80MW机组空冷岛系统冬季防冻措施
冬季空冷岛防冻措施及基本概念

冬季空冷岛防冻措施及基本概念冬季空冷岛防冻措施及基本概念冬季空冷岛防冻措施及基本概念一、直接空冷抽汽供热机组冬季防冻的概念1.防冻保护措施的目的:为了防止冬季运行时空冷系统过冷或冰,避免翅片管束内结冰,杜绝管束冻结损坏设备;2.防冻期:当环境温度低于+2℃时,从严格意义上空冷系统已进入冬季运行期。
机组在遇有启动和停机操作时,必须提前了解并监视环境气象条件的变化,机组在冬季运行期间,汽轮机的背压控制值以两个低压缸背压较低值进行控制;3.凝结水过冷度:根据直接空冷系统冬季运行的特点,与原有的(湿冷机组)凝结水“过冷度”概念不同,直接空冷凝结水过冷度定义为:汽轮机低压缸排汽压力对应的饱和温度与各列下联箱的凝结水平均温度的差值。
在冬季防冻期间,过冷度作为重要参数进行监控;4.供热期机组负荷:因供热期抽汽供热量较大,而随着环境温度的下降,供热抽汽量增大的同时空冷岛防冻工作将更加严峻,所以在供热期机组负荷将以汽轮机进汽量参考,例如:70%额定负荷(231MW)应以额定主蒸汽量的70%来参考,即710T/h,以此来进行供热、防冻的参考基本依据。
5.空冷岛进汽量:凝结水流量与排汽装置补水流量之差即为空冷岛进汽量,或直接参考空冷岛凝结水回水流量。
6.管束弹性变形:指换热管束发生弯曲变形,经过调整管束可以自由恢复;7.管束变形:指管束发生永久弯曲,已无法恢复。
此种情况原因较多,主要原因是空冷岛设计、安装过程中存在不合理,导致个别管束膨胀、收缩受阻或通流面积不够造成,运行中加强测温工作,及时提前发现后作为重点监视调整对象,利用运行调节手段控制管束表面温度,降低管束温差减少管束变形概率;8.换热面过冷:指空冷换热管束外表面温度低于排汽温度,但还在0℃以上。
此时预示着管束冰冻前兆,若不及时采取措施,管束将很快发生冰冻;9.管束冰冻:指空冷换热管束外表面温度低于0℃,此时换热管束内部已经发生结冰现象,积冰没有阻断管束通流面。
80MW空冷岛翅片管泄露部位的检修和冬季防冻、夏季降温改造的方案

关于空冷岛翅片管泄漏部位的维修和冬季防冻、夏季降温的改造电站总装机容量80*2MW,地处中亚缺水地区,冬季最低温度-40℃,夏季最高温度42-45℃。
配套两套GEA的直接空冷式凝汽器(下简称空冷岛)。
设备概况1、设计参数设计流量: 225023.6X1.06 kg/h空冷器入口压力: 0,3 bar abs汽轮机出口压力 : 0,295 bar abs环境温度: 39 °C海拔高度: 300m焓值: 2624.6kJ/kg最小蒸汽流量 : 27000 Kg/h@ -45°C and 0,3 bar abs2、布置空冷器由如下设备互相连接组成:三个屋顶12个单元包括:72台管束、12套风机、其中2侧的屋顶配有电动隔离阀、1个中间的屋顶配有百叶窗(并配有全逆流系统);三个76”的蒸汽汇流管、一个126”的排汽母管、两个60”的全逆流蒸汽管道目前两台机组的空冷岛系统中存在两大难题:一、大部分翅片组的翅片管因为冬季结冰冻结造成泄露,其中第1、2、3层的管道损坏数量最多;二、夏季气温高,空冷岛系统换热能力降低等问题。
