757575?F?C?D? E? A5.( 2009 江西理) 为了庆祝六一儿童节,某食品厂制作了3 种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5 袋,能获奖的概率为()3133 C .4850A .B .81D ..8181816.( 2009 辽宁文) ABCD 为长方形, AB = 2, BC =1,O 为 AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于 1 的概率为A .B . 1C .8D . 18447.( 2009 上海理) 若事件 E 与 F 相互独立,且 P EP F1 的值等于,则P EI F4A . 01 C .11B .4D .1628.( 2013 广州) 在区间 [1,5] 和[2, 4]上分别取一个数,记为a ,b ,则方程 x 2 y 22+b 2= 1 表示焦点在 x 轴上且离心率小a于 3的椭圆的概率为 ()2C .1711531A .2B . 3232D . 321, 2,3,9.已知数列 {a } 满足 a = a+ n - 1(n ≥2,n ∈ N),一颗质地均匀的正方体骰子,其六个面上的点数分别为nnn -14, 5, 6,将这颗骰子连续抛掷三次,得到的点数分别记为 a , b , c ,则满足集合 {a ,b , c} = {a 1, a 2, a 3}(1 ≤a i ≤6,i = 1, 2, 3)的概率是 ()1B . 1C . 1D . 1A .72 36 24 1210.( 2009 湖北文) 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、 0.6、 0.5,则三人都达标的概率是,三人中至少有一人达标的概率是 。

2014中考数学复习课件28概率-第一轮复习第八单元统计与概率

2014中考数学复习课件28概率-第一轮复习第八单元统计与概率

【点拨】本题考查利用概率判断游戏的公平性,先 利用列表法或画树形 (状 )图法分别求出甲和乙获胜的概 率,再判断游戏的公平性.
解:(1)解法一:列表如下: 1 1 2 3 4 (2,1) (3,1) (4,1) (3,2) (4,2) (4,3) 2 (1,2) 3 (1,3) (2,3) 4 (1,4) (2,4) (3,4)
矩形
ABCD, P(飞镖落
5.一只盒子中有红球 m 个,白球 8 个,黑球 n 个,三种球除颜色外都相同,从中任取一个球,如果 取得白球的概率与不是白球的概率相同,那么 m 与 n 的关系是 m+n=8.
8 解析: ∵ P(取得白球 )= , P(取得红球或 m+ n+ 8 m+ n 黑球 )= ,又 ∵取得白球的概率与不是白球 (即 m+ n+ 8 m+ n 8 取得红球或黑球 )的概率相同,∴ = , m+ n+ 8 m+ n+ 8 得 m+ n= 8.
5. 用替代物模拟试验
在试验中往往会出现手边没有相应的实物的情 况,需要借助替代物进行模拟试验,要广开思路,创 造性地进行实物代替,尽可能地就地取材,但应该注 意的是替代物与被替代物的形状、大小、质地差别可 以很大,但是试验时考查的试验对象出现的机会应该 是相同的,这样利用替代物做模拟试验才不会影响试 验的结果.
【点拨】 A 选项摸出红球的概率是 0.5, B 选项取 得奇数的概率是 0.5, C 选项正面朝上的概率是 0.5, 1 D 选项指针指向甲的概率是 ,故选 D. 3 【答案】 D
考点三
概率的应用
例 3 (2013· 白银 )为了决定谁将获得仅有的一张科普 报告入场券,甲和乙设计了如下的摸球游戏:在不透 明的口袋中放入编号分别为 1,2,3 的三个红球及编号 为 4 的一个白球,四个小球除了颜色和编号不同外, 其他没有任何区别.摸球之前将袋内的小球搅匀. 甲 先摸两次,每次摸出一个球(第一次摸后不放回).

