第十一章 多重线性回归分析
第11章 多重线性回归分析2010

22.5 21.5 28.5 26.0 35.0 20.0 23.0 24.8 23.3 27.0 26.0 28.0
2.00 2.40 3.00 1.00 2.80 1.45 1.50 1.50 0.90 0.65 1.83 2.00
资料来源:数据选自《卫生统计学》第 5 版(方积乾主编)人民卫生出版社
20.0 23.0 26.5 23.0 29.5 30.0 22.5 21.8 27.0 27.0 22.0 28.0
0.45 0.50 1.50 0.40 0.90 0.80 1.80 0.60 1.70 0.65 0.40 2.00
0.948 1.440 1.084 1.844 1.116 1.656 1.536 0.960 1.784 1.496 1.060 1.436
Xi Xi X Si
' i
标准化偏回归系数(standardized partial regression coefficient)
自变量筛选的统计学标准:
1. 残差平方和( SS残差 )缩小或确定系数(
R2 )
增大;
2 MS R 2. 残差的均方( 残差 )缩小或调整确定系数( ad)
增大;
偏回归系数的 t 检验与标准化偏回归系数 回归系数 0.116 0.004 -6.5510-6 -0.035 标准误 0.027 0.002 0.001 0.011
t
4.23 2.36 -0.01 -3.21
P
0.0005 0.0289 0.9925 0.005
标准化偏 回归系数 0.592 0.273 -0.001 -0.448
虑对数据进行变量变换 ;
3. 如果方差齐性的假定不成立,可以采用其它的
医学统计(11)

• 设臵选项 • 设臵进入、 删除的概率。
• 第3步: 线性回归(7)
• 结果解读:逐步回归指标进入的过程
• 第3步: 线性回归(8)
• 结果解读:复相关系数和决定系数
• 第3步: 线性回归(9)
• 结果解读:回归模型的方差分析
• 第3步: 线性回归(10)
• 结果解读:回归方程: • 血红蛋白=1.129+0.031*血铁-0.043*血钙
1.根据样本数据求得模型参数的估计值,得到 应变量与自变量数量关系的表达式:
ˆ b0 b1 x1 b2 x2 ...... bm xm y
•2.对回归方程及各自变量作假设检验,并对方 程的拟和效果及各自变量的作用大小作出评价.
多元线性回归方程的建立:
模型参数的估计: (最小二乘法,使残差平方和最小)
两种变量
自变量 (independent variable) 应变量 (dependent variable)
x
y
两种关系
函数关系——函数方程:
x , y 呈
确定性关系
y = a + bx
回归关系——回归方程:
Yˆ = a + bx
x , y 呈非
确定性关系
直线回归是分析两变量间线性依存变 化的数量的关系
的资料,可用非条件logistic回归和条件logistic回归
进行分析。非条件logistic回归多用于非配比病例-对 照研究或队列研究资料,条件logistic回归多用于配 对或配比资料。 (2)多分类资料logistic回归: 因变量为多项分类的 资料,可用多项分类logistic回归模型或有序分类 logistic回归模型进行分析。
11-多重线性回归分析

1个
1个
统计方法
简单线性相关
simple linear correlation
简单线性回归
simple linear regression
多重相关
multiple correlation
多重回归
multiple regression
典则相关
cononical correlation
多元回归
multivariate regression
量x 取值均为0时,y的平均估计值。
➢bi:变量xi的偏回归系数(partial regression coefficient),
是总体参数βi 的估计值;指在方程中其它自变量固定 不变的情况下, xi 每增加或减少一个计量单位,反应 变量Y 平均变化 bi个单位。
Yˆ b0 b1X1 b2 X 2 ... bp X p
问题:对NO浓度的贡献,哪个因素作用的大一点, 哪个小一些?
回归系数的标准化:
1.自变量数据的标准化: 2.求标准化偏回归系数:
X
' i
Xi Xi Si
用标准化的数据进行回归模型的拟合,算出它的方程,
此时所获得的偏回归系数b’,叫~。
b’无单位,可用来比较各个自变量对反应变量的贡献大小
比较:
未标准化的回归系数(偏回归系数):用来构建回归 方程,即方程中各自变量的斜率。
计值 Yˆ 之间的残差(样
本点到直线的垂直距离) 平方和达到最小。 .
两个自变量时回归平面示意图
通过SPSS等统计软件,拟合X1、X2 、X3 、X4关于空 气中NO浓度的多重线性回归方程,得:
Y 0.142 0.116X1 0.004X 2 6.55106 X3 0.035X 4
管理统计学习题参考答案第十一章

