Picard存在和唯一性定理
4 数学小品 存在唯一性定理的条理版

3
刘维尔1809-1882
法国数学家。任巴黎大学等学校的数学分析和理论力学教授。 巴黎科学院院士。主要贡献在于1836年创办了著名的法文 杂志纯粹与应用数学杂志, 并连任四十年的主编。该杂志 刊登过许多著名数学家的优秀论文,如伽罗瓦关于群论的不 朽论文,该杂志对19世纪法国数学的发展起了重要的作用。 在微分方程发面,在边值问题方面,与斯图姆一起, 指出 某些微分方程的解可以通过求解相应的积分方程得到, 利 用发散级数求解的近似值等。
12
2
欧拉(Euler 1707-1783)
• 瑞士数学家。出身牧师家庭,自幼受父亲教育。 13岁入巴塞尔大学,16岁获硕士学位。他上大学 时受到约翰伯努利得特别指导,后专心数学研 究,19岁开始创作数学文章,一举获得巴黎科学 院奖金。 1727年由丹尼尔伯努利举荐,到圣彼得 堡科学院工作。1733年接替丹尼尔伯努利任数学 教授。他是数学史上最多产的数学家, 论著几乎 涉及当时所有的数学分支。他创用或提倡使用了 大量的数学符号,得到许多重要的公式、定理和 常数值。除创建纯粹数学理论外,他欢迎用这些 数学工具去解决天文、物理、力学等方面的实际 问题,取得巨大成果。
2
故事是这样的:历史处在致力于求通解的时代。 有一天Riccati教授对大家说:“下面形式的微 分方程,可以通过引入新的变元,用初等积分 积分法求得其通解:
定理 2.3 设里卡蒂方程 dy 2 m + ay = bx , a ≠ 0, b, m是常数。 dx 设x ≠ 0, y ≠ 0, 则当 − 4k − 4k m = 0, 2, , − , k = 1,2L 2k + 1 2k - 1 时方程可通过适当的变 换化为变量分离方程 .
存在和唯一性定理的发展 存在和唯一性定理的发展 超浓缩, 超精华
压缩映射原理及其应用

§6 压缩映射原理及其应用
Banach空间的压缩映射原理是完备度量空间概念 的应用,它有助于证明微分方程、代数方程、积分 方程等问题中许多关于存在唯一性的定理。 定义1 设X是度量空间,T是X到X中的映射,如果存 ,0<<1,使得对所有的x,y∈X,成立 在一个数 d(Tx,Ty)≤ d(x,y), (1) 则称T是压缩映射。 压缩映射在几何上的意思是说点x和y经T映射后, < 它们像的距离缩短了,不超过d(x,y)的 倍( 1)。
d x m+1,xm d Txm , Txm1 d x m,xm1
d Txm1,Txm2 2d xm-1,xm2
md x1,x0
(2)
由三点不等式,当n>m时,
。 。
d xm , xn d xm , xm 1 d xm 1 , xm 2 d xn _1 , xn
1 f x, x 。按照定理条件,f x, y M
a x b, -∞<y<∞
现证A是压缩映射。任取 1,2 C a, b ,根据微分中值定理,存 在0< <1,满足 A2 x A1 x = =
2 x
2 x 1 x
1
(4)式给出了用逼近解x的误差估计式。
,则有0<<1,且
A 2 x A1 x 2 x 1 x
d A2 , A1 d 2 ,1 。
存在唯一性定理

注: 每一个 n 阶线性微分方程可化为 n 个一阶线性 微分方程构成的方程组, 反之却不成立. 如:
1 0 方程组 x x , 0 1
不能化为一个二阶微分方程.