九年级下册数学第二十八章 概率初步练习题

九年级下册数学第二十八章 概率初步练习题

九年级下册数学第二十八章 概率初步练习题(附解析)学校:___________姓名:___________班级:___________考号:___________题号 一 二 三 四 五 总分 得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释 评卷人 得分一、单选题(注释)1、掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是 A .1B .C .D .02、从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是( ) A .0 B .C .D .13、从编号为1~10的10个完全相同的球中,任取一球,其号码能被3整除的概率是( ) A .B .C .D .4、甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是( )A .从甲袋摸到黑球的概率较大B .从乙袋摸到黑球的概率较大C .从甲、乙两袋摸到黑球的概率相等D .无法比较从甲、乙两袋摸到黑球的概率5、如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为A .B .C .D .6、下列事件中为必然事件的是A.打开电视机,正在播放茂名新闻B.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹7、一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是A.B.C.D.8、下列说法正确的是A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近9、在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,……,如此大量摸球实验后,小新发出其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率应稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的球是红球.其中说法正确的是A.①②③B.①②C.①③D.②③10、九张同样的卡片分别写有数字,,,,0,1,2,3,4,任意抽取一张,所抽卡片上数字的绝对值小于2的概率是A.B.C.D.11、某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为A.0.09 B.0.98 C.0.97 D.0.9612、从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于4.85 g的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是A.0.62 B.0.38 C.0.02 D.0.6813、抽查10件产品,设事件A:至少有两件次品,则A的对立事件为A.至多两件次品B.至多一件次品C.至多两件正品D.至少两件正品14、从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰有一个黑球”与“恰有两个黑球”D.“至少有一个黑球”与“都是红球”15、下面事件是随机事件的有①连续两次掷一枚硬币,两次都出现正面朝上②异性电荷,相互吸引③在标准大气压下,水在1℃时结冰A.②B.③C.①D.②③16、下面事件是必然事件的有①如果a、b∈R,那么a·b=b·a;②某人买彩票中奖;③3+5>10A.①B.②C.③D.①②17、随机事件A的频率满足A.=0 B.=1 C.0<<1 D.0≤≤118、在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是A.必然事件B.不可能事件C.随机事件D.以上选项均不正确19、下列试验能够构成事件的是A.掷一次硬币B.射击一次C.标准大气压下,水烧至100℃D.摸彩票中头奖20、如图所示是用相同的正方形砖铺成的地板,一宝物藏在某一块下面,宝物在白色区域的概率是A.B.C.D.分卷II分卷II 注释评卷人得分二、填空题(注释)21、口袋中有2个白球,1个黑球,从中任取一个球,摸到白球的概率为.22、一只蝴蝶在空中飞行,然后随意落在如图所示的某一方格中(每个方格除颜色外完全相同),则蝴蝶停止在白色方格中的概率是 .23、如图,四条直径把两个同心圆分成八等份,若往圆面投掷飞镖,则飞镖落在白色区域的概率是.24、如图所示是一飞镖游戏板,大圆的直径把组同心圆分成四等份,假设击中圆面上每个点都等可能的,则落在黑色区域的概率 .25、已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是。

北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习

北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习

第01讲_概率的进一步认识知识图谱概率的计算知识精讲一.用列表法和树状图法求事件的概率1.列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2.树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的树丫形式,最末端的树丫个数就是总的可能的结果.二.用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.三点剖析一.考点:概率的计算二.重难点:用列表法和树状图法求事件概率三.易错点:(1)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;(2)复杂事件求概率的方法运用频率估算概率。

判断是否公平的方法运用概率是否相等,关注频率与概率的整合。