十一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
第11章 多重线性回归精简

2010-6-19
23
多重线性回归的小结
多重线性回归是简单线性回归的拓展,经常用 在筛选危险因素、控制混杂因素、分析交互作 用、预测与控制等。 基本步骤:单因素分析;逐步筛选变量;综合 单因素和多因素模型结果,当有矛盾时,结合 专业知识分析。
2010-6-19 24
1. 应用条件
(1)线性依存关系 应变量与自变量间具有线性依存 关系。 (2)正态性 应变量原则上是连续型可测正态变量, 其预测值与实际观测值的差值(即残差)服从正态 分布,当样本量较大时可以忽略正态性的要求。 (3)独立性 观察单位之间是独立的,即应变量的观 测值相互独立。
2010-6-19 27
思考与练习
1. 多重线性回归分析如何筛 选自变量? 2.何谓共线性?它对资料分 析有何影响? 3.如何评价方程的优劣?
?
2010-6-19
28
数据 设计方法
软件
SAS SPSS
?
结果
如何解释?
2010-6-19 29
2010-6-19
30
2010-6-19
9
矛盾出现了:对整体模型而言,获得R2=0.9542 与整体F检验的概率为P=0.0039的好结果;但 是,对于每一个偏回归系数而言,却没有一个偏 回归系数的效应具有统计学意义。 问题出在哪里? 问题就出在X1,X2和X3存在共线性,以致回归系 数极不稳定,计算的结果并不是总体回归系数的 估计值,没有实际意义。
2010-6-19 13
对自变量较少的情况下可用逐步回归试一试? 例3 按α=0.10水准,对上例8名学生数据进行肺活量
(Y)关于身高X1和体重X2与体重指数X3的逐步回归分 析。
2010-6-19
第11章多重线性回归分析思考与练习参考答案

0.674
5
0.795
0.809
1.734
1.715
0.549
0.654
6
0.787
0.779
1.509
1.474
0.782
0.571
7
0.933
0.880
1.695
1.656
0.737
0.803
8
0.799
0.851
1.740
1.777
0.618
0.682
9
0.945
0.876
1.811
三、计算题
为确定老年妇女进行体育锻炼还是增加营养会减缓骨骼损伤,一名研究者用光子吸收法测量了骨骼中无机物含量,对三根骨头主侧和非主侧记录了测量值,结果见教材表11-20。分别用两种桡骨测量结果作为反应变量对其他骨骼测量结果作多重线性回归分析,提出并拟合适当的回归模型,分析残差。
解:答案提示,需要对自变量进行筛选,而且要考虑是否存在多重共线性,如果存在,应进行适当的处理。
5.如何判断、分析自变量间的交互作用?
答:基于专业背景知识,构造可能的交互作用项,并检验交互作用项是否有统计学意义。
6.多重线性回归模型的基本假定有哪些?如何判断资料是否满足这些假定?如果资料不满足假定条件,常用的处理方法有哪些?
答:多重线性回归的前提条件是线性、独立性、正态性和等方差性,可以借助残差分析等方法判断资料是否满足条件。如果资料不满足前提条件,可以采用变量变换和非线性回归等方法处理。
19
0.856
0.786
1.390
1.324
0.578
0.610
20
0.890
0.950
2.187
《多重线性回归分析》PPT课件电子版本

内容
方法简介 基本原理 分析步骤 几点补充
2
一、方法简介
• 1.1 分析目的与方法选择 研究一个因变量与一个自变量间的线性关系时 简单线性回归分析 研究一个因变量与多个自变量间的线性关系时 多重线性回归分析
3
一、方法简介
• 1.2 概念 用回归方程定量地刻画一个因变量与多个自
SS残差(残差平方和) v残差=n-p-1
自变量的个数
SS总= SS回归+ SS残差 v总= v回归+ v残差
三、分析步骤
• 2. 具体步骤 • 2.2 模型检验
模型的显著性检验步骤为: 第一步,建立检验假设。 H0:b1=b2= … =bk=0 H1: b1, b2, …, bk不同时为0
14
三、分析步骤
故在评价两个包含不同个数自变量的回归模 型的拟合效果时,不能简单地用决定系数作为评 价标准。
此时,必须考虑回归模型中自变量个数的影 响。
36
三、分析步骤
• 2.5 模型拟合效果评价 • 2.5.2 校正决定系数(Rc2)
构造校正决定系数,其公式为:
RC 2=1-M M SS 误 总 差1n n p1 11R2
除此之外,还要求多个自变量之间相关性不 要太强。
8
ห้องสมุดไป่ตู้
二、基本原理
• 2.2 前提条件 线性——指自变量与因变量之间的关系是线性的
独立性——指各观测值之间是相互独立的
正态性——指自变量取不同值时,因变量服从正 态分布
方差齐性——指自变量取不同值时,因变量的方 差相等
9
三、分析步骤
• 1. 基本任务 求出模型中参数的估计值,对模型和参数进行
第11章 多重线性回归分析思考与练习参考答案