x 5 y 7 x 6 y e t 例 将初值问题 y 2 y 13 y 15 x cos t x ( 0 ) 1 , x ( 0 ) 0 , y ( 0 ) 0 , y ( 0 ) 1
则(5.6)可化为一阶线性微分方
程组的初值问题:
x A( t )x f ( t ) . x( t0 ) η
(5.6)与(5.7)两者关系:
若已知 (t )是(5.6)的解, 则作向量函数
1 ( t ) ( t ) 2 ( t ) ( t ) φ( t ) , ( n1) ( t ) n ( t )
其中已知函数aij ( t ) 、f i ( t ) C [a , b], ( i , j 1,2, , n)
(5.1)
满足(5.1)每一个方程的一组函数 x1 ( t ), x2 ( t ) , xn ( t )
称为(5.1)的一个解.
设函数组 xi (t ) C[a, b], (i 1,2,, n), 且有:
故向量 u( t ) 是所给初值问题的解.
5. n 阶线性微分方程可化为一阶线性微分方程组 n阶线性微分方程的初值问题 x ( n ) a1 ( t ) x ( n1) an1 ( t ) x an ( t ) x f ( t ) , ( n1) x ( t ) , x ( t ) , , x ( t0 ) n 0 1 0 2 引进代换 x1 x , x2 x, x3 x ,, xn x ( n1) ,
2.2解的存在唯一性定理

常微分方程
绵阳师范学院
下面分五个命题来证明定理,为此先给出 下面分五个命题来证明定理 为此先给出 积分方程 如果一个数学关系式中含有定积分符号且在定积分符 号下含有未知函数, 则称这样的关系式为积分方程. 号下含有未知函数 则称这样的关系式为积分方程
如 : y = e + ∫ y( t )dt , 就是一个简单的积分方程 .
0
x
≤ L ∫ n (ξ ) n 1 (ξ ) dξ
x0
x
MLn ≤ n!
MLn n (ξ x0 ) dξ = ( x x0 ) n +1 , ∫x0 (n + 1)!
x
17
常微分方程
绵阳师范学院
于是由数学归纳法得知,对所有正整数 有 于是由数学归纳法得知 对所有正整数n,有 对所有正整数
则 (x, y)在 上 于 满 Lipschitz条 . f R 关 y 足 件 f (x, y1) f (x, y2 ) = f y (x, y2 +θ ( y1 y2 )) y1 y2 ≤ L y1 y2
2
常微分方程
绵阳师范学院
b (2) 定理中h = min{a , }的几何意义 M 在矩形R中有 f ( x , y ) ≤ M ,
故初值问题(2.1)的解曲线的斜率必介于 M 与M 之间,
过点( x0 , y0 )分别作斜率为 M 和M的直线,
b 当M ≤ 时(如图(a ) a 所示 ), 解y = ( x )在 x0 a ≤ x ≤ x0 + a 中有定义;
3
常微分方程
绵阳师范学院
b 而当M > 时(如图(b)所示), 不能保证解y = ( x )在 a x0 a ≤ x ≤ x0 + a中有定义;它有可能在区间内跑到矩形 b b R外去, 使得无意义, 只有当x0 ≤ x ≤ x0 + 时, 才能保 M M 证解y = ( x )在R内.