求简单事件的概率例题1、在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.1 3B.23C.16D.34【答案】B【解析】分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.北师大版本九年级上册第三章概率的进一步认识例题2、围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是2 3.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗【答案】C【解析】由题意得14223xx yxx y⎧=⎪++⎪⎨⎪=⎪+⎩;解得48yx=⎧⎨=⎩,由此可得,原来盒子中有白色棋子8颗例题3、某厂为新型号电视机上市举办促销活动,顾客购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,摸到都是黄球的顾客获得大奖,摸到不全是黄球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你讲转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:转盘上用文字注明颜色和扇形的圆心角的度数,结合转盘简述获奖方式,不需要说明理由).【答案】见解析【解析】(1)符合,一共出现20种可能性,并且每种可能性都相同,所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)212010==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36︒的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.随练1、如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C. D.【答案】C【解析】列表如下:共有6种情况,必须闭合开关S 3灯泡才亮,即能让灯泡发光的概率是=.故选C .随练2、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,它们除颜色外全部相同,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【答案】B【解析】解:由题意得:25134x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩,解得23x y =⎧⎨=⎩故选:B .随练3、有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是______颜色;(2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?【答案】(1)白(2)16(3)公平【解析】(1)因为白色的乒乓球数量最多,所以最有可能是白色(2)摸出一球总共有6种可能,它们的可能性相等,摸到白球有3种、黄球有2种、红球有1种.所以P (摸到白球)=3162=,P (摸到黄球)=2163=,P (摸到红球)=16;(3)答:公平.因为P (摸到白球)=12,P (摸到其他球)=21162+=,所以公平.列表法和树状图法求概率例题1、如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是__________.【答案】715【解析】列表得(1,8)(1,7)(1,6)(1,5)(1,4);(2,8)(2,7)(2,6)(2,5)(2,4);(3,8)(3,7)(3,6)(3,5)(3,4);其中为偶数的有7种,故数字和为偶数的概率是715例题2、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,1-,2-,3-四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为__________.【答案】38【解析】画树状图,得因为共有16种可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况所以两次摸出的小球上两个数字乘积是负数的概率63168==.例题3、有十张正面分别标有数字3-,2-,1-,0,1,2,3,4,5,6的不透明卡片,他们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b .则数字a ,b 使得关于x 的方程210ax bx +-=有解的概率为___________.【答案】710【解析】列表得:一共有(3,2)--、(2,1)--、(1,0)-、(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7);数字a ,b 使得关于x 的方程210ax bx +-=有解的情况有:(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)七种,则710P =.例题4、在平面直角坐标系中给定以下五个点A (2-,0)、B (1,0)、C (4,0)、D (2-,92)、E (0,6-),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩桌球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是()A.12B.35C.710D.45【答案】B【解析】所有的摸球情况有:ABC 、ABD 、ABE 、ACD 、ACD 、ACE 、ADE 、BCD 、BCE 、BCE 、BDE 、CDE 共有10种情况;其中,ABC 时,三点都在x 轴上,共线,不能确定一条抛物线;而ABD 、ACD 、ADE 时,A 、D 的横坐标都是2-,不复合函数的定义;所以能确定一条抛物线的情况有:10136--=,所以35P =.随练1、把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为__________.【答案】49【解析】列表可得因此,点(),A x y 的个数共有9个;则x 、y 、5的三条线段能构成三角形的有4组,可得49P =.随练2、在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球分别标有数字2-、1-、0、2、3,现从口袋中任取一个小球,并将该小球上的数字作为点C 的横坐标,然后放回摇匀,再从口袋中人去一个小球,并将该小球上的数字作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)构成直角三角形的概率是_________.