余角、补角、对顶角教案

合集下载

初中初一数学上册《余角补角对顶角》教案、教学设计

初中初一数学上册《余角补角对顶角》教案、教学设计
三、教学重难点和教学设想
(一)教学重点
1.使学生掌握余角、补角、对顶角的概念及其性质。
2.培养学生运用余角、补角、对顶角知识解决实际问题的能力。
3.提高学生的几何直观和空间想象能力。
(二)教学难点
1.学生对余角、补角、对顶角概念的混淆,难以区分。
2.在角度计算方面,部分学生对运算规则不够熟练。
3.将理论知识与实际问题相结合,运用到实际情境中。
(二)讲授新知
1.概念讲解:
-余角:两个角的和为180度的两个角称为余角。
-补角:两个角的和为90度的两个角称为补角。
-对顶角:两条直线相交,形成的四个角中,位于直线对面的两个角称为对顶角。
2.性质说明:
-余角的性质:同角的余角相等,等角的余角相等。
-补角的性质:同角的补角相等,等角的补角相等。
-对顶角的性质:对顶角相等。
(五)总结归纳
1.让学生回顾本节课所学的内容,总结余角、补角、对顶角的性质和计算方法。
2.强调数学在实际生活中的重要性,激发学生学习数学的兴趣。
3.鼓励学生勇于提问、积极思考,培养他们的探究精神。
五、作业布置
为了巩固本节课所学知识,培养学生的几何思维能力和实际问题解决能力,特布置以下作业:
1.基础巩固题:
-基础练习:设计角度计算的基础题,让学生熟练掌握运算规则。
-提高练习:设置一些综合性的几何问题,让学生运用余角、补角、对顶角知识解决。
3.采用小组合作和讨论的方式,培养学生的合作意识和解决问题的能力。
-将学生分成小组,让他们共同探讨解决几何问题的方法,互相学习,共同进步。
-鼓励学生发表自己的观点,倾听他人的意见,培养他们的沟通能力和团队协作精神。
-根据课堂所学,计算以下给定角的补角和余角:

苏科版数学七年级上册6.3 余角、补角、对顶角教教学设计

苏科版数学七年级上册6.3 余角、补角、对顶角教教学设计

苏科版数学七年级上册6.3 余角、补角、对顶角教教学设计一. 教材分析苏科版数学七年级上册6.3节主要介绍了余角、补角和对顶角的概念及其性质。

本节内容是学生学习初中数学的基础知识,对于培养学生的空间想象力、逻辑思维能力具有重要意义。

教材通过生动的实例和图示,引导学生探究和发现余角、补角和对顶角的性质,从而激发学生的学习兴趣,培养学生独立思考和合作交流的能力。

二. 学情分析七年级的学生已经掌握了实数、代数式的基本知识,具备了一定的逻辑思维能力和空间想象力。

但部分学生对于角度的概念可能还不够清晰,因此在教学过程中,需要教师耐心引导,让学生充分理解和掌握余角、补角和对顶角的性质。

三. 教学目标1.理解余角、补角和对顶角的定义;2.掌握余角、补角和对顶角的性质;3.能运用余角、补角和对顶角的知识解决实际问题;4.培养学生的空间想象力、逻辑思维能力以及合作交流能力。

四. 教学重难点1.重点:余角、补角和对顶角的定义及其性质;2.难点:对顶角的性质及其在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和图示,引导学生发现余角、补角和对顶角的性质;2.合作学习法:分组讨论,培养学生团队合作精神和交流能力;3.实践操作法:让学生动手操作,加深对知识的理解和运用。

六. 教学准备1.教学PPT:制作包含余角、补角和对顶角概念及性质的PPT;2.教学素材:准备一些关于角度的图片和生活实例;3.练习题:挑选一些有关余角、补角和对顶角的练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些关于角度的图片,如剪刀、眼镜等,引导学生思考:这些物品中的角度有什么特点?从而引出本节课的主题——余角、补角和对顶角。