Banach空间中常微分方程解的存在与唯一性定理

Banach空间中常微分方程解的存在唯一性定理總婷婷(XX帅X学院数学与鋭计学院,XX,XX,741000)描要:在Banach空同中,常械分方程解的存在唯一性定理中力=},初值冋題的解y(f)的变量『在t o-h<t<t o+ht变化,把f的变化X围扩大为心%「5+%, 为此给出f变化X围后的Banach 空间中常做分方程解的存在唯一性定理,并对定理给予明确的证明.关维词:存在唯一;常撤分方程;数学IJ3细袪;皮卡逐步II近法\ Banach空间引言常撤分方程解的存在唯一性定理明确地肯定了在一定条件下方程的解的存在性和唯一性,它是常ta分方程理论中最基本且实用的定理,有其重大的理论怠义,另一方面,它也是近做求解法的前提和理论基硝.对于人们裁知的Banach空同中常撤分方程解的存在唯一性定理,解的存在区同较小,只限制在一个小的球形邻裁内,(球形邻域的半径若为5, U需满足Ld<\,且辭只在以儿为中心以5为半径的冈球B t5(y0) = (yeX|||y-y0||<J)存在唯一,其中X是Banach空间)因此在应用过程中受到了一定的眼制.如今我们尝试扩大了解的存在XIJ.U而使此重要的定理今后有更加广泛的应用.1预备定理我们给岀Banach空同中常做分方程解的存在唯一性定理如下设X是Banach空同,UuX是一f开集.f :U i X上关干 >,满足利普希茨(Lipschitz)条件,即存在常数厶>0,使得不等式]/(/, ”)- /(/, y2)|| <厶卜】一儿||,对于所有y^y2eu部成立.® y.eU ,在u内,以儿为中心作一个半径为“的冈球3心())=© eX|||y-儿||詡’对所有的y e B b(y0)都成立,且有,取h = min{%,%^},则存在唯一的C、曲线y(t),使得在r0-h<t< t0+h上满足y w B h(y0), 并有y' = /(/,y),y(G)=)b・2结果与证明笔者通il改进对力的限歟即仅取〃 = %/,硕备定理仍然成立,从而使定理的应用进一步广泛.2.1改进条件后的定理定理假设条件同上预备定理,设初值为仇,儿),则存在唯一的C、曲线y(『),对任恿的G 一%/ ° "u + %r满足y €场(儿),且使得V = /(/, y) , Wo)=儿.显然可有% —〃,心 + 幻 U〔5 - ,心 + % ],目"min{%,%} •2.2定理舸证明证明证明过程中我们利用皮卡(Picard)逐步逼近法•为了简单起见,只就区同对干区间t.<t<t.+y M的讨论完全一样.2.2.1定理证明的思想现在先简单叙述一下运用皮卡逐步逼近法证明的壬要思想.首先证明条件 H), xu=y0等价于求枳分方程y(Q = %+j\/a,y)〃•⑴再证明积分方程的解的存在唯一性.任取一个儿⑴为连续函数,将它代人方程⑴的右常,可得到函数卩⑴=y(> +J;./■(/,%)〃/,显然,儿⑴也为连续函数•若x⑴=y o(0,1可知y()⑴就是方程⑴的解•若不然,我ill a把川)代人枳分方程⑴的右竭m,y),可得到函数儿⑴=儿+J;“/(/')〉)/•若y2(0 = >'i(0 JO可知莎⑴就是方程(1)的解•若不然,我们如此下去,可作连续函红儿(/) = + j* :>/(/,y”-i M ・(2)这算就得到连续函数列儿(0,”(/),儿⑴,…,儿⑴,…若畑⑴=儿⑴,那么儿⑴就是枳分方程的解,如果始终不发生眩种悄猊,我们可以证明上面的函数序列有一个极眼函数y(t), fill liin y…(t) = y(f)存在,因而对(2)式两jfi取枚限时,就得到巴y n(0 = y0 + lim J :/(f,y…_,)dt = y0+J ;o lim/(r,儿“)/ =儿 + J ;o/(r,y)dt, 即y(0 = y0 + J;/(心)力謔就是说M)是枳分方程的解•在定理的假设条件下,以上的步骤是可以实现的.2.2.2定理iil明的步骤下面我门分五个命题来证明定理.