【答案】25【解析】画树状图如下:共有25种情况,当点C的坐标为(2-,2-)、(2-,1-)、(2-,0)、(2-,3)、(1-,0)、(2,0)、(3,2-)、(3,1-)、(3,0)、(3,3)共10种情况时,构成直角三角形,P(直角三角形)102 255 ==.用频率估计概率例题1、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【答案】D【解析】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.例题2、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:40075015003500700090003696621335320363358073根据表中数据,估计这种幼树移植活率的概率为__________(精确到0.1).【答案】0.9【解析】(0.9230.8830.8900.9150.9050.8970.902)70.9x=++++++÷≈例题3、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n)100150200500摸到白球次数(m)5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当n很大时,摸到白球的概率将会接近0.6.(2)由(1)可得,摸到白球的概率是35,摸到黑球的概率是25;(3)由(2)可得,口袋中白球的个数320125=⨯=个;黑球的个数22085=⨯=个.随练1、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).【答案】0.5【解析】由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.随练2、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:的次数n 100150200500800”的次数m 68111136345564的频率m(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1)【答案】(1)见解析;(2)0.7;(3)0.7;(4)252 【解析】(1)的次数n 100150200500800”的次数68111136345564的频(2)当n 很大时,频率将会接近681111363455647010.71001502005008001000+++++=+++++(3)获得铅笔的概率约是0.7(4)扇形的圆心角约是0.7360252⨯=拓展1、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.4 9B.13C.16D.19【答案】D【解析】列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为1 9.2、在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?【答案】(1)嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=612=12,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.3、从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率____.【答案】13【解析】由关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4,可求得a 的值,由关于x 的方程x 2+4x+a=0有解,可求得a 的取值范围,继而求得答案.∵一次函数y=2x+a 与x 轴、y 轴的交点分别为:(﹣2a,0),(0,a ),∴|﹣2a|×|a|×12=4,解得:a=±4,∵当△=16﹣4a ≥0,即a ≤4时,关于x 的方程x 2+4x+a=0有解,∴使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率为:13.故答案为:134、王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是__________.【答案】王红【解析】共9种情况,和为7的情况数有3种,王红获胜的概率为39;和为8的情况数有2种,刘芳获胜的概率为29; 王红获胜的可能性较大.5、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n )100150200500摸到白球次数(m )5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当\(n\)很大时,摸到白球的概率将会接近\(0.6\).(2)由(1)可得,摸到白球的概率是\(\frac{3}{5}\),摸到黑球的概率是\(\frac{2}{5}\);(3)由(2)可得,口袋中白球的个数\(=20\times \frac{3}{5}=12\)个;黑球的个数\(=20\times \frac{2}{5}=8\)个.6、在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【答案】(1)见解析;(2);(3).【解析】(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第28讲概率小题一.选择题(共38小题)1.(2020秋•哈尔滨期末)抛掷甲、乙两颗骰子,所得点数之和为X,那么4X=表示的基本事件是() A.一颗是3点,一颗是1点B.两颗都是2点C.一颗是3点,一颗是1点或两颗都是2点D.甲是3点,乙是1点或甲是1点,乙是3点或两颗都是2点【解析】解:根据题意,4X=即甲乙两颗骰子的点数之和为4,包含3个基本事件:甲是3点,乙是1点或甲是1点,乙是3点或两颗都是2点,故选:D.ξ=表示的随机试验结果是( 2.(2020春•丰台区校级月考)抛掷2颗骰子,所得点数之和记为ξ,那么4)A.2颗都是4点B.1颗是1点,另1颗是3点C.2颗都是2点D.1颗是1点、另1颗是3点,或2颗都是2点【解析】解:对A、B中表示的随机试验的结果,随机变量均取值4,ξ=代表的所有试验结果.