2.呈现(10分钟)教师通过PPT呈现余角、补角和对顶角的定义及性质,并用图示进行解释。

让学生分组讨论,总结出余角、补角和对顶角的性质。

3.操练(10分钟)让学生分组进行实践操作,运用余角、补角和对顶角的知识解决实际问题。

苏科版数学七年级上册6.3 余角、补角、对顶角 教案

苏科版数学七年级上册6.3 余角、补角、对顶角 教案

余角、补角、对顶角(2)一、教学目标1、了解对顶角的定义2、3、能应用余角、补角、对顶角的性质进行简单推理说明二、教学重点、难点1、重点:对顶角的概念及其性质2、难点:运用性质推理说明三、教学过程1、复习余角、补角的定义及其性质余角:两角之和为90,则这两个角互余;其性质为同角的余角相等;补角:两角之和等于180,则这两个角互补;其性质为同角的补角相等。

2、新课引入:问题:直线AB和直线CD相交于点O,图中有哪些角?OBACD其中有互补的关系的角,那么∠AOD与∠BOC是什么关系呢?(1)定义:一个角的两边分别是另一个角的两边的反向延长线,则这两个角是对顶角。

如上图中的∠AOD与∠BOC,∠BOD与∠AOC是对顶角。

观察总结:两直线相交所成角,一种关系是互补,一种关系是对顶角(有公共边)。

例1 下图中,∠1与∠2是对顶角的有()对例2 三条直线AB、CD、EF相交于点O,图中共有()对对顶角。

EACFBDO(2)性质:对顶角相等OBDCA因为∠AOC+∠COB=∠BOD+∠COB=180,所以∠AOC=∠BOD(同角的补角相等)例3 如图,直线a和直线b相交,(1)已知∠1=40,则∠2=___,∠3=___,∠4=___;(2)已知∠2+∠4=280,则∠1=___,∠2=___,∠3=___,∠4=___;(3)已知∠1 :∠2 =2 :7,则∠3=___,∠4=___。

4231例4 如图,直线AB,CD 相交于点O ,∠DOE=90°,∠AOC=72°,求∠BOE 的度数。

BECODA解:∵直线AB 、CD 相交于点O ,∠AOC=72° ∴∠BOD=∠AOC=72°(对顶角相等) 又∵∠DOE=90°∴∠BOE=∠DOE-∠BOD=90°- 72°=18°例5 如图,直线AB 和直线CD 相交于点O ,∠DOE=∠BOD ,OF 平分∠AOE ,∠AOC=30,试求∠EOF 的度数。

苏科版数学七年级上册6.3《余角、补角、对顶角》教学设计1

苏科版数学七年级上册6.3《余角、补角、对顶角》教学设计1

苏科版数学七年级上册6.3《余角、补角、对顶角》教学设计1一. 教材分析《余角、补角、对顶角》是苏科版数学七年级上册第六章第三节的内容。

本节内容是在学生已经掌握了角的分类、对顶角的性质等知识的基础上进行学习的,是对角的进一步分类和理解。

本节内容主要介绍余角和补角的定义,以及如何求一个角的余角和补角。

同时,通过探究对顶角的性质,使学生更好地理解对顶角的概念。

二. 学情分析学生在学习本节内容之前,已经掌握了角的分类知识,对顶角的性质,具备了一定的观察、操作、推理能力。

但部分学生对于抽象概念的理解还有一定的困难,对于如何求一个角的余角和补角的方法还需要通过实例进行巩固。

三. 教学目标1.知识与技能目标:理解余角、补角的定义,掌握求一个角的余角和补角的方法,能够运用余角和补角的概念解决实际问题。

2.过程与方法目标:通过观察、操作、推理等方法,探索对顶角的性质,提高学生的逻辑思维能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,培养学生的团队协作能力。

四. 教学重难点1.教学重点:余角、补角的定义,求一个角的余角和补角的方法。

2.教学难点:对顶角的性质的理解和应用。

五. 教学方法采用问题驱动法、实例教学法、小组合作法等教学方法,引导学生通过观察、操作、推理等方法,探索对顶角的性质,提高学生的逻辑思维能力。

六. 教学准备1.教学PPT:制作包含余角、补角、对顶角概念及求解方法的PPT。

2.教学素材:准备一些关于余角、补角的实际问题,以及对顶角的实例。

3.学生活动材料:学生分组合作的材料。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾角的分类知识,对顶角的性质。