对于问题一,在面临冬季即将到来的情况下,为满足现有空冷岛系统冬季的安全运行,我们建议尽快进行临时性抢修,可利用微正压的方法检测空冷岛翅片管泄漏的部位,措施如下:查漏1、机组停止,盘车连续正常运行;2、破坏机组排汽系统的真空后,关闭真空破坏阀;3、空冷岛风机全部停运,空冷岛系统的进汽蝶阀可以根据查漏顺序逐个打开或关闭;4、保持轴封加热器的风机运行,可适当降低轴封供汽压力,避免轴封漏汽进入汽机轴承,5、手动调整空冷岛系统旁路暖机减温减压器,向排汽空冷岛系统供汽;6、控制供汽压力≤10kpa,温度100℃(压力和温度可根据现场实际情况调整);7、全开后缸喷水装置,防止后汽缸超温;8、排气管道压力温度达到上述参数要求后,适当增加流量;9、就地检查空冷岛各单元及排汽管道、蒸汽分配管,特别翅片管下部,观察有无水汽冒出;10、根据漏水漏汽情况确定漏点位置;查漏时的注意事项1、必须保证盘车连续运行,严密监视偏心、盘车电流的变化,2、每10分钟记录一次汽轮机缸温、胀差、膨胀等主要参数,发现任何一项出现异常变化,应立即停止操作,恢复原运行方式,3、就地检查测量主排汽管道膨胀节的膨胀情况,防止造成设备损坏,4、严格控制进入空冷岛的蒸汽参数,不能超过空冷和汽机厂家提供最高限制参数,5、将查出的漏点做好准确的记录,以备检修处理。
空冷机组冬季运行注意事项及防冻措施

空冷机组冬季运行注意事项及防冻措施摘要:本文首先分析了空冷机组冻结成因,接着分析了空冷机组冬季运行防冻措施,最后对空冷机组冬季运行注意事项进行了探讨。
希望能够为相关人员提供有益的参考和借鉴。
关键词:空冷机组;冬季运行;注意事项;防冻措施;注意事项引言空冷散热器直接在大气环境中工作,由于冬季采暖负荷增加,需要冷却的蒸汽流量变少,此时风机处于接近停机状态,空冷平台的温度分布及其不均,容易造成停机事故的发生。
散热器表面的污垢增大了散热器冷却空气流通阻力,使冷却风量减小,并增加了换热热阻使传热性能下降。
直接空冷系统春、夏、秋、冬运行工况变化很大,且北方地区冬、夏两季环境温度差高达70℃,为了防止冷却器冻损事故,冬季大部分电厂人为将机组排汽背压控制在18~20kPa,排汽温度高达60℃左右,使机组热耗和煤耗大幅增加,严重影响了全厂运行经济性。
因此,如何在保证安全防冻的前提下,提高冬季直接空冷系统的冷却效果,成为亟待解决的问题。
1空冷机组冻结成因1.1环境温度过低。
在通风量一定的情况下,空冷凝汽器的散热量主要由环境温度决定。
实际运行中,空气经过风机后通过翅片间隙,带走母管内蒸汽凝结释放的热量。
使得管束内蒸汽和翅片管外的冷空气进行对流换热。
当冬季环境温度较低时,单位质量空气的冷却能力增加,蒸汽可能在下降管上半部分已经冷凝,下半部分则完全是冷凝水。
当凝结水向下流动时,会继续被管外空气冷却,导致凝结水过冷度增加。
翅片管中冷凝水可能会发生冻结,导致蒸汽在管束中停滞。
此外,由于冷凝水温度较低,下联箱也可能出现冻结。
1.2蒸汽流量分配不均。
空冷凝汽器运行过程中会出现热、汽流量分布不均的现象。
从理论上讲,汽轮机排汽应该均匀分布到各个管束。
但由于设计、制造、安装、风冷风机运行方式、环境温度、风速等因素的影响,导致蒸汽流量分布出现不均。
特别是在机组低负荷运行时,流量偏差可达5%。
随着进入空冷岛的蒸汽流量的减小,蒸汽流量分配逐渐增大。
空冷防冬措施