而D是4故选:D.3.(2020春•金凤区校级期中)下列事件中是随机事件的个数有()①连续两次抛掷两个骰子,两次都出现2点;②在地球上,树上掉下的雪梨不抓住就往下掉;③某人买彩︒会沸腾.票中奖;④在标准大气压下,水加热到90CA.1B.2C.3D.4【解析】解:①连续两次抛掷两个骰子,两次都出现2点;是随机事件,②在地球上,树上掉下的雪梨不抓住就往下掉;是必然事件.③某人买彩票中奖;是随机事件.︒会沸腾.是不可能事件.④在标准大气压下,水加热到90C故选:B.4.(2019秋•大连期末)关于频率和概率,下列说法正确的是()①某同学在罚球线投篮三次,命中两次,则该同学每次投篮的命中率为23;②数学家皮尔逊曾经做过两次试验,抛掷12000次硬币,得到正面向上的频率为0.5016;抛掷24000次硬币,得到正面向上的频率为0.5005.如果他抛掷36000次硬币,正面向上的频率可能大于0.5005;③某类种子发芽的概率为0.903,当我们抽取2000粒种子试种,一定会有1806粒种子发芽;④将一个均匀的骰子抛掷6000次,则出现点数大于2的次数大约为4000次.A.②④B.①④C.①②D.②③【解析】解:①某同学在罚球线投篮三次,命中两次,则该同学每次投篮的频率为23,错误;②从频率角度来说,数学家皮尔逊曾经做过两次试验,抛掷12000次硬币,得到正面向上的频率为0.5016;抛掷24000次硬币,得到正面向上的频率为0.5005.如果他抛掷36000次硬币,正面向上的频率可能大于0.5005;③概率只是预测事件发生的可能性,某类种子发芽的概率为0.903,当我们抽取2000粒种子试种,不一定会有1806粒种子发芽,错误;④将一个均匀的骰子抛掷一次,出现点数大于2的概率为23,则抛掷6000次,则出现点数大于2的次数大约为4000次是有可能的,正确.故选:A.5.(2020秋•海淀区校级月考)在天气预报中,有“降水概率预报”.例如,预报“明天降水概率为85%”,这是指()A.明天该地区有85%的地区降水,其他15%地区不降水B.明天该地区约有85%的时间降水,其他时间不降水C.气象台的专家中,有85%的人认为会降水,另外15%的专家认为不降水D.明天该地区降水的可能性为85%【解析】解:在天气预报中预报“明天降水概率为85%”,对于A,由概率的定义得明天该地区降水的可能性为85%,并不是说其他15%地区不降水,故A错误;对于B,明天该地的每个地区都有85%的降水的可能性,并不是说其他时间不降水,故B错误;对于C,由概率的定义得明天该地区降水的可能性为85%,并不是说有85%的人认为会降水,另外15%的专家认为不降水,故C错误;对于D,由概率的定义得明天该地区降水的可能性为85%,故D正确.故选:D.6.(2020春•乐山期中)下列说法正确的是()A.抛掷一枚硬币,正面朝上的概率是1,所以抛掷两次一定会出现一次正面朝上的情况2B.某地气象局预报说,明天本地降水概率为80%,这说明明天本地有80%的区域下雨C.概率是客观存在的,与试验次数无关D.若买彩票中奖的概率是万分之一,则买彩票一万次就有一次中奖【解析】解:概率反映了随机事件的一个属性,即事件发生的可能性大小是客观存在的,与试验次数多少或某一次是否发生无关,所以A,B,D错,C选项正确.故选:C.7.(2020秋•成都期末)袋中装有大小和材质均相同的红球4个,黄球2个,白球1个,从中随机取出一个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,则下列关于事件A和事件B的关系说法正确的是()A.不互斥但对立B.不互斥也不对立C.互斥且对立D.互斥但不对立【解析】解:取出一个球不能即是红球又是黄球,故A与B不能同时发生,A,B互斥,又因为袋中还有白球,故A与B互斥但不对立,故选:D.8.(2020秋•丰台区期末)抛掷两枚质地均匀的硬币,设事件A=“第一枚硬币正面朝上”,事件B=“第二枚硬币反面朝上”,则A与B的关系为()A.互斥B.相互对立C.相互独立D.相等【解析】解:根据题意,事件A=“第一枚硬币正面朝上”,事件B=“第二枚硬币反面朝上”,两个事件可以同时发生,也可以都不发生,A事件发生与否对B事件没有影响,是相互独立事件,故选:C.9.(2020秋•沈阳期末)从装有大小和形状完全相同的8个红球和2个白球的口袋内任取两个球,下列各对事件中,互斥而不对立的是()A.“至少一个白球”和“都是红球”B.“至少一个白球”和“至少一个红球”C.“恰有一个白球”和“恰有一个红球”D.“恰有一个白球”和“都是红球”【解析】解:A选项中“至少一个白球”和“都是红球”二者是互斥事件,也是对立事件,故A不满足;B选项中“至少一个白球”和“至少一个红球”有可能都表示一个白球,一个红球,故不是互斥事件,故B 不满足;C选项中“恰有一个白球”和“恰有一个红球”同样有可能都表示一个白球,一个红球,故不是互斥事件,故C不满足;D选项中“恰有一个白球”和“都是红球”不可能同时发生,是互斥事件,又由于两个事件之外还有“都是白球”事件,故不是对立事件;可知只有D正确;故选:D.10.(2020秋•武汉期末)同时掷3枚硬币,至少有1枚正面向上的概率是()A.78B.58C.38D.18【解析】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次共有328=种结果,满足条件的事件的对立事件是三枚硬币都是反面,有1种结果,∴至少一次正面向上的概率是17188-=,故选:A.11.(2020秋•涪城区校级期中)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1344石,验得米内夹谷.抽样取米一把,数得120粒内夹谷15粒,则估计这批米内夹谷为() A.133石B.168石C.337石D.1344【解析】解:粮仓开仓收粮,有人送来米13440,验得米内夹谷,抽样取米一把,数得120粒内夹谷15粒.设这批米内所夹的谷有x石,得15 1344120x=,解得168x=,∴估计这批米内所夹的谷有168石.故选:B.12.