【小学数学】人教版六年级下册数学各单元知识点
人教版小学数学六年级下册第二单元知识点汇总

1.农业上经常用“成数”来表示收成的情况。现在,“成数”已经广泛应用于表示各行各业的发展变化情况。
2.成数表示一个数是另一个数的十分之几,也就是百分之几十;但是在表示百分之几十几时,要说几成几。
3.解决成数问题时,把成数转化为百分数后,解题思路和解题方法同解决百分数问题完全相同。
三、税率
1.纳税的含义:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
2.每个公民都有依法纳税的义务。缴纳的税款叫做应纳税额,应纳税额与各种收入(销售额、营业额……)的比率叫做税率。
3.求应纳税额,就是求一个数的百分之几是多少的问题,收入×税率=应纳税额。求税率,就是求应纳税额是应纳税收入的百分之几,税率=应纳税额÷收入×100%。求收入,就是已知一个数的百分之几是多少,求这个数是多少,收入=应纳税额÷税率。
例如:打九折就是按原价的90%出售。打八五折就是按原价的85%出售。
现价=原价×折扣
原价=现价÷折扣
折扣=现价÷原价
节省钱数=原价×(1-折扣)
例如:今年我省油菜籽比去年增产两成。两成就是十分之二,改写成百分数就是20%。35%改写成成数是三成五。
提示:税收的种类不同,税率也各不相同。
提示:有时并不是全部收入都需要纳税,例如,目前个人工资或薪金收入的3500元以下的部分是不需要纳税的,而超过3500元部分则需要按规定纳税。需要纳税部分的收入叫做应税收入。
小学数学六年级下册第二单元知识点汇总(人教版)
一、折扣
1.商店有时降价出售商品,叫做打折扣销售,俗称“打折”。
2.几折就表示原价的十分之几,也就是原价的百分之几十;几几折就是原价的百分之几十几。
3.求现价,就是求原价的百分之几是多少。求原价,就是已知一个数的百分之几是多少,求这个数。
人教版数学六年级下册知识点总结

第一章负数1、数的相对性,为了表示两种相反意义的量,就出现了负数,如-3.5,-4等。
2、负数的读法:先读“负”,再读数,如-3读作负三。
正数前面的“+”可以省略不写;0既不是正数,也不是负数。
3、数轴的定义:规定了原点、正方向和单位长度的直线。
4、负数都在0的左边,正数都在0的右边,在数轴上,右边的数大于左边的数。
第二章百分数1、打折:商店有时降价出售商品,叫做打折扣销售,俗称“打折”,几折就表示十分之几,也就是百分之几十。
2、成数:农业收成,经常用“成数”来表示。
成数表示一个数是另一个数的十分之几,俗称“几成”;一成是十分之一,改写成百分数是10%;两成是十分之二,即20%;三成五是十分之三点五,即35%……3、税率:纳税是按照一定的比率把集体或个人收入的一部分缴纳给国家。
集体或个人缴纳的税款叫做应纳税额,应纳税额与各种收入中应纳税部分的比率叫做税率。
即税率=应纳税额÷各种收入。
4、利率:存入银行的钱叫本金,取款时银行多支付的钱叫利息;单位时间内的利息与本金的比率叫做利率。
利息=本金×利率×时间存入银行后取钱时应得的本息=本金+利息例如:银行规定:存期三个月利率为3.33%,存期半年利率为3.78%,存期一年利率为4.14%,存期两年利率为4.68%,存期三年利率为5.40%,如现有20000元,存期两年,两年后能取多少钱?方法一、20000×4.68%×2=1872(元) 20000+1872=21872(元)方法二、20000+20000×4.68%×2=21872(元)第三章圆柱和圆锥1、圆柱是由3个面围成的。
圆柱的上、下两个面叫做底面,圆柱周围的面叫做侧面。
圆柱两个底面之间的距离叫做高。
圆柱的底面形状是圆,侧面是曲面,侧面展开图是长方形,长方形的长是圆柱底面的周长,长方形的宽是圆柱的高。
一个长方形绕着一条边所在的直线旋转一周就是圆柱。
人教版六年级数学的知识点总结

人教版六年级数学的知识点总结六年级数学主要包含了四个模块的知识点,分别是数与式、图形与运算、测量与数据处理、功能与解决问题。
下面我将对每个模块的知识点进行总结,希望对你有所帮助。