机组正常运行空冷防冻调整一.严密监视空冷凝汽器各列凝结水温度,应控制在35℃以上并保证其系统过冷度在3-5℃之间二.严密监视空冷凝汽器各列逆流区抽气温度并控制在15℃以上运行三.正常运行中凝结水的过冷度应控制在正常范围内空冷系统系统聚集的空气或环境温度越低、进汽负荷越小的情况下凝结水过冷度越大。
此时越容易造成局部系统冻结。
可采用增加负荷、提高机组运行背压、通过设减小风机出力或直接停运相应列的风机进行调整以减小凝结水的过冷却度。
四.空冷风机转速调整遵循“多转低频、整体调整”的原则。
减负荷时,根据背压,对空冷风机普遍降转速进行调整背压10.5KPa左右,控制范围不超过±0.5KPa。
风机转速均降至15Hz后,凝水温度(>35℃)、抽真空温度(>15℃)低于规定值时,可根据背压控制范围情况停止列1、列8风机运行。
停止顺序先停顺流后停逆流,先停两边后停中间。
停止过程中不能太快,以防停止风机较快较多,造成蒸汽在分配管分配突然出现较大扰动。
停运风机时,尽量按排对称进行,禁止对单列风机进行整体停运.如停止列1、列8风机后仍不能控制凝水温度,可根据情况,按排对称停止每列1、7排风机运行。
也可根据情况直接按排停止风机运行。
当负荷升高时,缓慢启动列1、列8风机运行,启动过程同样要缓慢进行,启动顺序与停止顺序相反调整时尽量根据情况缓慢进行,避免局部风机调整过快,使汽流紊乱,造成背压不能控制,甚至局部空冷单元结冻。
列1、列8风机运行正常后根据背压情况适当普遍增加风机转速五.我厂每列顺流单元#1、7空冷风机单元下联箱设有凝水温度监视点。
逆流单元#2、6空冷风机下联箱与顺流单元结合处设有凝水温度监视点,逆流管束顶部抽真空管设温度监视点。
顺流单元#3、4、5空冷风机单元下联箱处没有设凝水温度监视点。
因此当机组低负荷长时间运行,避免造成#3、4、5排风机单元过冷甚至结冻应定期按排对#3、4、5排风机进行轮换运行,切换调整时,尽量逐台风机缓慢进行。
空冷防冻措施

空冷防冻措施
1.监盘人员密切监视空冷岛各列凝结水温度、抽汽温度。
发现凝结
水温度、抽汽温度持续降低应手动降低该列风机的转速,使其温度恢复,凝结水温度、抽汽温度不得低于25℃。
2.空冷风机保持自动方式运行,使其防冻保护自行动作,如动作异
常应联系热工处理。
必要时可退出自动,手动调整,逆流列风机应每2小时倒转10分钟。
3.夜间负荷较低并且环境温度低于-10℃时,可适当提高机组背压
(10kPa)。
4.在同列中避免出现某一风机频率过高长期运行。
5.定期空冷岛各列翅片及凝结水联箱就地测温,要求各值每班不少
于2次,要在就地操表,发现温度低的部位应立即联系监盘人员调整,调整后要注意检查调整效果。
6.注意检查空冷岛各仪表管、阀门的伴热投入,温度正常。
7.检查时将每列人行道的门关闭,减少风在各单元之间的流动。
8.加强对除氧装置、排汽装置的补水量及水位的监视,发现除氧装
置、排汽装置水位下降,补水量异常增大时,应分析空冷凝汽器以及凝结水管道是否冻结。
9.环境温度低于-15℃时,可根据负荷及真空情况隔离一列空冷进汽,
联系沈磊。
(隔离后要就地检测隔离空冷进汽门后温度,以防隔离门不严)现#1机60列蒸汽隔离阀管道变形,#2机60列蒸汽隔
离不严,#2机50列蒸汽隔离阀伴热带无法投运,这三列不要退出。
2010-12-7。
发电部空冷岛防冻措施(终稿)

空冷机组空冷防冻措施(一)、空冷岛启动前操作:齿轮箱防冻:齿轮箱润滑油电加热应能正常投入(油温低于5℃时应能自动加热,达到15℃时应能自动关闭)。
