蜗轮蜗杆的设计方案
蜗轮蜗杆传动计算和设计流程

蜗轮蜗杆传动计算和设计流程
蜗轮蜗杆传动的计算和设计流程一般包括以下几个步骤:
1. 确定传动比:根据传动的要求,确定所需的传动比。
传动比可以通过计算Worm轮的齿数与Worm杆的螺旋线数之比来确定。
2. 确定蜗杆的参数:在确定传动比的基础上,确定蜗杆的螺旋线的角度、蜗杆的喉圆距离等参数。
这些参数可以通过蜗杆的传动比、齿数和齿距等来计算。
3. 确定蜗轮的参数:根据蜗杆的参数和传动比,确定蜗轮的齿数和齿形。
根据蜗杆和蜗轮的参数,可以使用蜗轮的设计公式来计算蜗轮的参数。
4. 验证传动性能:根据设计的参数,利用传动计算公式,
验证蜗轮蜗杆传动的传动效率、载荷分配、齿面接触应力
等性能指标,确保传动的可靠性和合理性。
5. 进行材料选择:根据传动性能和使用要求,选择合适的
材料来制造蜗轮和蜗杆,确保传动的强度和耐磨性等要求。
6. 进行结构设计:根据蜗轮和蜗杆的参数和材料,进行结
构设计,包括蜗杆的螺纹加工、蜗轮的齿形加工等。
7. 进行制造和装配:根据结构设计,进行蜗轮和蜗杆的制造,并进行装配。
在制造和装配的过程中,要注意工艺控
制和质量检验,确保传动件的质量和精度。
8. 完成传动系统的调试和测试:在装配完成后,进行传动
系统的调试和测试,检查传动的运行情况,验证设计的正
确性和合理性。
总之,蜗轮蜗杆传动的计算和设计流程就是根据传动要求确定传动比、确定蜗杆和蜗轮的参数,验证传动性能,选择材料,进行结构设计,制造和装配,最后进行调试和测试,以确保传动系统的性能和可靠性。
蜗轮蜗杆传动计算和设计流程

蜗轮蜗杆传动计算和设计流程1. 背景介绍蜗轮蜗杆传动是一种常见的传动方式,具有传动比大、传动效率高等优点,广泛应用于机械传动系统中。
本文将介绍蜗轮蜗杆传动的计算和设计流程,帮助读者了解和掌握该传动方式的设计和计算方法。
2. 设计目标在进行蜗轮蜗杆传动的计算和设计之前,需要明确设计目标。
主要包括: - 传动比:根据实际需求确定传动比,以满足工作要求。
- 载荷:确定传动系统的工作载荷,包括转矩和速度等。
- 工作环境:考虑传动系统所处的工作环境,如温度、湿度等。
3. 计算和设计流程蜗轮蜗杆传动的计算和设计流程主要包括以下步骤:3.1 确定传动比传动比是蜗轮蜗杆传动中一个重要的参数,决定了输出轴的转速与输入轴的转速之间的关系。
根据实际需求和要求,确定传动比的大小。
3.2 确定功率和转矩根据传动系统的工作需求和工作环境,确定传动系统所需的功率和转矩。
功率和转矩将作为设计的重要依据。
3.3 选择蜗杆材料根据传动系统所需的载荷和工作环境,选择合适的蜗杆材料。
材料的选择要考虑到强度、耐磨性和耐腐蚀性等因素。
3.4 计算蜗杆参数根据确定的传动比、功率和转矩,计算蜗杆的基本参数。
主要包括蜗杆的模数、蜗杆齿数、蜗杆的效率等。
3.5 计算蜗轮参数根据传动比、蜗杆参数和工作环境等要求,计算蜗轮的基本参数。
主要包括蜗轮的模数、蜗轮齿数、蜗轮的效率等。
3.6 进行强度校核根据蜗轮蜗杆传动的设计参数,进行强度校核。
主要包括蜗杆的弯曲强度、蜗轮的弯曲强度和齿面强度等。
3.7 进行传动效率计算根据蜗轮蜗杆传动的参数和工作条件,计算传动的效率。