为新课的学习做好铺垫。

2.呈现(10分钟)(1)介绍余角的定义,通过实例演示如何求一个角的余角。

(2)介绍补角的定义,通过实例演示如何求一个角的补角。

(3)引导学生观察对顶角的性质,通过实例验证对顶角的性质。

余角、补角、对顶角优秀教案

余角、补角、对顶角优秀教案

余角、补角、对顶角【教课目的】1.在详细情境中认识余角、补角,知道等角(同角 )的余角相等、等角 (同角 )的补角相等。

2.会运用互为余角、互为补角的性质来解题。

3.经历察看、操作、说理、沟通等过程,进一步说明发展空间观点,学习有条理的表述。

【教课重难点】灵巧运用等角 (同角 )的余角相等、等角 (同角 )的补角相等。

【教课过程】一、情境创建、探究活动把一副三角尺搁置如图( 1)、(2)地点,分别探究发现,∠与∠ 的度数之间有什么特别关系?二、讲解新课(一)互为余角、互为补角的观点。

1.假如两个角的和是一个直角,这两个角叫做互为余角,简称互余,此中的一个角叫做另一个角的余角。

符号语言:由于900,因此与互为余角。

反过来,由于与互为余角,因此900,(或900 )。

2.假如两个角的和是一个平角,这两个角叫做互为补角,简称互补,此中的一个角叫做另一个角的补角。

符号语言:由于1800,因此与互为补角。

反过来,由于与互为补角,因此1800,(或1800 )。

(1)填一填:的度数40o 60o12’no(0 <n<90o)的余角60o的补角45o 120o(2)想想,1)一个锐角有余角和补角吗?如有,它们分别如何表示。

一个钝角 和直角 呢?2)同一个锐角的补角与它的余角之间有如何的数目关系?(3)算一算例题 1.已知一个角的补角是这个角的余角的 3 倍,求这个角的度数。

(4)找一找CD例题 2.如图, O 是直线 AB 上一点, OE 均分∠ AOC ,OD 均分∠ BOC ,那么图中共有: E234 ①几对互余的角;②几对互补的角。

1AOB2.互为余角、互为补角的性质(1)例题 3.假如∠ 1 与∠ 2 互余,∠ 1 与∠ 3 互余,那么∠ 2 与∠ 3 相等吗?为何?解:∠ 2 与∠ 3 相等。

由于∠ 1 与∠ 2 互余,∠ 1 与∠ 3 互余,2 31 因此∠ 2=90°-∠ 1,∠ 3=90°-∠ 1.因此∠ 2=∠ 3.思虑:若∠ 1 与∠ 2 互为余角,∠ 1 与∠ 3 互为余角,则∠ 2=∠。

七年级数学上册《余角补角对顶角》教案、教学设计

七年级数学上册《余角补角对顶角》教案、教学设计
(2)运用探究式教学法,引导学生自主发现余角、补角以及对顶角的性质,培养学生的几何直观和逻辑思维。
(3)利用合作学习法,组织学生进行小组讨论,互相交流解题思路,提高问题解决能力。
2.教学过程:
(1)导入:以生活中的实例,如剪刀、三角板等,引导学生观察余角、补角以及对顶角的实例,为新课的学习做好铺垫。
(三)情感态度与价值观
1.激发学生对几何图形的兴趣,培养良好的学习习惯和探究精神。
2.通过对余角、补角以及对顶角的学习,让学生体会几何图形中的对称美、和谐美,提高审美能力。
3.培养学生严谨、踏实的科学态度,学会用数学的眼光观察世界,用数学的思维分析问题,增强解决问题的自信心。
教学设计:
一、导入:
1.利用生活实例,如剪刀、三角板等,引导学生观察余角、补角以及对顶角的实例,激发学生学习兴趣。
2.教师引导学生回顾之前学习的角的分类、度量等知识,为新课的学习做好铺垫。
3.教师提出问题:“除了剪刀,生活中还有哪些地方存在余角、补角以及对顶角?”让学生举例说明,激发学生学习兴趣。
(二)讲授新知,500字
1.教师通过直观演示,让学生观察并发现余角、补角以及对顶角的性质。如:出示一个等腰直角三角形,让学生观察其中两锐角的关系,引导学生得出余角的性质。
3.尝试运用余角、补角以及对顶角的性质,解决以下问题:
(1)已知一个角的补角,求这个角的度数。
(2)已知一个角的余角,求这个角的度数。
(3)证明:如果一个三角形的两个角相等,那么这两个角的对边也相等。
4.阅读拓展资料,了解余角、补角以及对顶角在建筑、艺术等领域的应用,拓宽知识视野。
5.结合本节课所学,思考以下问题并撰写学习心得:
4.教学策略:
(1)针对学生的个体差异,实施分层教学,让每个学生都能在原有基础上得到提高。