试运期间启动空冷风机前运行人员应就地实测齿轮箱箱温度,并与集控所显示齿轮箱润滑油温度对照,两者应一致。
齿轮箱润滑油温度低于-15℃时禁止启动空冷风机在机组启动过程中,应先启逆流单元风机,后启顺流单元风机,停运时的操作反之,以确保凝结水自然流动畅通。
(二)、正常运行空冷防冻措施:1、空冷岛运行检查注意事项(1)、运行设专人对空冷岛进行防冻检查,每2小时上空冷岛进行检查一次,夜间检查由单元长陪同共同进行检查,检查方式:采用红外线点温仪及手感方式测温度。
空冷平台设防冻检查记录本,对指定部位的温度作好记录。
(2)、在运行方式上按照厂家提供的空冷顺序逻辑关系安排空冷岛的运行方式,某一列不能投入运行时,应将进汽隔离门关闭严密。
根据环境温度设定排汽背压,降低发生结冻得可能性。
环境温度-10℃,背压设定16 KPa。
环境温度-16℃,背压设定20 KPa。
环境温度-20℃以下,背压设定22-25 KPa。
(3)、监视记录空冷各参数、保护以及风机的动作情况,所有风机必须保证备用正常。
(4)、要加大负压系统的查漏工作,尽可能降低漏空气。
(5)、空冷防冻重点检查部位:1)各投运列顺流管束下部、逆流管束上部;重点检查部位为第三单元2片顺流管束下部及逆顺管束上部的温度;2)机组正常运行当中,应派专人用测温仪定期测量空冷凝汽器管束的外部温度,以每列1、5单元的步道侧管束下部及3单元的管束上部为检查重点,一但发现有冻管及管束弯曲现象及时反转风机回暖,若长时间不能解冻,则立即汇报并联系检修用保温棉被覆盖冰冻管束外面使其解冻。
3)各未投运列进汽隔离阀、凝结水阀、抽空气阀等阀门前后温度。
4)空气抽出管、凝结水管温度(6)、运行过程中如果发现管束温度低于零度,应及时汇报调总及值长,并采用启动一台真空泵及暂时停运风机等手段,使低于零度的管束温度上升到零度以上。
直接空冷机组冬季启停冻结问题及防范措施探讨

直接空冷机组冬季启停冻结问题及防范措施探讨和湿冷机组相比,高寒地区的直接空冷机组在启、停机过程中空冷凝汽器会发生大面积冻结、损坏等事故。
影响空冷凝汽器冻结的主要原因有:①环境条件;②空冷凝汽器的进汽量、进汽参数、进汽时间;③空冷风机运行方式的控制;④排汽参数的控制;⑤旁路系统的配合。
1 、冬季滑参数停机中运行参数的控制情况允许的条件下,要尽可能安排直接空冷机组在白天进行滑参数停机。
可利用相对高的环境气温和日照条件,有效地推迟和缓解空冷凝汽器内部结冰的进度,同时必须尽可能地减弱其内部结冰的程度,为机组启动创造良好的条件。
当环境温度降到2℃以下时,在空冷凝汽器管束中就有可能出现内部结冰的现象。
目前,直接空冷系统设计的温度监测点少,单从表计监视不能及时发现空冷凝汽器散热管束受冻。
实际经验表明,当表计显示出温度异常时,空冷凝汽器内部已发生大面积受冻。
所以运行中必须加强监视、调整和就地检查。
(1)、机组运行背压。
当环境温度越低时,根据空冷凝汽器防冻要求,需要的最小热量应越大。
机组负荷一定时,运行背压越高,排汽温度和排汽量越大,有利于防冻。
为了保证空冷凝汽器的安全,适当提高机组运行背压是非常必要的。
但是,必须限制汽轮机在对应工况下背压保护曲线的报警值以内。
(2)、各逆流式凝汽器真空抽气温度。
它是空冷凝汽器整体运行情况的反映,即使此温度比较高,也不能保证所有逆流管束的防冻安全。