一、数与式1. 整数的加减运算- 同号相加,异号相减- 加减整数的性质,如加零法则、减零法则、加法逆元、减法逆元等- 整数加减法的计算方法,包括精确计算和估算计算2. 简便计算- 乘法的简便计算方法,如分解因数、乘以9的简便方法等- 除法的简便计算方法,如分解法、翻转法等3. 小数的加减运算- 小数的加减法计算,包括有限小数和循环小数的加减法4. 分数的加减运算- 分数的加减法计算,包括同分母的分数相加减、异分母的分数相加减的化为同分母等5. 数表达式的认识和运算- 数表达式的结构和组成- 数表达式的加减乘除运算,包括使用知识点进行计算和解决实际问题6. 解方程- 一步方程和两步方程的解法,包括减法原理和乘法原理等二、图形与运算1. 三角形和四边形- 三角形和四边形的认识,包括名称、性质和例子2. 直线、线段和射线- 直线、线段和射线的认识,包括名称、性质和例子3. 角- 角的认识,包括名称、度量和例子- 特殊角的认识,如直角、钝角、锐角等4. 等边三角形、等腰三角形和直角三角形的性质5. 平行线和垂直线- 平行线和垂直线的认识,包括性质和例子6. 图形的相似和全等- 图形的相似和全等的概念和判定条件- 相似和全等图形的性质和例子7. 图形的旋转和翻转- 图形的旋转和翻转的概念和方式8. 解几何问题- 利用图形的性质解决实际问题,如计算图形的周长和面积等三、测量与数据处理1. 长度、面积和体积的计量- 长度单位的认识和换算,如厘米、毫米和千米的换算- 平方单位的认识和换算,如平方厘米、平方米和平方千米的换算- 体积单位的认识和换算,如立方厘米、立方米和立方千米的换算2. 温度的度量- 温度的单位和换算,如摄氏度和华氏度的换算3. 数据的搜集和整理- 数据的种类和搜集方式,如调查和观察等- 数据的整理和图形的制作,如列表、图表和图形等4. 数据的统计和分析- 数据的统计方法,如对数据进行计数、排序和分类等- 数据的分析和解释,如找出规律和总结结论等四、功能与解决问题1. 计算思维和问题解决能力的培养- 运算思维的培养,如发现规律、推理和解决问题等- 问题解决能力的培养,如利用数学方法解决实际问题和学习生活中的问题等2. 运算结果的估算- 运算结果的估算方法,如找到合适的整数进行估算等3. 空间思维和几何推理能力的培养- 空间思维的培养,如观察和分析空间关系等- 几何推理能力的培养,如利用几何知识进行推理和解决几何问题等以上是人教版六年级数学的主要知识点总结,希望对你有所帮助。
人教版小学六年级数学下册知识点_数学知识点

人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7.比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:8.组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1。
5=y×1。
2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
六年级下册数学1到4单元总结

六年级下册数学1到4单元总结六年级下册数学1 - 4单元总结(人教版)1. 知识点。
- 负数的定义:比0小的数叫做负数,负数与正数表示意义相反的量。
例如:在温度计上,0℃以上为正数,0℃以下为负数;海拔高度中,海平面以上为正数,海平面以下为负数。
- 负数的读写法。
- 读负数时,先读“负”字,再读数。
例如:-5读作“负五”。
- 写负数时,先写“ - ”,再写数。
如:负八写作“ - 8”。
- 数轴。
- 数轴是规定了原点(0点)、正方向和单位长度的直线。
- 在数轴上,负数在0的左边,正数在0的右边,从左到右的顺序就是数从小到大的顺序。
例如: - 3<0<2。
2. 重点与难点。
- 重点:理解负数的意义,能正确读写负数,会用数轴表示正负数。
- 难点:理解负数的大小比较规则,以及在实际情境中运用负数表示相反意义的量。
1. 知识点。
- 折扣。
- 折扣的意义:商店有时降价出售商品,叫做打折扣销售,通称“打折”。
几折就表示十分之几,也就是百分之几十。
例如:八折就是原价的80%,七五折就是原价的75%。
- 折扣问题的计算:原价×折扣 = 现价。
例如:一件商品原价100元,打八折后的价格是100×80% = 80元。
- 成数。
- 成数表示一个数是另一个数的十分之几,通称“几成”。
例如:一成就是10%,三成五就是35%。
- 成数问题的计算:例如,去年小麦产量是100吨,今年比去年增产二成,今年产量就是100×(1 + 20%)=120吨。
- 税率。
- 税率是应纳税额与各种收入(销售额、营业额等)的比率。
- 应纳税额的计算:应纳税额 = 各种收入×税率。
例如:某商店营业额为10000元,税率为3%,应纳税额为10000×3% = 300元。