可以根据计算结果对传动系统进行优化和调整。
4. 结论蜗轮蜗杆传动是一种重要的传动方式,在机械传动系统中得到了广泛的应用。
通过本文介绍的计算和设计流程,读者可以了解和掌握蜗轮蜗杆传动的设计方法及其在机械传动中的应用。
为了保证传动的性能和可靠性,设计者需要综合考虑传动比、转矩、功率等因素,并进行强度校核和传动效率计算,确保设计满足实际工作要求。
蜗轮蜗杆传动设计

蜗轮蜗杆传动设计
一、设计原理:
二、设计步骤:
1.确定传动参数:包括传动比、转速比、传递功率等。
传动比决定了蜗轮齿数和蜗杆的螺纹走向,转速比决定了蜗轮和蜗杆的转速。
传递功率则决定了蜗轮和蜗杆的材料和尺寸。
2.选择合适的蜗轮和蜗杆材料:蜗轮和蜗杆一般选择高强度和耐磨损的材料,如合金钢、铸铁等。
3.计算蜗轮和蜗杆的尺寸:根据传动参数和材料性能,计算蜗轮和蜗杆的齿数、模数、齿宽等。
4.计算传动效率:传动效率是指输入输出转矩之比,根据蜗轮和蜗杆的齿数、螺距、入射角等参数计算传动效率。
5.进行设计验证和优化:通过有限元分析、实验验证等方法对蜗轮蜗杆传动进行验证和优化。
三、设计注意事项:
1.蜗轮蜗杆传动的啮合精度要求高,齿轮和螺距的误差不能超过一定范围,否则会导致传动效率下降和噪音增加。
2.蜗轮和蜗杆的材料选择要根据传递功率和工作环境来确定,要保证材料的强度和耐磨损性能。
3.蜗杆的螺纹走向要和蜗轮的齿数匹配,以保证蜗轮能够完全啮合在蜗杆上。
4.设计时要考虑传动效率和传动噪音,通过选用合适的齿轮参数和优化传动结构来提高传动效率和降低噪音。
5.在设计过程中要进行强度校核,包括弯曲强度、齿面接触应力、表面损伤强度等,以保证传动的安全可靠性。
总结:蜗轮蜗杆传动是一种常用的传动方式,设计蜗轮蜗杆传动需要确定传动参数、选择材料、计算尺寸、计算效率、验证优化等步骤,同时要注意啮合精度、材料选择、螺纹走向、传动效率和强度校核等问题。
通过合理的设计和优化,可以实现高效、可靠的蜗轮蜗杆传动。
蜗轮蜗杆设计步骤

蜗轮蜗杆设计步骤蜗轮蜗杆设计步骤:步骤一:确定工作参数首先需要确定蜗轮蜗杆的工作参数,例如传递功率、转速、转矩、受力方向等。
这些参数将决定蜗轮蜗杆的基本设计参数。
步骤二:选择材料在确定工作参数之后,需要根据工作条件选择适合的材料。
蜗轮一般选用高强度的材料,例如硬质合金、铸钢、铸铁等。
对于蜗杆来说,一般选用高硬度、高强度的材料,例如45钢、40Cr、35CrMo等。
步骤三:计算传动比传动比 = 蜗轮齿数 ÷蜗杆螺旋线高度。
传动比决定了蜗轮和蜗杆的相对转速和转矩大小。
步骤四:选择蜗杆模数蜗杆的模数可以根据蜗轮和蜗杆的传动比和齿数来选择,一般在0.2~2之间。
步骤五:计算齿距和齿宽齿距和齿宽需要结合蜗轮和蜗杆的模数和齿数来计算,保证蜗轮蜗杆的齿轮啮合平稳。
步骤六:计算螺距角螺距角是蜗杆的重要参数。
螺距角过大会造成摩擦力过大,螺距角过小则会导致螺杆摩擦力不足。
一般螺距角为5°至30°。
步骤七:计算轴心距和啮合角轴心距和啮合角是设计蜗轮蜗杆过程中非常重要的参数,需要根据传动比、模数、齿数等因素来计算。