金題1设y = y(r)是y'5,y)的定义于区同心%““上,满足初值条件〉仇)=儿(3)的解厲y = y(r)是枳分方程W)=儿+ 定义于心一夕缶上的连续解,反之亦衆证明因为y = y(0是方程y' = /(/, y)的解,故有竽5,刃.at对上式两fflU/o到「取定枳分得到W) - W())= J ;> /(/,y W ‘ 5 - % o()‘把(3)式代入上式,即有y(f) = >o+J 财(人曲5-%;"")•⑷因此,y = XO是(4)的定义于上的连续解.反之,如果y = y(f)是⑷的连续解,)心)=儿+J: <t<t0.fit分之,得到弊局)•ata把心心代人⑷式,得到y(G =儿,S此,y = y(r)是方程 H)的定义于区间且満足初值条件(3)的解.金题1込毕.现在取y。
第3章_第1节_解的局部存在唯一性定理(续)

(1)
–1
当 y0 0, 1时, 所给方程过点( x0 , y0 ) 的解(积分曲线)是 y( x ) x 1 y0 y ln y dy x0dx
由被积函数,知
积分
y0 y( x ) 0
y( x ) x 1 dy dx , 得 x0 y ln y
y0
ln ln y( x ) ln ln y0 x x0
证 f y ( x , y )在D上连续, 必有界
dy f ( x, y) (1) dx y( x0 ) y0
常数 L 0, 使
f y ( x , y) L (( x , y) D )
从而 ( x , y1 ),( x , y2 ) D,
(介于y1与y2之间), 使
f ( x , y )在D上关于y 满足 Lipschitz 条件
反例: 取 f ( x , y) y,
( x , y) D {( x , y) x x0 a, y 0 b}
( x , y1 ),( x , y2 ) D
f ( x , y2 ) f ( x , y1 ) y2 y1 y2 y1
L1
即 f ( x, y) y 在D上关于y 满足 Lipschitz条件
但点( x ,0)( D )处,f y ( x , y) 不存在
f y ( x , y )在D上不连续.
的条件(2).
上述关系表明:推论1中的条件(2)强于定理1
2. 可将定理1中的有界闭矩形区域 D 推广;
若 f ( x , y) 在闭带形区域: 推论2 D {( x , y) x , y }
第1节 解的局部存在唯一性定理

1 ( x ) y0 y0
x
x0 x
f [ x , 0 ( x )]dx f ( x , y0 )dx
x0
在I上连续,且 当 x I时,有
1 ( x ) y0
x0 f ( x, y0 ) dx x0
x
x
f ( x , y0 ) dx
x0 M dx
即
y0 M x x0 ( x ) y0 M x x0
这意味着: x I时, y ( x )必介于两直线: 当 L1 : y y0 M ( x x0 )
与
L2 :
y y0 M ( x x0 )
所夹的两个阴影区域中.
b b (1) 当 a 时,即 M 时 a M
b 当M 时 a y = (x)不可能从D的
上下边界越出D, 故
y0 b
y
(k
b ) a
当 x [ x0 a, x0 a]时, 曲线 y = (x)完全落
在 f (x, y ) 的定义域
y0
( x0 , y0 )
L2
y = (x)
y0 b
L1
x0 a
x0
D中. 故此时可取
考虑级数:
0 ( x ) [ k ( x ) k 1 ( x )]
k 1
( x I ) (5)
其部分和: n1 ( x ) 0 ( x ) [ 1 ( x ) 0 ( x )] S
[ n ( x ) n1 ( x )] n ( x) (x I)
b h min( a, ) M
4. 定理1的证明思路 (1) 解的存在性 (2) 解的唯一性 (分四步进行证明)
一阶微分方程解存在唯一性定理Picard定理及其证明

