电机驱动芯片选型-步进电机和BLDC-Allegro
主流步进驱动IC选型指南

主流步进驱动IC选型指南特点点评:1. TB6600作为东芝最新的大功率驱动IC,拥有最大50V@5A驱动能力,最高16细分,适用于部分86及全系列57步进电机,芯片自带欠压、过流、短路保护,而且自带5V逻辑电源,和LV8727并列为目前最高性价比的大功率驱动IC。
2. TB6560AHQ无疑是目前应用最多最广泛的步进驱动IC,适用于57及以下步进电机,由于出货量大所以价格便宜,且现货充足。
3. TB62209是最成熟的表贴式步进驱动IC之一,也曾经是性价比最高的42系列步进驱动芯片,但正逐渐被LV8731所取代。
4. LV8726是三洋针对于大中华区特别设计的一款驱动IC,电压高达60V,因为是外接Mosfet所以电流可以达到10A,最大128细分,且具有目前所有主流驱动IC的功能,目前还在内部测试中,预计今年下半年可以面市。
5. LV8727是三洋已经批量供货的最大功率驱动IC,前身是三洋给国内某公司定制的THB8128,三洋被安森美收购后将此IC做了工艺升级并小幅改善了封装方式,拥有最大********驱动能力,虽然稍逊于东芝的TB6600,但此IC细分数高达128,除了常用的保护功能外,还带有自动半流功能,价格也与TB6600相当,因此和TB6600并列为最高性价比大功率驱动IC。
6. LV8729是目前性价比最高的高细分表贴驱动IC,前身是三洋给国内某公司定制的THB6128,三洋被安森美收购后同样将此IC做了工艺升级,且大幅改善了封装和管脚排列方式,适用于部分57、全系列42及以下电机。
7. LV8731是三洋推出的非常成功的一款马达驱动IC,被誉为同级别中最高性价比,原本三洋的策略是剑指东芝的TB62209,但经过测试我们发现参数和驱动能力完全超越后者,已经和Allegro最成熟的A3977同一水准,且凭借新的工艺、多重保护以及自带逻辑5V,使得A3977也只能望尘莫及。
因此在2A以内电流的应用中,如果没有高细分的要求,LV8731是最好的选择。
介绍几种电机驱动芯片

介绍几种电机驱动芯片[作者:佚名转贴自:本站原创点击数:1493 更新时间:2005-4-22 文章录入:白桦]减小字体增大字体在自制机器人的时候,选择一个合适的驱动电路也是非常重要的,本文详细介绍了几种常用的机器人驱动芯片。
介绍几种机器人驱动芯片(注:本文已经投稿至《电子制作》)在自制机器人的时候,选择一个合适的驱动电路也是非常重要的。
最初,通常选用的驱动电路是由晶体管控制继电器来改变电机的转向和进退,这种方法目前仍然适用于大功率电机的驱动,但是对于中小功率的电机则极不经济,因为每个继电器要消耗20~100mA的电力。
当然,我们也可以使用组合三极管的方法,但是这种方法制作起来比较麻烦,电路比较复杂,因此,我在此向大家推荐的是采用集成电路的驱动方法:马达专用控制芯片LG9110芯片特点:低静态工作电流;宽电源电压范围:2.5V-12V ;每通道具有800mA 连续电流输出能力;较低的饱和压降;TTL/CMOS 输出电平兼容,可直接连CPU ;输出内置钳位二极管,适用于感性负载;控制和驱动集成于单片IC 之中;具备管脚高压保护功能;工作温度:0 ℃-80 ℃。
描述:LG9110 是为控制和驱动电机设计的两通道推挽式功率放大专用集成电路器件,将分立电路集成在单片IC 之中,使外围器件成本降低,整机可靠性提高。
该芯片有两个TTL/CMOS 兼容电平的输入,具有良好的抗干扰性;两个输出端能直接驱动电机的正反向运动,它具有较大的电流驱动能力,每通道能通过750 ~800mA 的持续电流,峰值电流能力可达1.5 ~2.0A ;同时它具有较低的输出饱和压降;内置的钳位二极管能释放感性负载的反向冲击电流,使它在驱动继电器、直流电机、步进电机或开关功率管的使用上安全可靠。
LG9110 被广泛应用于玩具汽车电机驱动、步进电机驱动和开关功率管等电路上。
管脚定义:1 A 路输出管脚、2和3 电源电压、4 B 路输出管脚、5和8 地线、6 A 路输入管脚、7 B 路输入管脚2、恒压恒流桥式1A驱动芯片L293图2是其内部逻辑框图图3是其与51单片机连接的电路原理图L293是著名的SGS公司的产品,内部包含4通道逻辑驱动电路。
直流无刷电机驱动芯片