步骤八:校核设计参数设计蜗轮蜗杆的参数后,需要进行校核检验,确保设计参数的合理性和可靠性。
校核包括强度校核、接触应力校核等。
步骤九:设计蜗轮蜗杆装配尺寸蜗轮蜗杆装配尺寸需要考虑啮合状态下的轴向间隙、径向间隙和公差等因素。
在设计装配尺寸时需要考虑到装配的方便性和精度要求。
步骤十:绘制蜗轮蜗杆图纸蜗轮蜗杆图纸需要按照设计参数进行详细绘制,包括蜗轮和蜗杆的各项参数和装配尺寸等。
绘制时需要考虑到制造的方便性和加工精度要求。
以上是蜗轮蜗杆的设计步骤,设计时需要注意各个参数的合理性和可靠性,同时考虑到加工和制造的实际情况。
蜗轮蜗杆设计步骤

蜗轮蜗杆设计步骤第一步:确定传动比蜗轮蜗杆传动是一种非常特殊的传动方式,它的传动比取决于蜗杆的头数、蜗轮的齿数、蜗杆的导程角以及蜗轮与蜗杆轴线的交角等因素。
设计蜗轮蜗杆传动时,要根据传动要求和传动动力参数来计算传动比。
第二步:选择材料在选择蜗轮和蜗杆的材料时,考虑到它们的载荷、传动功率和工作环境温度等因素。
通常,蜗轮和蜗杆都可以采用高强度的合金钢材料。
第三步:确定齿轮参数蜗轮的齿数和模数都是通过计算得到。
注意,蜗轮的轴向厚度越小,蜗杆的导程角越小,那么蜗轮和蜗杆的接触线就会越靠近齿面根部。
在选择齿轮参数时需要进行综合考虑,以保证蜗轮蜗杆传动的良好性能。
第四步:计算蜗杆的导程和展角根据蜗杆轴线与垂直轴线的夹角以及螺旋线的参数,可以计算出蜗杆的导程和展角。
展角的计算对于蜗轮蜗杆传动来说非常重要,因为它直接影响到传动效率和噪声。
一般来说,展角越大,传动效率越高,但噪声也会增加。
第五步:计算蜗轮蜗杆的几何参数根据蜗杆的导程、蜗轮的模数和齿数,可以计算出蜗轮和蜗杆的几何参数,包括齿顶直径、节圆直径、齿根直径、齿顶高度、齿根高度和重要齿廓参数。
这些参数决定了蜗轮蜗杆传动的传动效率、运行平稳性和噪声等关键性能指标。
第六步:进行蜗轮蜗杆的装配在进行蜗轮蜗杆的装配之前,需要对蜗轮齿形进行测量,以保证齿形质量。
然后,将蜗轮和蜗杆进行配合,精确控制配合间隙大小。
还要注意蜗轮和蜗杆的对中度和平行度等装配要求,以保证传动系统的稳定性和性能。
总结:1. 传动效率的优化:传动效率是蜗轮蜗杆传动系统的重要性能指标,也是设计过程中需要优化的关键因素之一。
通常情况下,使用高质量的蜗轮和蜗杆、采用适当的润滑方式、控制装配精度、优化齿轮参数以及合理设计蜗杆展角等方法,可以大大提高传动效率。
2. 噪声的控制:蜗轮蜗杆传动在工作时容易产生噪声,主要是由于蜗轮和蜗杆的接触面积较小,表面接触压力较大,同时还会在传动过程中产生震动和共振。
为了降低噪声,可以优化设计参数、采用低噪声等级的蜗轮和蜗杆材料、选用合适的蜗杆展角、进行制造精度控制以及采用降噪材料等方式。
蜗轮蜗杆设计步骤

蜗轮蜗杆设计步骤蜗轮蜗杆是一种常见的传动机构,它可以将高速旋转的电机转换成低速高扭矩的输出,广泛应用于各种机械设备中。
在设计蜗轮蜗杆时,需要遵循一定的步骤,以确保传动系统的可靠性和高效性。
本文将介绍蜗轮蜗杆设计的步骤和注意事项。
一、确定传动比和输出扭矩在设计蜗轮蜗杆传动系统时,首先需要确定传动比和输出扭矩。
传动比是指输入轴转速与输出轴转速的比值,通常用i表示。
输出扭矩是指输出轴所能提供的扭矩大小,通常用T表示。