(2020春•孝义市期末)某校3名教师和5名学生共8人去北京参加学习方法研讨会,需乘坐两辆车,每车坐4人,则恰有两名教师在同一车上的概率( ) A .13B .37C .67D .56【解析】解:根据题意,要满足8人乘坐两辆车,每车坐4人,可在8个人中取出4人,坐第一辆车,剩下的坐第二辆车,则有4870C =种情况;要满足恰有两名教师在同一车上,可先在3名教师中任取两人,5名学生中取两人构成第一组,乘坐第一辆车,剩下的构成第二组,乘坐第二辆车,则有2235C C ⨯种分组方法, 再对应到两辆车,共有2235260C C ⨯=种乘坐方法; 则恰有两名教师在同一车上的概率为606707=; 故选:C .13.(2020秋•芜湖期末)甲、乙两名党员报名参加进社区服务活动,他们分别从“帮扶困难家庭”、“关怀老人”、“参加社区义务劳动”、“宣传科学文化法律知识”这四个项目中随机选一项目报名,则这两名党员所报项目不同的概率为( ) A .14B .13C .23D .34【解析】解:甲、乙两名党员报名参加进社区服务活动,他们分别从“帮扶困难家庭”、“关怀老人”、“参加社区义务劳动”、“宣传科学文化法律知识”这四个项目中随机选一项目报名, 基本事件总数4416n =⨯=,这两名党员所报项目不同包含的基本事件个数4312m =⨯=, 则这两名党员所报项目不同的概率为123164m p n ===. 故选:D .14.(2020秋•平谷区期末)甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13,那么甲、乙两人至少有一人拿到该技能证书的概率是( )A .1315B .1115C .23 D .35【解析】解:甲同学通过第一项考核的概率是45,通过第二项考核的概率是12,∴甲通过考核的概率为1412525p =⨯=, 乙同学拿到该技能证书的概率是13,∴甲、乙两人至少有一人拿到该技能证书的概率为:2131(1)(1)535P =---=.故选:D .15.(2020秋•岳麓区校级期末)围棋起源于中国据先秦典籍《世本》记载:“尧造围棋,丹朱善之”,至今已有四千多年历史.围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策略、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,甲、乙两人进入最后决赛.比赛采取五局三胜制,即先胜三局的一方获得比赛冠军,比赛结束.假设每局比赛甲胜乙的概率都为23,且各局比赛的胜负互不影响,则在不超过4局的比赛中甲获得冠军的概率为( ) A .19B .827C .1627D .1781【解析】解:甲以3:0获胜为事件A ,甲以3:1胜为事件B ,则A ,B 互斥, 且328()()327P A ==,2232128()()33327P B C =⋅⨯=,所以在不超过4局的比赛中甲获得冠军的概率为: 8816()272727P A B +=+=, 故选:C .16.(2020秋•大兴区期末)某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为( ) A .0.24B .0.36C .0.6D .0.84【解析】解:某班级举办投篮比赛,每人投篮两次,小明每次投篮命中的概率都是0.6, 则他至少投中一次的概率为:1(10.6)(10.6)0.84P =---=.故选:D .17.(2021•五模拟)投篮测试中,每人投5次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.8,且各次投篮是否投中相互独立,则该同学未通过测试的概率为( ) A .0.00672B .0.00096C .0.00064D .0.00032【解析】解:根据题意,记该同学未通过测试为事件A ,该同学每次投篮投中的概率为0.8,则投不中的概率为10.80.2-=,事件A 包含2种情况,该同学5次都没有投中和只投中1次, 则P (A )4455(0.2)0.8(0.2)0.00672C =⨯+=, 故选:A .18.(2021•十二模拟)大型场景式读书节目《一本好书》的热播,激起了某校同学的阅读兴趣,该校甲,乙两位同学决定利用3天假期到图书馆阅读图书,若甲,乙两位同学每天去图书馆的概率分别为23,12,且甲,乙两位同学每天是否去图书馆相互独立,那么在这3天假期中,恰有2天甲、乙两位同学都去了图书馆的概率为( ) A .23B .13C .49D .29【解析】解:根据题意,甲乙两位同学在某一天都去图书馆的概率为1211323P =⨯=, 两人某一天没有都去图书馆的概率212133P =-=,则在这3天假期中,恰有2天甲、乙两位同学都去了图书馆的概率223122()339P C =⨯=,故选:D .19.(2020秋•安徽期末)某高中高二年级组织开展了“劳动美”社会实践活动,倡导学生回家帮父母做家务,体验父母的艰辛.某同学要在周一至周五任选两天做家务,则该同学连续两天做家务的概率为( ) A .710B .35C .12D .25【解析】解:周一至周五任选两天的所有情况为:(周一、周二)、(周一、周三)、 (周一、周四)、(周一、周五)、(周二、周三)、(周二、周四)、(周二、周五)、(周三、周四)、(周三、周五)、(周四、周五),共10种, 其中连续两天的有4种,故所求概率为42105=, 故选:D .20.(2020秋•淄博期末)2020年10月26日至29日,中国共产党第十九届中央委员会第五次全体会议在北京举行,审议通过了《中共中央关于制定国民经济和社会发展第十四个五年规划和二O 三五年远景目标的建议》.某班级从3名男生和3名女生中任选2人参加学校十九届五中全会精神宣讲团,则选中的2人恰好都是女生的概率为( ) A .0.2B .0.3C .0.4D .0.5【解析】解:某班级从3名男生和3名女生中任选2人参加学校十九届五中全会精神宣讲团,基本事件总数2615n C==,选中的2人恰好都是女生包含的基本事件个数233m C==,则选中的2人恰好都是女生的概率为30.215mPn===.故选:A.21.(2020秋•潍坊期末)“养国子以道,乃教之六艺”出自《周礼⋅保氏》,其中六艺是指礼、乐、射、御、书、数,是我国周朝时期贵族教育体系中要求学生必需掌握的六种基本才能.某班甲、乙两名同学分别选取其中的四艺进行学习,若“礼”“数”必选,其余两艺随机选择,那么这两名同学都未选到“御”的概率为()A.14B.34C.59D.45【解析】解:六艺是指礼、乐、射、御、书、数,是我国周朝时期贵族教育体系中要求学生必需掌握的六种基本才能.某班甲、乙两名同学分别选取其中的四艺进行学习,“礼”“数”必选,其余两艺随机选择,基本事件总数2222242436n C C C C=⨯=,这两名同学都未选到“御”包含的基本事件个数222223239m C C C C=⨯=,∴这两名同学都未选到“御”的概率为91364mPn===.