- 利率。
- 利率是单位时间内利息与本金的比率。
- 利息的计算:利息 = 本金×利率×存期。
例如:本金1000元,年利率为2.1%,存期2年,利息为1000×2.1%×2 = 42元。
人教版新课标六年级数学下册(4~6单元)重点知识归纳

人教版新课标六年级数学下册重点知识归纳第一单元:负数1.(1)正、负数的读写方法:○1写正数时,加“+”号或省略“+”号两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”号的,这个“正”字也要省略不读。
○2写负数时,一定要写出“一”号,读时也一定要读出“负”字。
(2)0既不是正数,也不是负数,它是正数与负数的分界点。
2.正、负数不能凭正、负号进行区分,比如“+(一3)”是一个负数,而一(一3)却是一个正数。
3.能表示出正数、0、负数的直线,我们把它叫做数轴。
4.(1)数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。
(2)温度计也可以看作是一数轴。
5.(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)所有的负数都在0的左边,即负数都比0小;所有的正数都在0的右边,即正数都比0大。
因此,负数都比正数小。
(3)比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。
6.温馨提示:水结冰时的温度是0摄氏度,0在这里的意义不是表示“没有”,而是一个具体的数。
7.温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。
如果上升用正数表示,那么下降一定用负数表示。
8.负数与正数相加,如果负数中负号后面的数比正数大,那么得数为负数,式中负号后面的数减去正数得几,结果就是负几。
第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆。
3.(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
小学六年级下册全册知识点

小学六年级下册全册知识点第一章:数与运算1.1 整数与小数- 整数的概念和表示法- 小数的概念和表示法- 整数和小数的相互转换1.2 加法与减法- 加法的定义和性质- 减法的定义和性质- 加减法的运算法则1.3 乘法与除法- 乘法的定义和性质- 除法的定义和性质- 乘除法的运算法则1.4 运算顺序- 括号的运用- 运算顺序的规定- 复杂运算式的计算第二章:分数与比例2.1 分数的概念与表示- 分数的基本概念- 真分数和假分数的区别- 分数的读法和表示法2.2 分数的加减运算- 分数的加法原则- 分数的减法原则- 分数的加减计算步骤2.3 分数的乘除运算- 分数的乘法原则- 分数的除法原则- 分数的乘除计算步骤2.4 比例的认识与运用- 比例的概念和表示法- 比例与图形的关系- 比例的计算方法第三章:图形与计算3.1 运用倍数和约数- 倍数的概念和计算- 整除与倍数的关系- 约数的概念和判断方法3.2 计算长度、面积和容量- 长度的换算方法- 面积的计算公式- 容量的换算和计算3.3 图形的边和顶点- 图形的基本概念- 点、线、面的定义- 图形的分类与特征3.4 计算图形的周长和面积- 不规则图形的周长计算- 正方形和长方形的面积计算- 三角形和梯形的面积计算第四章:数据与概率4.1 数据的收集与整理- 数据的来源和收集方法- 数据的整理和表达方式- 数据的图表表示4.2 数据的分析与运用- 数据的中位数和众数- 数据的极差和平均数- 数据的运用与预测4.3 概率的认识与计算- 概率的基本概念- 事件的可能性及计算- 基于概率的决策第五章:时间与空间5.1 时间的计算和换算- 时间的单位和换算- 时、分、秒的关系- 时间的加减运算5.2 日历和闰年- 日历的基本组成- 判断闰年的方法- 日期的推算和计算5.3 方位与坐标- 方位词的理解和运用- 坐标的概念和计算- 方位与坐标的关系5.4 空间图形的认识- 点、线、面的空间概念- 立体图形的特征和分类- 空间图形的展开和组合以上是小学六年级下册的全册知识点概述,通过掌握和理解这些知识,可以帮助同学们更好地应对学习中的数学、几何等问题,并提高解决问题的能力。
人教版小学六年级数学上下册重点知识归纳

大 100 倍。