传动比和输出扭矩的确定需要考虑到传动系统的工作条件和要求,如负载大小、转速范围、传动效率等。
二、选择蜗轮和蜗杆的材料和加工工艺蜗轮和蜗杆是蜗轮蜗杆传动系统的核心部件,其材料和加工工艺的选择对传动系统的性能和寿命有着重要的影响。
一般来说,蜗轮和蜗杆的材料应具有高强度、高硬度、高耐磨性和高耐腐蚀性等特点。
常用的材料有合金钢、不锈钢、铜合金等。
加工工艺方面,蜗轮和蜗杆的加工精度要求较高,通常采用数控加工或磨削加工等高精度加工工艺。
三、确定蜗轮和蜗杆的几何参数蜗轮和蜗杆的几何参数包括蜗轮的齿数、蜗杆的螺旋角、蜗杆的导程等。
这些参数的确定需要考虑到传动比、输出扭矩、传动效率等因素。
一般来说,蜗轮的齿数越多,传动效率越高,但制造难度也越大;蜗杆的螺旋角越小,传动效率越高,但输出扭矩也越小。
四、进行传动系统的设计计算在确定了传动比、输出扭矩、蜗轮和蜗杆的几何参数后,需要进行传动系统的设计计算,以确定各个部件的尺寸和工作参数。
设计计算包括蜗轮和蜗杆的模数、齿宽、轴径、轴承尺寸、传动效率等参数的计算。
设计计算的准确性和合理性对传动系统的性能和寿命有着重要的影响。
五、进行传动系统的结构设计在进行传动系统的结构设计时,需要考虑到传动系统的安装、维修和保养等方面的要求。
传动系统的结构设计应尽可能简单、紧凑、可靠,方便安装和维修。
同时,还需要考虑到传动系统的密封性、散热性等方面的问题,以确保传动系统的正常工作。
六、进行传动系统的试验和验证在完成传动系统的设计和制造后,需要进行试验和验证,以确保传动系统的性能和可靠性。
蜗轮蜗杆设计计算

蜗杆传动的效率计算
总结词
根据蜗轮蜗杆的设计参数和工况,计算出蜗杆传动的效率。
详细描述
蜗杆传动的效率计算是评估蜗杆传动性能的重要指标之一。通过分析蜗轮蜗杆的设计参 数和工况,如蜗杆的导程角、模数、转速和载荷等参数,可以计算出蜗杆传动的效率。
蜗轮齿面接触疲劳强度的计算
总结词
根据蜗轮齿面上的载荷分布和材料属性 ,计算出蜗轮齿面的接触疲劳强度。
刚度分析
进行蜗轮蜗杆的刚度分析, 以减小传动过程中的变形 和振动。
可靠性设计
为确保自动化设备的可靠 性,对蜗轮蜗杆进行可靠 性设计和寿命预测。
THANKS
感谢观看
材料应具备较好的抗疲劳性能,以承受交 变载荷的作用;
04
材料应具有良好的工艺性能,易于加工制 造。
04
蜗轮蜗杆设计计算方法
蜗轮齿面载荷分布计算
总结词
根据蜗杆传动的实际工况,通过分析蜗轮齿面上的受力情况,计算出蜗轮齿面上的载荷分布。
详细描述
在进行蜗轮齿面载荷分布计算时,需要考虑蜗杆传动的实际工况,如传动比、转速、载荷大小和方向 等因素。通过分析蜗轮齿面上的受力情况,可以确定蜗轮齿面上的载荷分布,为后续的设计计算提供 基础。
蜗轮蜗杆设计计算
• 蜗轮蜗杆简介 • 蜗轮蜗杆设计参数 • 蜗轮蜗杆材料选择 • 蜗轮蜗杆设计计算方法 • 蜗轮蜗杆设计实例分析
01
蜗轮蜗杆简介
蜗轮蜗杆的定义
01
蜗轮蜗杆是一种常用的传动装置 ,由两个交错轴线、相互咬合的 齿轮组成,其中一个是蜗杆,另 一个是蜗轮。
02
蜗轮蜗杆具有传动比大、传动效 率高、传动平稳、噪音低等优点 ,因此在各种机械传动系统中得 到广泛应用。