故选:A.22.(2020秋•海淀区期末)从数字2,3,4,6中随机取两个不同的数,分别记为x和y,则xy为整数的概率是()A.16B.14C.12D.712【解析】解:从数字2,3,4,6中随机取两个不同的数,分别记为x和y,基本事件总数2412n A==,其中xy为整数包含的基本事件(,)x y有:(4,2),(6,2),(6,3),共3个,则xy为整数的概率是31124mPn===.故选:B.23.(2021•十八模拟)连续抛掷一枚硬币4次,落地后第2次和第4次恰好都是正面向上的概率是()A.14B.34C.35D.25【解析】解:抛掷一枚硬币,落地后可能出现正面和反面两种情况,连续抛掷一枚硬币4次的所有结果为:(正,正,正,正)(正,正,正,反)(正,正,反,正)(正,正,反,反)(正,反,正,正)(正,反,正,反)(正,反,反,正)(正,反,反,反)(反,正,正,正)(反,正,正,反)(反,正,反,正)(反,正,反,反)(反,反,正,正)(反,反,正,反)(反,反,反,正)(反,反,反,反)共16种情况,落地后第2次和第4次恰好都是正面向上的结果为:(正,正,正,正)(正,正,反,正)(反,正,正,正)(反,正,反,正)共4种情况,故所求事件的概率41164P==,故选:A.24.(2021•三模拟)河图洛书是远古时代流传下来的两幅神秘图案,起源于天上星宿,蕴含着深奥的宇宙星象之理,被誉为“宇宙魔方”,历来被认为是中华文明的源头.河图上,排列成数阵的黑点和白点,蕴藏着无穷的奥秘;洛书上,纵、横、斜三条线上的三个数字,其和皆等于15(如图).现从1到9这9个数中任取三个数,则三个数之和为15的概率为()A .114B .142C .221D .328【解析】解:从1到9中任取三个数,共有3984C =(种)情况,三个数之和为15的数组有:(1,5,9),(1,6,8),(2,5,8),(2,6,7),(2,4,9),(3,5,7),(3,4,8),(4,5,6),共8种情况,∴三个数之和为15的概率为828421P ==. 故选:C .25.(2020秋•香坊区校级期末)已知袋中装有2个红球和2个白球,随机抽取2个球,则2球都是红球的概率为( ) A .23B .16 C .13D .821【解析】解:袋中装有2个红球和2个白球,随机抽取2个球,基本事件总数246n C ==, 2球都是红球包含的基本事件个数221m C ==, 2球都是红球的概率为16m p n ==. 故选:B .26.(2018春•新乡期末)向边长为1的正方形ABCD 内随机投入n 粒芝麻,假定这些芝麻全部均匀地落入该正方形中,发现有m 粒芝麻离点A 的距离不大于1,则用随机模拟的方法得到的圆周率π的近似值为()A .2nmB .4mnC .3m nD .2mn【解析】解:向边长为1的正方形ABCD 内随机投入n 粒芝麻,假定这些芝麻全部均匀地落入该正方形中,发现有m 粒芝麻离点A 的距离不大于1,由几何概型得:221141mnπ⨯=,解得4m nπ=, ∴用随机模拟的方法得到的圆周率π的近似值为4mn. 故选:B .27.(2020•咸阳模拟)边长为m 的正方形内有一个半径为()2mn n <的圆,向正方形中随机扔一粒豆子(忽略大小,视为质点),若它落在该圆内的概率为12,则圆周率π的值为( ) A .2m nB .222m nC .2n mD .222n m【解析】解:边长为m 的正方形内有一个半径为()2mn n <的圆, 向正方形中随机扔一粒豆子(忽略大小,视为质点), 它落在该圆内的概率为12, ∴2212n m π⨯=, 解得222m nπ=.故选:B .28.(2020秋•广安期末)五铢钱是一种中国古铜币,奠定了中国硬通货铸币圆形方孔的传统,这种钱币外圆内方,象征着天地乾坤.如图是一枚西汉五铢钱币,其直径为2.5厘米.现向该钱币上随机投掷一点,若该点落在方孔内的概率为1625π,则该五铢钱的穿宽(即方孔边长)为( )A .0.8厘米B .1厘米C .1.1厘米D .1.2厘米【解析】解:设该五铢钱的穿宽(即方孔边长)为x 厘米, 则22162.525()2x ππ=⨯, 解得1x =(厘米). 故选:B .29.(2020秋•太原期末)在边长为4的正方形ABCD 内部任取一点P ,则满足APB ∠为钝角的概率为()A .4πB .14π-C .8π D .18π-【解析】解:以AB 为直径圆内的区域为满足APB ∠为钝角的区域, 半圆的面积为21222ππ⨯=,正方形ABCD 的面积为4416⨯=.∴满足APB ∠为钝角的概率为:2168ππ=. 故选:C .30.(2020秋•成都期末)把点M 随机投入长为5,宽为4的矩形ABCD 内,则点M 与矩形ABCD 四边的距离均不小于1的概率为( ) A .310B .25 C .35D .45【解析】解:把点M 随机投入长为5,宽为4的矩形ABCD 内, 则点M 与矩形ABCD 四边的距离均不小于1的区域是: 以矩形ABCD 的中心为中心,且长为3,宽为2的小矩形,∴点M 与矩形ABCD 四边的距离均不小于1的概率为:3235410P ⨯==⨯. 故选:A .31.(2020秋•农安县期末)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达时间是随机的,则他等车时间不超过10分钟的概率是( )A .34B .34C .12 D .13【解析】解:设小明到达时间为y , 当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==, 故选:C .32.(2019秋•广安期末)太极图是以黑白两个鱼形纹组成的图形图案,它形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种互相转化,相对统一的形式美,按照太极图的构图方法,在平面直角坐标系中,圆22:24O x y +=被一条关于原点对称的曲线分割为两个鱼形图案(如图),其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112 D .19【解析】解:圆22:24O x y +=的面积为224O S r ππ==圆, 小圆的半径为1,面积为221S r πππ='=⨯=小圆, 所以在大圆内随机取一点,则此点取自阴影部分的概率为2212412OS P S ππ⨯===小圆圆. 