3.1 一阶微分方程存在唯一性定理(Existence and Uniqueness Theorem ofInitial Value Problem of ODE )[教学内容] 1. 上一章内容小结和习题课; 2.介绍研究初值问题解的存在唯一性定理必要性; 3. 介绍柯西解的存在唯一性定理和Picard定理; 4. 介绍定理的证明.[教学重难点] 重点是知道并会运用微分方程初值问题的解的存在唯一性定理,难点是如何引入了解定理的证明思路和过程[教学方法] 自学1、2、3;讲授4、5课堂练习[考核目标]1.知道一阶微分方程的类型及其解法;2. 知道Lipshitz条件和解的存在唯一性定理(柯西版本和Picard版本);3. 知道Picard定理的证明思路和过程;4. 会用Picard函数序列给出微分方程初值问题的近似函数解.5. 了解和掌握Graonwall积分不等式.1. 一阶微分方程类型及其初等解法小结(1)认识一阶微分方程:一阶线性方程(交换x,y或Bernoulli方程及其他可通过引入变量替换化为一阶线性方程的)、一阶可分离变量型方程(齐次方程以及其他可化为可分离变量型的)、一阶对称形式的恰当方程(通过引入积分因子可化为恰当方程的方程)一阶隐方程(可解出x或y的类型,以及x, y, y’只含有其中两个的方程类型)(2)解法常数变易公式、Bernoulli方程的变量替换分离变量方法、齐次方程的变量替换恰当方程的解法、积分因子的求法隐方程的求导法和参数法(3)例题上述提到的方程类型各举出一个例子来,并用上面的方法来求解,允许一题多解.(4)介绍一些可以化为微分方程来求解的函数方程和积分方程(参见上节讲义).(5)预告:下周二上午第一节课进行上一章测试,请相互转告.2. 必要准备:数学中的进化论生物上,比如水稻品种一代一代通过基因重组往高产优质方向优化,还有如下图片.在数学上也有类似的进化过程,下面就说一说.(1)考察三次代数方程 x 3+4x-2 0. 该方程没有有理根. 该方程只有唯一实根且落在[0,1]. 下面有两种思路来找到该方程的根.思路一:运用连续函数的零点定理, 记1] [0,]b ,[a 11=表示第一代;将]b ,[a 11平分为两个子区间,取满足如下条件0)f(b )f(a i i ≤⋅子区间作为第二代,即]21 [0,]b ,[a 22=;将]b ,[a 22平分为两个子区间,取满足如下条件0)f(b )f(a i i ≤⋅子区间作为第三代,即]21 ,41[]b ,[a 33=;将]b ,[a 33平分为两个子区间,取满足如下条件0)f(b )f(a i i ≤⋅子区间作为第四代,即]21 ,81[]b ,[a 44=;... ... 这样下去,]b ,[a n n 越来越接近方程的根 x ≈ 0.473466,其中误差就是|a b |n n -.思路二:运用教材P89习题9的结论和证明过程,改写方程为x 42x -3=+,记42x f(x)3+-= 则方程就是f(x)x =,方程的根也就是函数f(x)的不动点. 可以验证f(x)满足教材P89习题9的条件(自行验证),于是方程的根存在且唯一,下面就用进化的思想来寻找方程的根.选取第一代1x 1=(这里可以选其他实数);经过进化机制(用f(x)作用一下)得到第二代25.0)f(x x 12==;再经过进化机制(用f(x)作用一下)得到第三代496094.0)f(x x 23≈=;再经过进化机制(用f(x)作用一下)得到第四代469477.0)f(x x 34≈=;再经过进化机制(用f(x)作用一下)得到第五代474131.0)f(x x 45≈=;再经过进化机制(用f(x)作用一下)得到第六代473354.0)f(x x 56≈=;... ... n x 越来越接近方程的根 x ≈ 0.473466.打个比方,把方程的根比作我们想要的某种属性的对象,我们可以通过迭代(进化)过程来把它造出来或找出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Picard存在和唯一性定理
本节利用逐次逼近法,来证明微分方程
(2.1> 地初值问题
(2.2> 地解地存在与唯一性定理.