VS
蜗轮蜗杆的传动设计原理

蜗轮蜗杆的传动设计原理蜗轮蜗杆传动是一种常见的机械传动方式,具有传动比大、承载能力强、传动平稳等优点,常用于工业机械设备中。
其传动原理是通过蜗轮和蜗杆之间的啮合来实现转矩和转速的传递。
蜗轮蜗杆传动由蜗轮(也称为蜗杆齿轮)和蜗杆组成,蜗轮的外形为螺旋状,蜗杆的外形为带有螺旋槽的杆状。
当蜗轮和蜗杆啮合时,通过蜗轮的旋转使蜗杆产生旋转运动,从而实现传递动力。
蜗轮和蜗杆之间的啮合形成斜面传动,有效地提高了传动的效率。
蜗轮蜗杆传动的设计原理主要包括以下几个方面:一、蜗杆的螺旋角度:蜗轮的螺旋角度对传动效率和稳定性有重要影响。
螺旋角度越小,蜗杆旋转一周所实现的传动比越大,但摩擦力和损耗也会增加。
因此,在设计中需要合理选择螺旋角度,以平衡传动比和效率。
二、蜗轮和蜗杆的材质和硬度:蜗轮通常选择高强度、耐磨损的材料制造,如合金钢。
蜗杆则通常选择高硬度、耐磨损的材料制造,如硬化钢或淬火淬硬钢。
选用合适的材质和硬度能够提高蜗轮蜗杆传动的承载能力和使用寿命。
三、蜗轮蜗杆的啮合准确度:蜗轮蜗杆的啮合准确度直接影响传动的稳定性和传动效率。
要求蜗轮蜗杆的啮合面光洁平整,啮合角度准确,否则容易产生额外的摩擦和磨损,降低传动效率,甚至导致传动失效。
四、润滑和散热:蜗轮蜗杆传动需要进行充分的润滑,以减少摩擦和磨损。
常见的润滑方式包括润滑油膜润滑、浸油润滑和油浸润滑等。
同时,蜗轮蜗杆传动还需要考虑散热问题,以保证传动过程中温度的稳定性。
五、传动比的选择:蜗轮蜗杆传动的传动比通常为大于1的数值,决定了输入和输出之间的速度和转矩的比例。
传动比的选择需要根据实际应用需求和机械设备的工作特性来确定。
六、传动效率和传动精度的考虑:蜗轮蜗杆传动的效率通常较低,为60%~90%,且传动精度也会受到蜗轮蜗杆啮合面质量的影响。
因此,在设计中需要综合考虑传动效率和传动精度的要求,以满足实际应用的需要。
综上所述,蜗轮蜗杆传动的设计原理包括蜗杆的螺旋角度、蜗轮和蜗杆的材质和硬度、啮合准确度、润滑和散热、传动比的选择,以及传动效率和传动精度的考虑等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
了解蜗杆传动的特点,它的适用场合。
了解蜗杆传动的主要参数,如模数、压力角、螺旋头数、螺旋导程角、螺旋螺旋角、螺旋分度圆等。
•熟悉蜗杆、蜗轮构造,蜗杆与蜗轮常用什么材料制造,那个易被损害。
•掌握蜗杆传动效率低的机理,蜗杆传动中箱体内的润滑油温度过高有什么危害,如何降低。
第一节概述蜗杆传动是由蜗杆和蜗轮组成的(图3-52),用于传递交错轴之间的运动和动力,通常两轴交错角为90°。
在一般蜗杆传动中,都是以蜗杆为主动件。
从外形上看,蜗杆类似螺栓,蜗轮则很象斜齿圆柱齿轮。
工作时,蜗轮轮齿沿着蜗杆的螺旋面作滑动和滚动。
为了改善轮齿的接触情况,将蜗轮沿齿宽方向做成圆弧形,使之将蜗杆部分包住。
这样蜗杆蜗轮啮合时是线接触,而不是点接触。
蜗杆传动具有以下特点:1.传动比大,且准确。