故选:C .33.(2020秋•阳泉期末)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为60秒.若一名行人来到该路口遇到红灯,则至少需要等待25秒才出现绿灯的概率为( ) A .512B .58C .712D .78【解析】解:行人至少等待25秒才出现绿灯,说明行人到的时间为0~35秒之间,则对应的概率为3576012=, 故选:C .34.(2020秋•抚州期末)2020年国庆期间,小董与小方计划一起去旅游,她们决定从云南的昆明、大理、丽江以及广西的桂林、北海这五个城市中选取两个去旅游,则她们去了两个省旅游的概率为( )A .25B .12C .35D .710【解析】解:小董与小方计划一起去旅游,她们决定从云南的昆明、大理、丽江以及广西的桂林、北海这五个城市中选取两个去旅游, 基本事件总数2510n C ==,她们去了两个省旅游包含的基本事件个数11326m C C ==,则她们去了两个省旅游的概率为63105m P n ===. 故选:C .35.(2021•山东模拟)小智和电脑连续下两盘棋,已知小智第一盘获胜概率是0.5,小智连续两盘都获胜的概率是0.4,那么小智在第一盘获胜的条件下,第二盘也获胜的概率是( ) A .0.8B .0.4C .0.2D .0.5【解析】解:设事件A 表示“小智第一盘获胜”,则P (A )0.5=, 设事件B 表示“小智第二盘获胜”,则()0.4P AB =,∴小智在第一盘获胜的条件下,第二盘也获胜的概率是:()0.4(|)0.8()0.5P AB P B A P A ===. 故选:A .36.(2021•四模拟)某种灯泡的使用寿命为2000小时的概率为0.85,超过2500小时的概率为0.35,若某个灯泡已经使用了2000小时,那么它能使用超过2500小时的概率为( ) A .1720B .717C .720D .317【解析】解:记灯泡的使用寿命为2000小时为事件A ,超过2500小时为事件B , 则()0.357(|)()0.8517P AB P B A P A ===, 故选:B .37.(2020秋•新余期末)将两颗骰子各掷一次,设事件A = “两个点数不相同”, B = “至少出现一个6点”,则概率(|)P A B等于()A.1011B.511C.518D.536【解析】解:根据条件概率的含义,(|)P A B其含义为在B发生的情况下,A发生的概率,即在“至少出现一个6点”的情况下,“两个点数都不相同”的概率,“至少出现一个6点”的情况数目为665511⨯-⨯=,“两个点数都不相同”则只有一个6点,共12510C⨯=种,故10 (|)11P A B=.故选:A.38.(2020•天河区二模)甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制(无平局),甲在每局比赛中获胜的概率均为23,且各局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了三局的概率为()A.13B.25C.23D.45【解析】解:由题意,甲获得冠军的概率为2221212220 3333333327⨯+⨯⨯+⨯⨯=,其中比赛进行了3局的概率为2121228 33333327⨯⨯+⨯⨯=,∴所求概率为8202 27275÷=,故选:B.二.填空题(共6小题)39.(2020秋•榆林期末)某商店的有奖促销活动中仅有一等奖、二等奖、鼓励奖三个奖项,其中中一等奖的概率为0.05,中二等奖的概率为0.16,中鼓励奖的概率为0.40,则不中奖的概率为0.39.【解析】解:某商店的有奖促销活动中仅有一等奖、二等奖、鼓励奖三个奖项,其中中一等奖的概率为0.05,中二等奖的概率为0.16,中鼓励奖的概率为0.40,则不中奖的概率为10.050.160.400.39P=---=.故答案为:0.39.40.(2020秋•广安期末)口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,那么摸出白球的概率是0.25.【解析】解:口袋内装有一些大小相同的红球、黄球、白球,设红、黄、白球各有a ,b ,c 个,从中摸出一个球,摸出红球或白球的概率为0.65, 摸出黄球或白球的概率是0.6, ∴0.650.6a ca b cb c a b c +⎧=⎪⎪++⎨+⎪=⎪++⎩,∴10.60.4a a b c =-=++,10.650.35ba b c=-=++,∴摸出白球的概率是10.40.350.25p =--=.故答案为:0.25.41.(2020秋•云南期末)同时掷两粒骰子,则点数之和为7的概率是 16.(结果用分数表示) 【解析】解:由题意知本题是一个古典概型,试验发生的所有事件为掷两颗骰子所有的6636⨯=种结果,而满足条件的事件为1,6;2,5;3,4;4,3;5,2;6,1共有6种结果,∴由古典概型公式得到结果61366P ==, 故答案为:16. 42.(2020秋•天津期末)一个医疗小队有3名男医生,4名女医生,从中抽出两个人参加一次医疗座谈会,则已知在一名医生是男医生的条件下,另一名医生也是男医生的概率是15. 【解析】解:从3名男医生,4名女医生中抽出两个人,至少有一名男医生的种类数为11234315C C C +=,而抽出两个人都是男医生的种类数为233C =,所以在已知在一名医生是男医生的条件下, 另一名医生也是男医生的概率是31155=. 故答案为:15.43.(2017春•回民区校级期中)在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则(4)P X ==140429.(用数字表示) 【解析】解:由题意467810157658714032121(4)151413121142954321C C P X C ⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯⨯⨯⨯⨯⨯⨯故答案为:14042944.(2016春•晋江市校级期末)有一批产品,其中有6件正品和4件次品,从中任取3件,至少有2件次品的概率为13. 【解析】解:从10件产品任取3件的取法共有310C ,其中所取的三件中“至少有2件次品”包括2件次品、3件次品,取法分别为2146C C ,34C . 因此所求的概率21346431013C C C P C +==. 故答案为13.。

相关文档
最新文档