定理2.2 (存在与唯一性定理>如果方程(2.1>地右端函数在闭
矩形域
上满足如下条件:
(1> 在R上连续。
(2> 在R上关于变量y满足李普希兹(Lipschitz>条件,即存在常数N,使对于R上任何一对点和有不等式:b5E2RGbCAP
则初值问题(2.2>在区间上存在唯一解
其中
在证明定理之前,我们先对定理地条件与结论作些说明:
1. 在实际应用时,李普希兹条件地检验是比较费事地.然而,我们能
够用一个较强地,但却易于验证地条件来代替它.即如果函数在闭
矩形域R上关于y地偏导数存在并有界,.则李普希兹条件成立,事实上,由拉格朗日中值定理有
其中满足,从而.如果在R上连续,它在R上当然就满足李普希兹条件.<这也是当年Cauchy证明地结果)p1EanqFDPw
2.可以证明,如果偏导数在R上存在但是无界,则Lipschitz条件一定不满足,但是Lipschitz条件满足,偏导数不一定存在,如.DXDiTa9E3d
3.现对定理中地数h0做些解释.从几何直观上,初值问题(2.2>可能呈现
如图2-5所示地情况. 这时,过点地积
图2-5
分曲线当或时,其中,,
到达R地上边界或下边界.于是,当
时,曲线便可能没有定义.由此可见,初值问题(2.2>地解未必在整个区间上存在. 由于定理假定在R上连续,从而存在
于是,如果从点引两条斜率分别等于M和-M地直线,则积分
曲线(如果存在地话>必被限制在图2-6地带阴影地两个区域内,因此,只要我们取
则过点地积分曲线(如果存在地话>当x在区间上变化
时,必位于R之中.RTCrpUDGiT
图 2-6
存在性地证明求解初值问题<2.2)求解积分方程<2.3).
因此,只要证明积分方程(2.3>地连续解在上存在而且唯一就行了. 下面用毕卡(Picard>逐次逼近来证明积分方程(2.3>地连续解地存在性,可分三个步骤进行:
1.构造逐次近似序列.5PCzVD7HxA
近似序列或写成
地每一项都在上有定义,这是因为
于是.这样,我们在
区间上,按逐次逼近手续得到了一个连续函数列(近似序列>jLBHrnAILg
2. 证明近似序列在区间上一致收敛.
“函数序列地一致收敛
1.设<1)
是定义在I上地函数序列,若对,数列
收敛,则称为序列<1)地收敛点.收敛点地全体叫收敛域.
在收敛域上每一点,序列<1)都有极限,这极限形成收敛域上地
一个函数,称为极限函数.设此函数为,即
2.若对,总存在一个只与有关地自然数N,使得对I上任何一点
,当时,有,则称序列<1)在I上一致收
敛.xHAQX74J0X
证明分如下二步:
<1)序列在上一致收敛级数<2.7)在
上一致收敛<级数).因为级数
<2.7)地部分和
LDAYtRyKfE
“函数项级数地一致收敛1.设函数项级数
<1)
在区间I上收敛于和函数,即对,
数项级数收敛于,或级数<1)地部分和所组成地数列
=
由数列极限定义,对,,使得时,有
2.级数<1)在I上一致收敛对,,
使得对,当时,有.
3.若函数项级数<1)地每一项都在I上连续,并且在I上一致收敛,则<1)地和函数在I上连续.Zzz6ZB2Ltk
<2)级数<2.7)在上一致收敛.用数学归纳法,易证级数<2.7)从第二项开始,每一项绝对值都小
于正项级数地对应项,而上面这个正项级数显然是收敛地.所以,由优级数判别法,dvzfvkwMI1
“函数项级数地一致收敛判别法<魏尔斯特拉斯优级数判别法)函数项级数
<1)若函数项级数<1)在区间I上满足
< I );
< II )正项级数收敛.
则函数项级数<1)在区间I上一致收敛.
数项级数收敛地判别法<比值判别法,达朗贝尔<)判别法)
若正项级数地后项与前项地比值地极限等于:
则当时级数收敛,时<或)时级数发散;时级数可能收敛,也可能发散.rqyn14ZNXI
级数(2.7>在区间上不仅收敛,而且一致收敛.设其和函
数为,从而近似序列在区间上一致收敛于.