通常称蜗杆的螺旋线数为螺杆的头数,若蜗杆头数为z 1,蜗轮齿数为z2,则蜗杆传动的传动比为2=n1/n2=z2/z1ω1/ωi=(3-60)通常蜗杆头数很少(z1=1~4),蜗轮齿数很多(z2=30~80),所以蜗杆传动可获得很大的传动比而使机构比较紧凑。
单级蜗杆传动的传动比i≤100~300;传递动力时常用i=5~83。
2.传动平稳、无噪声。
因蜗杆与蜗轮齿的啮合是连续的,同时啮合的齿对较多。
03.当蜗杆的螺旋升角小于啮合面的当量摩擦角时,可以实现自锁。
=0.4~0.45。
η=0.82~0.92。
具有自锁时,η=0.75~0.82;z1=3~4时,η=0.7~0.75;z1=2时,η4.传动效率比较低。
当z1=1时,效率5.因啮合处有较大的滑动速度,会产生较严重的摩擦磨损,引起发热,使润滑情况恶化,所以蜗轮一般常用青铜等贵重金属制造。
由于普通蜗杆传动效率较低,所以一般只适用于传递功率值在50~60kW以下的场合。
一些高效率的新型蜗杆传动所传递的功率可达500kW,圆周速度可达50 m/s。
第二节蜗杆传动的主要参数和几何尺寸本节只讨论普通圆柱蜗杆传动,或称阿基米德圆柱蜗杆传动(在垂直于蜗杆轴线的剖面中,齿廓线是一条阿基米德螺旋线,故称为阿基米德螺杆)。
=40°;而蜗轮的齿廓为渐开线,即在主平面内,蜗杆与蜗轮的啮合如同齿条与齿轮的啮合一样。
α如图3-53所示,通过蜗杆轴线并垂直于蜗轮轴线的平面为主平面。
在主平面上,蜗杆的齿廓与齿条相同,两侧边为直线,夹角2因此,蜗杆传动的主要参数和几何尺寸计算大致与齿轮传动相同,并且在设计、制造中皆以主平面上的参数和尺寸为基准。
普通圆柱蜗杆传动参数已标准化。
(一)蜗杆传动的主要参数α 1.模数m和压力角为20°。
α规定为标准值。
圆柱蜗杆传动的标准模数见表3-21。
蜗杆传动标准压力角α相等。
为了制造方便,把蜗轮的端面模数m及端面压力角α因为在主平面上蜗杆传动相当于齿条与齿轮的啮合,所以,蜗杆的轴向齿距等于蜗轮的端面周节p(图3-53),即蜗杆的轴向模数与蜗轮的端面模数m相等,蜗杆的轴向压力角与蜗轮的端面压力角表3-21 圆柱蜗杆传动的m与d1搭配值摘自GB 10085-88m 1 1.25 1.6 2 2.5d1 18 20 22.4* 20 28* (18) 22.4 (28) 35.5* (22.4)28 (35.5) 45*m 3.15 4 5d1 (28) 35.5 (45) 56* (31.5) 40 (50) 71* (40) 50 (6 3) 90*m 6.3 8 10d1 (50) 63 (80) 112* (63) 80 (100) 140* (71) 90 (1 12) 160m 12.5 16 20d1 (90) 112 (140) 200 (112) 140 (180) 250 (140) 16 0 (224) 315和蜗轮螺旋角γ 2.螺杆导程角β螺杆螺旋线一般用右旋。
设螺杆螺旋的导程为S,将蜗杆分度圆上螺旋线展开后,由图3-54所示,可得其导程γ与蜗轮螺旋角S=Pa1z1 mm (3-61)式中Pa1--螺杆的轴向齿距, mm;z1--螺杆头数。
螺杆分度圆柱上的导程角d1=z1Pa1/πd1=z1m/d1(3-62)π=s/γtg式中d1--螺杆分度圆直径,mm。