2.1第1课时对顶角、补角和余角(教案)

2.1第1课时对顶角、补角和余角(教案)
2.1第1课时对顶角、补角和余角(教案)
一、教学内容
本节课选自教材第二章第一节,主要教学内容包括:
1.对顶角的定义及性质;
2.补角的定义及性质;
3.余角的定义及性质;
4.判断和证明对顶角、补角、余角;
5.运用对顶角、补角、余角解决实际问题。
二、核心素养目标
1.培养学生几何直观和空间想象能力,通过对顶角、补角和余角的识别与运用,深化对几何图形的认识;
3.重点难点解析:在讲授过程中,我会特别强调对顶角的识别和补角、余角的计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与对顶角、补角和余角相关的实际问题。
2.实验操张或使用量角器来演示对顶角相等和补角、余角的计算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“对顶角、补角和余角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了对顶角、补角和余角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

2024秋七年级数学上册第6章平面图形的认识(一)6.3余角补角对顶角1余角和补角教案(新版)苏科版

2024秋七年级数学上册第6章平面图形的认识(一)6.3余角补角对顶角1余角和补角教案(新版)苏科版
情感升华:
结合余角、补角、对顶角内容,引导学生思考数学与生活的联系,培养学生的社会责任感。鼓励学生分享学习心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
简要回顾本节课学习的余角、补角、对顶角内容,强调重点和难点。肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的内容,布置适量的课后作业,巩固学习效果。提醒学生注意作业要求和时间安排,确保作业质量。
-及时反馈:教师应及时将作业的批改结果反馈给学生,让学生了解自己的学习效果。对于表现优秀的学生,教师可以给予表扬和奖励,以激发他们的学习动力。对于表现一般或较差的学生,教师应给予鼓励和指导,帮助他们提高学习成绩。
-鼓励学生继续努力:在作业评价中,教师应鼓励学生继续努力,不断提高自己的学习能力。教师可以提供一些学习方法和技巧,帮助学生提高学习效果。同时,教师还可以鼓励学生之间的合作和互助,让他们相互学习,共同进步。
-材料三:《生活中的几何图形》
本材料通过生活中的实例,如建筑设计、艺术作品等,展示了余角、补角、对顶角在实际生活中的应用,增强学生对几何知识实用性的认识。
2.课后自主学习和探究
-探究一:余角和补角在实际图形中的应用
鼓励学生在家中或学校周围寻找含有余角和补角的图形,如窗户的角、墙角等,并进行测量和计算,观察余角和补角的实际效果。
-难点四:解决含有多个余角、补角的复合问题。在复杂问题中,学生需要能够理清角度之间的关系,正确求解。
举例:设计一些综合性的问题,如一个多边形内多个角的余角和补角的计算,训练学生综合运用所学知识。
教学方法与手段
1.教学方法
-方法一:讲授法。对于余角、补角、对顶角的基本概念和性质,采用讲授法进行教学。通过生动的语言、具体的例子,引导学生理解和掌握这些基本知识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余角、补角(1)
学习目标
1. 在具体情境中了解余角、补角,知道余角、补角之间的数量关系;
2. 经历观察、操作、说理、交流的过程,进一步发展空间观念,学习有条理的表达数学问题;
3. 会运用互为余角、互为补角的性质来解决问题.
学习难点
正确区分余角和补角,并运用余角、补角的性质解决问题
/
教学过程
一、情景导入
图中∠α和∠β的度数之间有什么特殊关系
/
请你用一副三角板操作一下!
二、数学化认识
1、互为余角的概念:
如果两个角的和是一个直角,
这两个角叫做互为余角.简称互余.
其中一个角叫做另一个角的余角.