7、 解答“求一个数比另一个数多(或少)几分之几”的应用题解题思路:(1)、找准单位“1”,
作除数;(2)、求出比较量与标准量间的差,作被除数。
2
8、 解答“求一个数比另一个数多(或少)百分之几”的应用题解题思路:(1)、找准单位“1”, 作除数;(2)、求出比较量与标准量间的差,作被除数;(3)、结果要化成百分数。
第二单元:分数乘法
1、分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。 2、分数乘分数,应该分子乘分子,分母乘分母。注意:能约分的可以先约分再乘。 注意:一个大于 0 的数乘大于 1 的数,积大于这个数。一个大于 0 的数乘小于 1 的数,积小于这个数。 3、分数混合运算的顺序和整数的混合运算顺序相同。 (1)在没有括号的算式里,同级运算从左往右进行计算; (2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减; (3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号外面的数。 4、整数乘法的交换律、结合律和分配律,对于分数乘法也适用。 (1)乘法交换律:a×b=b ×a (2)乘法结合律:(a ×b) ×c=a ×(b ×c) (3)乘法分配律:(a+b) ×c=a ×c+b ×c 5、解决求一个数的几分之几是多少的问题,用乘法计算。 6、乘积是 1 的两个数互为倒数。求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是 1 的分数,再交换分子和分母和位置。注意:1 的倒数是 1,0 没有倒数。 7、真分数的倒数一定都大于 1;假分数的倒数一定都小于或等于 1。
12、 存入银行的钱叫做本金,取款时银行多支付的钱叫做利息。利息与本金的比值叫做利率。 国家规定,存款的利息要按 5%的利率纳税,教育存款、国债、国库券的利息不纳税。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【小学数学】人教版六年级下册数学各单元知识点第一单元:负数1、负数:负数是数学术语;指小于0的实数;如-3。
任何正数前加上负号都等于负数。
在数轴线上;负数都在0的左侧;所有的负数都比自然数小。
负数用负号“-”标记;如-2;-5.33;-45;-0.6;-25等。
2、正数:大于0的数叫正数(不包括0)。
若一个数大于零(>0);则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有无数个;其中分正整数;正分数和正无理数。
3、正数的几何意义:数轴上0右边的数叫做正数。
4、0既不是整数;也不是负数。
0是正、负数的界限。
正数都大于0;负数都小于0;正数大于一切负数。
5、数轴:规定了原点;正方向和单位长度的直线叫数轴。
所有的数都可以用数轴上的点来表示。
也可以用数轴来比较两个数的大小。
在数轴上表示的两个数;正方向的数大于负方向的数。
6、数轴的三要素:原点、单位长度、正方向。
第二单元:圆柱和圆锥1.圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面;其展开图是一个长方形。
(3)高的特征:圆柱有无数条高。
2.圆柱的高:两个底面之间的距离叫做高。
3.圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时; 沿高展开图是正方形;当不沿高展开时展开图是平行四边形。
4.圆柱的侧面积:圆柱的侧面积=底面的周长×高;用字母表示为:S 侧=Ch 。
5.圆往的表面积:圆柱的表面积=侧面积+2×底面积;即S 表= S 侧+2 S 底。
6.圆柱的体积:圆柱所占空间的大小;叫做这个圆柱体的体积;V=Sh 。
7.圆锥:以直角三角形的一条直角边所在直线为旋转轴;其余两边旋转形成的面所围成的旋转体叫做圆锥。
该直角边叫圆锥的轴。
8.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
9.圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面;展开图是扇形。
(3)高的特征:圆锥只有一条高。
10.圆锥的母线:即圆锥的侧面展开形成的扇形的半径;底面圆周上点到顶点的距离。
圆锥有无数条母线。