应数值相等、旋向相同(图3-55)。
γ与蜗杆的导程角β蜗杆导程角与传动效率有关,导程角大,效率高;导程角小,可能导致自锁。
蜗轮的螺旋角3.螺杆分度圆直径d1与螺杆直径系数q由于切制蜗轮的滚刀必须与蜗杆的形状相当,为此,对于相同模数的蜗杆,每一种分度圆直径都必须用一把切制蜗轮的滚刀,这样,刀具的数量可能太多。
为了减少刀具品种并便于标准化,对于每一个模数其蜗杆分度圆直径d1只规定少数,见表3-21。
螺杆直径系数用m表示,即q=d1/m。
4.蜗杆头数z1与蜗轮齿数z2也随之减小,使传动效率较低。
当传递较大功率时,为提高效率,可采用多头蜗杆,一般取z1=2、3或4。
通常蜗杆头数可根据传动比按表3-22选取。
γ蜗杆头数一般取z1=1~4。
若要得到大的传动比,可取z1=1,但当z1减少时,蜗杆的导程角表3-22 蜗杆头数的选取传动比i 5~8 7~16 15~32 30~80蜗杆头数z1 6 4 2 1蜗轮齿数z2,对于动力传动,一般z2=29-80。
z2过小时,蜗轮齿容易发生根切。
z2太大时,为使传动尺寸不致过大,往往减少模数,这就导致蜗轮轮齿弯曲强度显著降低。
(二)蜗杆传动的几何尺寸计算设计标准蜗杆传动时,一般先选定蜗杆头数z1和蜗轮齿数z2,然后按强度计算确定模数m和蜗杆直径系数p。
当上述主要参数确定后,可根据表3-23计算出蜗杆、蜗轮的几何尺寸。
表3-23 普通圆柱蜗杆传动的几何尺寸计算(见图3-53)名称计算公式蜗杆蜗轮分度圆直径d1= mq d2= m z2齿顶高ha=m ha=m齿根高hf=1.2m hf=1.2m顶圆直径da1=m(q+2) da2=m(z2+2)根圆直径df1=m(q-2.4) df2=m(z2-2.4)蜗杆轴向齿距pa1mπ蜗轮端面周节pt2 pa1=pt2=p=径向间隙c=0.20m中心距a=0.5(d1+d2)=0.5m(q+z2)第三节蜗杆传动的滑动速度与效率(一)蜗杆传动的滑动速度蜗杆传动相当于螺杆与螺母的传动。
蜗杆与蜗轮轮齿啮合时,轮齿间有很大的相对滑动,蜗杆与蜗轮轮齿在节点处的相对速度称为滑动速度,用vs表示,由图3-56可知m/s (3-63)m/sm/s式中n1、n1--分别为蜗杆、蜗轮转速,r/min;d1、d2--蜗杆、蜗轮分度圆直径,mm;--蜗杆分度圆的导程角γ滑动速度较大时,当润滑条件充分时,在啮合处容易形成润滑油膜,因而润滑情况良好;但滑动速度太大,容易使轮齿产生胶合和磨损破坏。
一般允许vs≤15m/ s。
(二)蜗杆传动的效率3,即η2以及箱体内润滑油搅动时摩擦损耗的效率η1,有关轴承摩擦损耗的效率η闭式蜗杆传动的效率包括三部分:有关轮齿啮合摩擦损耗的效率3(3-64)η2η1η=η其主要部分为啮合效率,当蜗杆主动时,v) (3-65)ρ+γ/tan(γ1=tanη式中v--当量摩擦角,它与蜗杆摩擦副的材料、加工精度及滑动速度等有关。
ρ1越高。
ηv越小,则啮合效率ρ钢制蜗杆与青铜蜗轮配对时,减摩耐磨效果好;蜗杆齿面的表面粗糙度越低,滑动速度越大,润滑油膜易形成,近似计算时,蜗杆传动的总效率可取下列数值:蜗杆头数z1 1 2 4或61 0.7 0.8 η传动效率0.9ηv时蜗杆传动具有自锁性,取ρ1≤η<0.5。