2、互为补角的概念:
如果两个角的和是一个平角,
这两个角叫做互为补角.简称互补.其中一个角叫做另一个角的补角.
三、基础训练
1.填表

想一想:同一个角的补角与它的余角之间有怎样的数量关系
2.已知3组角:

A 组 B组 C组
(1)对A组中的每一个角,在B组中找出它的补角,并用线连接;
(2)B组中有哪些角的余角在C组中分别找出这些角,并用线连接。

3.判断:
(1)90°的角叫余角,180°的角叫补角。

()
(2)如果∠1+ ∠ 2 +∠3=180 °,那么∠1、∠ 2与∠3互补。

()
四、例题讲解
"
例⒈如图,如果∠1与∠ 2互余,∠1与∠3互余,那么∠2与∠3相等吗为什么
想一想
1.如图,如果∠1与∠ 2互余,∠ 3 与∠4互余,
∠1 =∠ 3,那么∠2与∠4相等吗为什么

2.如图,如果∠1与∠ 2互补,∠ 3与∠4互补,
∠1 =∠ 3,那么∠2与∠4相等吗为什么
结论:
余角性质:同角(或等角)的余角相等。

补角性质:同角(或等角)的补角相等。

例2.如图,直线AB与CD相交于点O,∠2与∠3有怎样的大小关系为什么。

五、当堂反馈
一、判断:
(1)如果两个角相等,则它们的补角相等。

()
(2)如果∠1 =40 °,∠2=60 °,∠3 =80 °, 那么∠1、∠2、∠3互为补角。

()
二、填空:

(1)一个角是36 °,则它的余角是_______,它的补角是_____。

(2)∵∠1和∠2互余,∴∠2=_____- ∠1;
∵∠1和∠2互补,∴∠1=_____- ∠2 。

三、如图,∠AOB= ∠COD=90 °,
则∠BOC 与∠AOD 有怎样的大小关系为什么
【课后作业】
— 班级 姓名 学号
P162习题的第1、2、3题
余角、补角、对顶角(2)
班级 姓名 学号

学习目标
1. 在具体情境中了解对顶角,知道对顶角相等;
2. 经历观察、操作、说理、交流的过程,进一步发展空间观念,学习有条理的
表达数学问题;
3. 会运用互为余角、互为补角、对顶角的性质来解决问题.
学习难点
运用互为余角、互为补角、对顶角的性质来解决问题.
教学过程
看谁记的牢

1、如图,O 为直线AB 上一点,∠AOD=900,则图中哪些角互为余角哪些角互为补角

2、如图,∠AOC=900,∠BOD=900,则∠1与∠3的关系是_____,其理由是__________________________.
3、如图,∠1+∠2=180°, ∠3+∠4=180°,若∠1=∠3,则∠2与∠4的关系是_______,其理由是_________________.
} B O
A D C 1 2
3 A B C D 《 o 》 2 1 3
4
一、情景导入
通过小孔O,两条光线AA’、BB’形成了哪些角
定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

二、数学化认识
1、两条直线相交可以得到两对对顶角,那么三条直线AB 、CD 、EF 相 交于点O 。

有多少对对顶角请分别表示出来,并与同学交流。


2、两根木条中间用铁钉固定起来,但可转动。

试着转不同的角度,比较两木条所成的角的度数。

你能发现什么并说明理由.
结论:对顶角相等
三、例题讲解
例1 如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,∠AOE=250。

你能说出图中哪些角的度数

例2 如图,AB 、CD 相交于点O,∠DOE=900,∠AOC=720.
求∠BOE 的度数.
<
四、基础训练
1.如图,直线AC 、DE 相交于点O ,OE 是∠AOB 的平分线,∠COD=500,试求∠AOB 的度数. O A B
; B /
A / O A E C % D
B O A B D
C ;
E O
A B ~ E
2.如图,直线AB 、EF 相交于点D ,∠ADC=900。

(1)∠1的对顶角是______;∠2的余 角有___________。

\
(2)若∠1与∠2的度数之比为1︰4,求∠BDF 的度数。

4. 如图,直线AB 、CD 相交于点O ,且∠AOD +∠BOC=2200,
5. 则∠AOC 为多少度为什么
【课后作业】
班级 姓名 学号
P162习题的第4、5、6题
A B C E D 1 2 O A
D
C B。

相关文档
最新文档