运行中曾发现在环境温一15℃时,真空抽气温度高于40℃的情况下,空冷凝汽器逆流管束内部曾出现部分结冰现象。
(3)、加强就地检查。
运行中监视的参数是反映空冷凝汽器整体运行情况,不能反映局部冻结特征,而散热管束内部结冰是渐进形成的。
加强对空冷凝汽器散热管束表面温度的实测检查,可以及时掌握空冷凝汽器内部蒸汽分配以及局部冻结的情况。
(4)、凝结水收集联箱的表面实测温度。
直接空冷凝汽器采用一定的顺、逆流面积配置合理时(国电怀安热点有限公司为4:1),绝大多数蒸汽在顺流凝汽器中凝结成水,而逆流式凝汽器仅有少量的蒸汽,以便于最大限度地回收蒸汽。
浅谈寒冷地区空冷岛冬季防冻措施

2019年01月浅谈寒冷地区空冷岛冬季防冻措施惠润泽(神华榆林能源化工有限公司,陕西榆林719000)摘要:神华榆林能源化工有限公司位于榆林市大保当镇清水工业园区,公司LORU单元有两台由蒸汽轮机带动的压缩机,产品气压缩机和丙烯制冷压缩机。
两台压缩机为装置精馏系统提供必要的压力和冷量,压缩机是装置核心机组,确保机组正常运行至关重要。
关键词:空冷岛;防冻1空冷岛的使用背景随着我国工业发展的进程,工业用水越来越紧张,尤其是在我国西北、华北、东北等干旱和半干旱缺水地区。
如何减少工业用水已经成为一项亟待解决的问题。
传统大型石化装置压缩机蒸汽透平采用常规水冷的方式进行冷却。
随着工业用水越来越紧张的趋势,尤其是干旱和半干旱缺水地区,利用自然空气冷却代替常规水冷更显得尤为重要。
榆林位于中国西北地区,在陕西省的最北边,黄土高原和毛乌素沙漠的交界处,是典型的干旱缺水地区。
神华榆林能源化工有限公司就坐落于榆林市大保当镇清水工业园区内。
2空冷岛的组成空冷岛也叫直接空冷凝汽器,在化工领域中是使用较多的大型冷却设备。
空冷岛由蒸汽冷凝集液器,疏水膨胀箱,热井,复水系统,进汽管道,翅片管式换热器,风机单元,蒸汽分配管,凝结水收集系统,抽真空系统、排气系统,高压清洗系统、降温喷淋系统,旁路减温减压蒸汽补充系统,仪表、电气及控制系统和空冷平台,挡风墙及其支撑钢结构。
3空冷岛的结构布局(图:空冷A字型结构图)空冷岛的结构是典型的“A”字型结构。
由轴流风机,蒸汽分配管和凝结水管呈三角形斜顶式结构,外设挡风墙。
“A”字型结构可以减少电机和框架的数量,提高系统的可靠性,同时充分发挥顺流和逆流的管束效应和使用效率。
空冷岛有两列凝汽器,A—D和E—H共8台风机,风机转速变频可控。
其中B和F两台为逆流凝汽器,风机可反向操作,冬季时可反转为空冷岛回暖。
逆流凝汽器下部与凝结水收集管相连,上部与抽真空系统相连,其余6台为顺流凝汽器,顺流凝汽器之间相互连通,上部连接蒸汽分配管,下部连接凝结水收集管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于空冷岛系统冬季运行的改善建议
电站总装机容量80*2MW,地处中亚缺水地区,冬季最低温度-40℃,夏季最高温度42-45℃。
配套两套GEA的直接空冷式凝汽器(下简称空冷岛)。
设备概况
1、设计参数
设计流量: 225023.6X1.06 kg/h
空冷器入口压力: 0.3 bar abs
汽轮机出口压力 : 0.295 bar abs
环境温度: 39℃
海拔高度: 300m
焓值: 2624.6kJ/kg