第11章多重线性回归分析思考与练习参考答案一、最佳选择题1.逐步回归分析中,若增加自变量的个数,则(D)。
A.回归平方和与残差平方和均增大B.回归平方和与残差平方和均减小C.总平方和与回归平方和均增大D.回归平方和增大,残差平方和减小E.总平方和与回归平方和均减小2.下面关于自变量筛选的统计学标准中错误的是(E)。
A.残差平方和(SS残差)缩小B.确定系数(R)增大2C.残差的均方(MS残差)缩小D.调整确定系数(Rad)增大2E.Cp统计量增大3.多重线性回归分析中,能直接反映自变量解释因变量变异百分比的指标为(C)。
A.复相关系数B.简单相关系数C.确定系数D.偏回归系数E.偏相关系数4.多重线性回归分析中的共线性是指(E)。
A.Y关于各个自变量的回归系数相同B.Y关于各个自变量的回归系数与截距都相同C.Y变量与各个自变量的相关系数相同D.Y与自变量间有较高的复相关E.自变量间有较高的相关性5.多重线性回归分析中,若对某一自变量的值加上一个不为零的常数K,则有(D)。
A.截距和该偏回归系数值均不变B.该偏回归系数值为原有偏回归系数值的K 倍C.该偏回归系数值会改变,但无规律D.截距改变,但所有偏回归系数值均不改变E.所有偏回归系数值均不会改变二、思考题1.多重线性回归分析的用途有哪些?答:多重线性回归在生物医学研究中有广泛的应用,归纳起来,可以包括以下几个方面:定量地建立一个反应变量与多个解释变量之间的线性关系,筛选危险因素,通过较易测量的变量估计不易测量的变量,通过解释变量预测反应变量,通过反应变量控制解释变量。
2.多重线性回归模型中偏回归系数的含义是什么?答:偏回归系数的含义是:在控制其他自变量的水平不变的情况下,该自变量每改变一个单位,反应变量平均改变的单位数。
3.请解释用于多重线性回归参数估计的最小二乘法的含义。
答:最小二乘法的含义是:残差的平方和达到最小。
4.如何判断和处理多重共线性?答:如果自变量之间存在较强的相关,则存在多重共线性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、作业
教材P214 三。
二、自我练习
(一)教材P213 一。
(二)是非题
1.当一组资料的自变量为分类变量时,对这组资料不能做多重线性回归分析。
( )
2.若多重线性方程模型有意义.则各个偏回归系数也均有统计学意义。
〔)
3.回归模型变量的正确选择在根本上依赖于所研究问题本身的专业知识。
()
4.从各自变量偏回归系数的大小.可以反映出各自变量对应变量单位变化贡献的大小。
( )
5.在多元回归中,若对某个自变量的值都增加一个常数,则相应的偏回归系数不变。
( )
(三)选择题
1. 多重线性回归分析中,共线性是指(),导致的某一自变量对Y的作用可以由其他自变量的线性函数表示。
A. 自变量相互之间存在高度相关关系
B. 因变量与各个自变量的相关系数相同
C. 因变量与自变量间有较高的复相关关系
D. 因变量与各个自变量之间的回归系数相同
2. 多重线性回归和Logistic 回归都可应用于()。
A. 预测自变量
B. 预测因变量Y 取某个值的概率π
C. 预测风险函数h
D. 筛选影响因素(自变量)
3.在多重回归中,若对某个自变量的值都增加一个常数,则相应的偏回归系数:
A.不变
B.增加相同的常数
C.减少相同的常数
D.增加但数值不定
4.在多元回归中,若对某个自变量的值都乘以一个相同的常数k,则:
A.该偏回归系数不变
B.该偏回归系数变为原来的 1/k倍
C.所有偏回归系数均发生改变
D.该偏回归系数改变,但数值不定
5.作多重线性回归分析时,若降低进入的F 界值,则进入方程的变量一般会:
A.增多 B.减少 C.不变 D.可增多也可减少(四)筒答题
1.为什么要做多重线性回归分析?
2.多重线性模型中,标准化偏回归系数的解释意义是什么?
3.简述确定系数的定义及意义。
4.多重线性回归中自变量的筛选共有哪几种方法.请比较它们的优缺点?
5.何谓多重共线性,多重共线性对资料分析有何影响?出师表
两汉:诸葛亮
先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体;陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。
侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。
将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。
亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。
先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。
侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。
臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。
先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。
后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。
先帝知臣谨慎,故临崩寄臣以大事也。
受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。
今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,
攘除奸凶,兴复汉室,还于旧都。
此臣所以报先帝而忠陛下之职分也。
至于斟酌损益,进尽忠言,则攸之、祎、允之任也。
愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。
若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。
臣不胜受恩感激。
今当远离,临表涕零,不知所言。