11.圆锥的侧面:将圆锥的侧面沿母线展开;是一个扇形;这个扇形的弧长等于圆锥底面的周长;而扇形的半径等于圆锥的母线的长。
12.圆锥的侧面积=底面的周长(展开图弧长)×母线÷2;13.圆锥的体积:一个圆锥所占空间的大小;叫做这个圆锥的体积。
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式V=Sh(V=πr2h);得出圆锥体积公式:V=1/3Sh14.圆柱与圆锥的关系:(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
(2)体积和高相等的圆锥与圆柱之间;圆锥的底面积是圆柱的三倍。
(3)体积和底面积相等的圆锥与圆柱之间;圆锥的高是圆柱的三倍。
15.生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。
第三单元:比例1、比的意义:(1)两个数相除又叫做两个数的比(2)“:”是比号;读作“比”。
比号前面的数叫做比的前项;比号后面的数叫做比的后项。
比的前项除以后项所得的商;叫做比值。
(3)同除法比较;比的前项相当于被除数;后项相当于除数;比值相当于商。
(4)比值通常用分数表示;也可以用小数表示;有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系;可知比的前项相当于分子;后项相当于分母;比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外);比值不变;这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项;它的结果是一个数值可以是整数;也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比;即前、后项是互质的数。
4、比例尺:图上距离∶实际距离=比例尺要求会求比例尺:图上距离÷实际距离=比例尺;已知图上距离和比例尺求实际距离:图上距离÷比例尺=实际距离;已知实际距离和比例尺求图上距离:实际距离×比例尺=图上距离。
线段比例尺:在图上附有一条注有数目的线段;用来表示和地面上相对应的实际距离。
5、比例尺的分类:(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺6、应用比例尺画图:(1)写出图的名称、(2)确定比例尺;(3)根据比例尺求出图上距离;(4)画图(画出单位长度)(5)标出实际距离;写清地点名称(6)标出比例尺7、图形的放大与缩小:形状相同;大小不同。
(相似图形)8、按比例分配:在农业生产和日常生活中;常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几;然后求出总数的几分之几是多少。
9、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数;叫做比例的项。
两端的两项叫做外项;中间的两项叫做内项。
10、比例的性质:在比例里;两个外项的积等于两个内项的积;这叫做比例的基本性质。
11、比和比例的区别(1)比表示两个量相除的关系;它有两项(即前、后项);比例表示两个比相等的式子;它有四项(即两个内项和两个外项)。
(2)比有基本性质;它是化简比的依据;比例也有基本性质;它是解比例的依据。
12、解比例:根据比例的基本性质;如果已知比例中的任何三项;就可以求出这个数比例中的另外一个未知项。
求比例中的未知项;叫做解比例。
13、成正比例的量:两种相关联的量;一种量变化;另一种量也随着变化;如果这两种量中相对应的两个数的比值(也就是商)一定;这两种量就叫做成正比例的量;他们的关系叫做正比例关系。
用字母表示yx=k(一定)14、成反比例的量:两种相关联的量;一种量变化;另一种量也随着变化;如果这两种量中相对应的两个数的积一定;这两种量就叫做成反比例的量;他们的关系叫做反比例关系。
用字母表示x×y=k(一定)15、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对的两个数的商一定还是积一定;如果商一定;就成正比例;如果积一定;就成反比例。
16、用比例解决问题:第一步:根据问题中的不变量找出两种相关联的量;第二步:正确判断这两种相关联的量成什么比例关系;第三步:根据正、反比例关系式列出相应的方程并求解。