最小蒸汽流量 : 27000 Kg/h@ -45℃ and 0.3 bar abs
2、布置
空冷器由如下设备互相连接组成:三个屋顶12个单元包括:72台管束、12套风机、其中2侧的屋顶配有电动隔离阀、1个中间的屋顶配有百叶窗(并配有全逆流系统);三个76”的蒸汽汇流管、一个126”的排汽母管、两个60”的全逆流蒸汽管道
关于*****电站空冷岛系统每年冬季的防冻问题,我们查阅了历年冬季空冷岛系统的运行数据(部分DCS系统的运行画面截图),并结合其它类似电站空冷岛系统冬季运行的防冻经验,针对我厂机组情况,制定如下空冷岛系统防冻、防护的操作措施:
当环境温度低于+2℃时,从严格意义上空冷系统已进入冬季运行期。
机组在遇有启动和停机操作时,必须提前了解并监视环境气象条件的变化,机组在冬季运行期间,严格控制汽轮机的背压值。
空冷岛系统的防冻措施主要分三个环节:机组启动过程阶段、机组停运(包含事故停机)阶段、机组运行阶段。
一、机组启动阶段的空冷岛系统防冻措施:
汽轮发电机组冬季启动初期蒸汽流量偏低,不能满足空冷岛系统防冻要求,为防止空冷岛系统冻坏,启动中采取以下运行措施:
1、冬季机组正常启动无特殊情况应尽量安排在白天进行,合理控制启动时间保证空冷岛系统进汽时间尽量在一天中气温比较高的时间段进行。
2、机组启动前的试验中,必须进行对空冷岛系统抽空气阀、抽汽隔离蝶阀、凝结水回水阀进行开关活动试验,保证正常,开关到位、动作灵活。
3、尽可能缩短汽轮机抽真空的时间。
4、严格控制空冷岛系统旁路预热系统的进汽量
5、汽轮机抽真空结束、冲转前,确保主蒸汽参数在正常范围内,开启各路疏水确保疏水畅通;热态启动在控制好机组本体轴瓦振动、胀差、轴向位移等参数的前提下,应尽可能提高
升速速率;冷态启动在不影响机组本体参数的前提下,应尽可能缩短暖机时间,保证快速提升空冷岛系统进汽量。
6、汽轮机参数满足冲转要求后应尽快冲转,同时保证电气系统满足机组并网条件,一旦冲转定速正常后立即进行机组并网操作,尽量减少暖机环节,缩短冲转、并网时间,机组并网后根据汽缸缸壁温度尽快接带高负荷以满足空冷岛系统进汽要求。
7、空冷岛系统进汽以后,必须严密监视真空和凝结水系统,防止室外管道发生汽水停滞甚至结冰现象;严密监视各空冷岛系统换热单元凝结水温度及抽汽温度,保证各处温度稳步升高,如发现某处温度长时间不变或有降低趋势时,必须立即增加空冷岛系统进汽量,以避免由于汽流不均匀造成的局部结冰;严密监视凝结水集水箱水位,当发现水位不正常变化以及凝结水量与排汽量不对应,补水量不正常偏大时,必须立即到就地进行检查空冷装置是否有结冰现象并增加空冷进汽量,确认空冷岛系统冻结时,应立即采取消冻措施。
7、当由于某种原因,机组不能正常冲转升速,空冷岛系统进汽量小于最低要求时,如短时间内不能恢复,则应切断空冷岛系统的进汽;当不能切除进汽时,应果断打闸停机,查明原因后重新挂闸开机。
8、从汽轮机抽真空结束到机组并网后达到40%额定负荷之前的时间段内,空冷岛系统应采取单列进汽的运行方式。
二、机组停运阶段的空冷岛系统防冻措施:
空冷机组冬季停运操作后期蒸汽流量偏低,不能满足空冷岛系统防冻要求,为防止空冷岛系统冻坏,停运过程中采取以下运行措施:
1、冬季机组停运操作除有检修工作要求或其他特殊情况外,均按定参数停机进行,尽量缩短机组停运操作时间,将机组低于50%额定负荷的时间控制在1小时之内,减少空冷岛系统的小蒸汽流量运行时间。