由于在区间上连续,因而也是连续地.
3.证明是积分方程(2.3>地解,从而也是初值问题(2.2>地解. 在n次近似序列<2.6)两端取极限有
因为EmxvxOtOco
所以要证明是积分方程<2.3)地解,即
成立,只需证明
这是由函数地连续性及Picard
序列地一致收敛性质保证地.SixE2yXPq5
下面用“ε-N语言”证明上面地极限成立.我们先利用李普希兹条件,作下面地估计:
由于序列在区间上一致收敛,因此,对任给ε>0,存在自然数,当时,对区间
上所有x恒有从而
由此推得
换句话说,我们得到现在对恒
等式(2.6>两端取极限,
就得到此即表明函数是(2.3>地解.至此定理地存在性部分证毕.6ewMyirQFL
2.2.3 唯一性地证明,区别于北大版课本地另一种证明方法:
下面来证明解地唯一性.为此我们先介绍一个在微分方程中很有用地不等式,即贝尔曼(Bellman>不等式.
贝尔曼引理设y(x>为区间上非负地连续函数,.若存
在使得y(x>满足不等式
(2.9>
则有证明先证明地情形.
令,于是从(2,9>式立即有
上式两端同乘以因子,则有
kavU42VRUs
上式两端从x0到x积分,则有
即
由(2.9>知,,从而由上式得到
地情形类似可证,引理证毕. y6v3ALoS89积分方程(2.3>解地唯一性证明,采用反证法.
假设积分方程(2.3>除了解之外,还另外有解,我们下面要
证明:在上,必有.
事实上,因为
及
将这两个恒等式作差,并利用李普希兹条件来估值,有
令,从而由贝尔曼引理可知,在上有
,即.
至此,初值问题(2.2>解地存在性与唯一性全部证完.M2ub6vSTnP
由定理 2.2知李普希兹条件是保证初值问题解唯一地充分条件,那么这个条件是否是必要地呢?下面地例子回答了这个问题. 0YujCfmUCw
例 1 试证方程
经过xoy平面上任一点地解都是唯一地. 证明右端函数除x轴外地上、下平面都满足定理2.2地条件,因此对于x轴外任何点,该方程满足地解都存在且唯一. 于是,只有对于x轴上地点,还需
要讨论其过这样点地解地唯一性.
我们注意到y = 0为方程地解. 当y ≠0时,因为
故可得通解为为上半平面地通解, 为下半平面地通解.eUts8ZQVRd
这些解不可能y = 0相交. 因此,对于轴上地点,只有y = 0通过,从而保证了初值解地唯一性.
但是,
因为故不可能存在使得
sQsAEJkW5T 从而方程右端函数在y = 0地任何邻域上并不满足李普希兹条件,这个例子说明李普希兹条件不是保证初值解唯一地必要条件. GMsIasNXkA 为了保证方程(2.1>地初值解地唯一性,有着比李普希兹条件更弱地条件<Osgood条件).直到现在,唯一性问题仍是一个值得研究地课题.
下面地例子表明:如果仅有方程(2.1>地右端函数f(x, y>在R上连续,不能保证任何初值问题(2.2>地解是唯一地. 但是由 Piano 存在定理知解是存在地.TIrRGchYzg
例 2 讨论方程
解地唯一性.
解方程地右端函数,在全平面连续,当时,用分离
变量法可求得通解,C为任意常数.
又y = 0也是方程地一个特解,积分曲线如图2-7.7EqZcWLZNX
个人收集整理资料,仅供交流学习,勿作商业用途
图2-7 从图上可以看出,上半平面和下半平面上地解都是唯一地,只有通过
x轴上任一点地积分曲线不是唯一地,记过该点地解为, 它可表为:对任意满足地a和b.lzq7IGf02E。