第四节蜗杆传动的强度计算(一)受力分析如图3-57所示的蜗杆传动中,在蜗杆与蜗轮的啮合点C上,作用着大小相等、方向相反的法向力Fn。
这法向力Fn可以分解成三个互相垂直的分力:切向力Ft、轴向力Fx及径向力Fr。
由于蜗杆轴与蜗轮轴交错成90°,故蜗杆切向力Ft1等于蜗轮轴向力Fx2,蜗杆轴向力Fx1等于蜗轮切向力Ft2,蜗杆径向力Fr1等于蜗轮径向力Fr2。
它们分别是一对作用力与反作用力。
即:Ft1=Fx2=2T1/d1(3-66)Ft2=Fx2=2T1/d2(3-67)(3-68)αFr2=Fr1=Ft2tg式中T1、T2--分别为作用在蜗杆与蜗轮上的转矩,T2=iT1;i--蜗杆传动的传动比;--蜗杆传动效率;ηd1、d2--分别为蜗杆与蜗轮的分度圆直径;=20°。
α--压力角,通常α(二)齿面接触强度计算蜗杆一般为钢制,其强度较高,通常不损坏,故一般不进行强度计算。
蜗轮多数由青铜制造,青铜的强度与硬度比钢差。
蜗轮轮齿损坏形式与齿轮相似,有齿面磨损、胶合、点蚀及齿根折断。
其中胶合及磨损破坏较为常见。
胶合,磨损随滑动速度及接触应力的增大而加剧,为此,除选用减摩性材料和保证良好润滑外,还必须限制接触应力。
因此,蜗轮齿面接触强度计算是蜗杆传动的重要部分。
它的设计公式为(3-69)式中T2--作用在蜗轮上的转矩,N•mm;K--载荷系数,K=1~1.4。
当载荷平稳,滑动速度vs小于等于3m/s及精度较高时,取低值。
]H--蜗轮的许用接触应力,MPa,见表3-24。
σ[其它符号意义同前按式(3-69)算出m2d1后,可查表3-21,再确定标准的m及d1。
蜗轮轮齿弯曲强度所限定的承载能力,往往超过热平衡计算和齿面点蚀所限定的承载能力。
因此,在一般条件下,不进行其弯曲强度计算。
表3-24 ]H MPaσ蜗轮的许用接触应力[b≥300MPa的青铜蜗轮σ灰铸铁或强度极限配对材料滑动速度(m/s)蜗杆蜗轮0.25 0.5 1 2 3 420钢、20Cr渗碳45钢淬火HT150 166 150 127 95 - - HT200 202 182 154 115 - -ZCuA110Fe3 190 180 173 163 154 14945钢调质HT150 139 125 106 79 - -HT200 168 152 128 96 - -bσ强度极限<300MPa的青铜蜗轮蜗轮材料铸造方法蜗杆齿面硬度≤45HRC>45HRCZCuSn5Pb1 砂模铸造150 180金属模铸造220 268ZCuSn5Pb5Zn5 砂模铸造113 135金属模铸造128 140离心铸造158 183第五节材料与许用应力考虑到蜗杆传动相对滑动速度较大的特点,蜗杆与蜗轮的材料不但要有一定的强度,而且要求摩擦系数小和良好的耐磨性。
蜗杆常用材料为碳钢和合金钢,要求齿面有较高的硬度和较小的粗糙度,以提高轮齿表面的耐磨性。
对于高速重载的蜗杆常用20钢、20Cr钢等经渗碳淬火到5 6~62HRC,或采用45钢、40Cr 、40CrNi钢等经表面淬火到45-55HRC,再经磨削。
而一般用途的蜗杆,可采用40、45钢调质处理,硬度为220~250HBS。