第四单元:统计1、统计表:把统计数据填写在一定格式的表格内;用来反映情况、说明问题;这样的表格就叫做统计表。
2、统计组成部分:一般分为表格外和表格内两部分。
表格外部分包括标的名称;单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。
3、统计种类:单式统计表:只含有一个项目的统计表。
复式统计表:含有两个或两个以上统计项目的统计表。
百分数统计表:不仅表明各统计项目的具体数量;而且表明比较量相当于标准量的百分比的统计表。
4、统计表制作步骤:(1)搜集数据(2)整理数据:要根据制表的目的和统计的内容;对数据进行分类。
(3)设计草表:要根据统计的目的和内容设计分栏格内容、分栏格画法;规定横栏、竖栏各需几格;每格长度。
(4)正式制表:把核对过的数据填入表中;并根据制表要求;用简单、明确的语言写上统计表的名称和制表日期。
5、统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。
6、条形统计图:(1)用一个单位长度表示一定的数量;根据数量的多少画成长短不同的直条;然后把这些直线按一定的顺序排列起来。
(2)优点:很容易看出各种数量的多少。
注意:画条形统计图时;直条的宽窄必须相同。
(3)取一个单位长度表示数量的多少要根据具体情况而确定(4)复式条形统计图中表示不同项目的直条;要用不同的线条或颜色区别开;并在制图日期下面注明图例。
(5)制作条形统计图的一般步骤:a)根据图纸的大小;画出两条互相垂直的射线。
b)在水平射线上;适当分配条形的位置;确定直线的宽度和间隔。
c)在与水平射线垂直的深线上根据数据大小的具体情况;确定单位长度表示多少。
d)按照数据的大小画出长短不同的直条;并注明数量。
7、折线统计图:(1)用一个单位长度表示一定的数量;根据数量的多少描出各点;然后把各点用线段顺次连接起来。
(2)优点:不但可以表示数量的多少;而且能够清楚地表示出数量增减变化的情况。
注意:折线统计图的横轴表示不同的年份、月份等时间时;不同时间之间的距离要根据年份或月份的间隔来确定。
(3)制作折线统计图的一般步骤:a)根据图纸的大小;画出两条互相垂直的射线。
b)在水平射线上;适当分配折线的位置;确定直线的宽度和间隔。
c)在与水平射线垂直的深线上根据数据大小的具体情况;确定单位长度表示多少。
d)按照数据的大小描出各点;再用线段顺次连接起来;并注明数量。
8、扇形统计图:(1)用整个圆的面积表示总数;用扇形面积表示各部分所占总数的百分数。
(2)优点:很清楚地表示出各部分同总数之间的关系。
(3)制扇形统计图的一般步骤:a)先算出各部分数量占总量的百分之几。
b)再算出表示各部分数量的扇形的圆心角度数。
c)取适当的半径画一个圆;并按照上面算出的圆心角的度数;在圆里画出各个扇形。
d)在每个扇形中标明所表示的各部分数量名称和所占的百分数;并用不同颜色或条纹把各个扇形区别开。
第五单元数学广角1、抽屉原理(一):把多于n个的物体放到n个抽屉里;则至少有一个抽屉里的东西不少于两件。
例如:把八个苹果任意地放进七个抽屉里;不论怎样放;至少有一个抽屉放有两个或两个以上的苹果。
这种现象叫着抽屉原理。
抽屉原理也被称为鸽巢原理。
2、抽屉原理(二):把多于m n(m乘以n)个的物体放到n个抽屉里;则至少有一个抽屉里有不少于m + 1的物体。
3、应用抽屉原理解题的步骤:第一步:分析题意:正确地判断什么是“东西”;什么是“抽屉”;也就是什么作“东西”;什么可作“抽屉”。
第二步:制造抽屉:这个是关键的一步;这一步就是如何设计抽屉。
根据题目条件和结论;结合有关的数学知识;抓住最基本的数量关系;设计和确定解决问题所需的抽屉及其个数;为使用抽屉铺平道路。
例如:从2、4、6、…、30这15个偶数中;任取9个数;证明其中一定有两个数之和是34。
分析与解答我们用题目中的15个偶数制造8个抽屉:此抽屉特点:凡是抽屉中有两个数的;都具有一个共同的特点:这两个数的和是34。
现从题目中的15个偶数中任取9个数;由抽屉原理(因为抽屉只有8个);必有两个数可以在同一个抽屉中(符合上述特点)。
由制造的抽屉的特点;这两个数的和是34。
第三步:运用抽屉原理:观察题意设条件;结合第二步;恰当应用各个原则或综合运用几个原则;以求问题之解决。
4、抽屉原理的计算公式:物体数÷抽屉数=商……余数至少数=商+15、摸2个同色球计算方法。
(1)要保证摸出两个同色的球;摸出的球的数量至少要比颜色数多1。