2、机组负荷降至40%额定负荷时,空冷岛系统应采取单列进汽的运行方式。
3、停机过程中,注意监视空冷岛系统各街的抽汽和凝水温度变化以及排汽装置水位变化,如发现有抽汽和凝水温度明显降低到零下同时排汽装置补水量明显增大时,可判断为空冷岛系统发生冻结,应立即到就地进行检查,确认空冷岛系统冻结时,应立即采取消冻措施。
4、机组打闸后,应及时关闭进入排汽装置的所有疏水,切断进入排汽装置的所有汽源。
5、机组停运后,应仔细检查排汽装置疏水系统,有不严密的疏水应及时切除,防止少量蒸汽进入空冷岛系统而发生冻结。
6、真空泵停运后,应联系热工人员强制打开真空泵入口蝶阀,使入口管内疏水倒流回真空泵,防止入口管发生冻结。
真空到零后开启抽空气管最低点疏水门放净存水。
三、冬季正常运行空冷防冻措施;
1、机组进入冬季运行前检查空冷系统程序逻辑正常,能正常投入运行,严格控制机组排汽压力在正常范围之内。
正常运行时,空冷风机应投入自动控制,并注意自动控制正常。
2、机组正常运行当中,应按照规定加强巡视检查,用测温仪定期测量空冷岛系统上排汽管道的外部温度,并观察抽空气管道、凝结水管外部应无结霜、结冰现象,其凝结水管、抽空气管无振动现象,每班必须保证就地实测温度1次,空冷平台设置防冻检查记录本,并按要求记录空冷岛系统各区域的温度值,发现温度明显偏低时必须增加检查、测量次数。
空冷岛系统防冻重点检查部位:各投运列顺流管束的下部、逆流管束的上部、注意检查管束外表是否有弯曲、变形和裂缝。
3、空冷岛系统正常运行期间,尽量保持空冷风机应投入自动控制且所有运行列风机转速相同。
空冷风机需手动调节风机转速时,所有风机应共同进行调节;在整个调节过程中,应勤调慢调,每个风机转速的变化不能超过10%/MIN,密切注意各个参数的变化。
一定要保证机组的排汽压力正常的情况下进行调节,防止出现只顾抽汽温度、凝结水温度的升高,而不管整个机组的安全运行情况。
4、机组正常运行时,应尽量控制机组负荷不低于50%额定负荷。
5、机组运行期间,必须加强空冷岛系统巡检,保证关闭空冷岛系统各列散热器端部小门及同一列中各冷却单元通行小门。
6、在环境温度低,机组负荷低的情况下为满足空冷防冻要求,运行人员可根据环境温度,机组负荷及时切除空冷岛系统单列散热单元,然后运行人员应严密监视凝结水的过冷度。
每一列退出运行时,先关闭进汽阀,完全关闭后延时15分钟,再关闭凝结水排水阀、关闭抽气阀;期间必须加强翅片组温度的监视,如果发现异常,立即恢复运行。
7、冬季运行期间,加强对排汽装置的补水量及水位的监视,发现排汽装置水位下降,补水量异常增大时,应分析空冷凝汽器以及凝结水管道是否冻结。
8、运行中如果发现空冷岛系统有冻结现象时,采取以下措施及时进行处理:
1)停运该列所有空冷风机,尽快提高机组负荷及机组排汽压力(在正常范围内调整到较高的数值)。
2)就地派专人用红外线测温仪测量排汽管道、凝结水管道、翅片组、背风侧、抽空气管、阀门前后等各处温度,确定空冷岛系统具体冻结部位,并做好记录。
3)利用电热毯或者大型热风装置对冻结区域进行局部升温加热,融化内部的冰块,疏通通道。
9、机组运行中发生汽轮机掉闸、锅炉灭火及机组甩负荷故障时,具备恢复条件时应立即组织恢复,期间空冷岛系统防冻措施按机组启动阶段的防冻措施执行。