直流无刷电机驱动芯片直流无刷电机(BLDC)驱动芯片是一种用于驱动无刷电机的集成电路。
BLDC驱动芯片常见于电动车、电动工具、家用电器以及工业领域等应用中。
本文将介绍BLDC驱动芯片的原理、特性以及其在不同应用中的应用案例。
BLDC驱动芯片的原理是基于对无刷电机的控制,它通过与外部电源和无刷电机相连,将输入的电能转换为驱动无刷电机运转所需的电能。
BLDC驱动芯片一般由功率电子器件、现场效应晶体管(MOSFET)、控制电路以及保护电路组成。
通过对这些电路的精确控制,可以实现对无刷电机的速度、转动方向和电流的准确控制。
BLDC驱动芯片的特性有以下几个方面:1. 高效性:BLDC驱动芯片能够高效地将输入电能转换为无刷电机所需的电能,减少能源损耗。
2. 稳定性:BLDC驱动芯片能够提供稳定的控制信号,保证无刷电机的运行稳定性,避免因控制信号不稳定而产生的运行故障。
3. 多功能性:BLDC驱动芯片具有多种功能,比如电流限制、过热保护、过流保护等,能够保护无刷电机免受电气故障和过载的影响。
4. 低噪音:BLDC驱动芯片采用先进的电控技术,能够使无刷电机的运行噪音降至最低。
BLDC驱动芯片在不同应用中有不同的应用案例,以下是几个常见的应用案例:1. 电动车:BLDC驱动芯片可以控制电动车的无刷电机的转速和转向,使电动车能够稳定地行驶在不同的路面条件下。
2. 家用电器:BLDC驱动芯片可以用于家用空调、洗衣机等电器中的无刷电机的控制,提高电器的工作效率和可靠性。
3. 工业控制系统:BLDC驱动芯片可以用于工业机械、机器人等设备中的无刷电机的控制,实现自动化生产和精确控制。
总之,BLDC驱动芯片是一种用于驱动无刷电机的集成电路,具有高效性、稳定性、多功能性和低噪音等特点。
它在电动车、家用电器、工业控制系统等应用中起到重要的作用。
随着科技的进步,BLDC驱动芯片的性能和功能将不断提升,以满足不同应用领域对无刷电机控制的需求。
高档无刷直流电机驱动IC ECN30206sp

The ECN30206 is a fully integrated, single-chip BLDC motor driver that facilitates a rapid design process and low part count solution. The chip integrates BLDC Logic with a 3-Phase Inverter containing six (6) 500V rated IGBTs and a Charge Pump TOP Arm bias. To reduce motor current losses, a BLDC motor can now be driven directly from rectified 200 to 230VAC (up to 450VDC) power lines, or from any DC power bus down to 15VDC. On-Chip Brushless (electronic) commutation logic is fully integrated with analog OSC/PWM functions that permit an analog (VSP) voltage to control motor speed.Description• • • • • • • • Integrated, Single-Chip 3-Phase BLDC Motor Driver IC.Integrated Charge Pump – Constant TOP Arm bias independent of motor speed. Integrated 3-Phase Brushless (Electronic) commutation via external Hall ICs.Integrated 3-Phase 6-IGBT Motor Bridge with on chip Free-Wheeling diodes.Pinout and Board Layout are compatible with the existing Hitachi ECN3022 and ECN30204. Maximum Ratings 500VDC/1.5A.Latch-Up free monolithic IC built with a high voltage Dielectrically Isolated (DI) process. Available in 3 package types with built-in heat sink (Tab).Functions and Features• • • • • • • • • • Power supply sequence is free when the current limit is less than 1A.Vs Operating Voltage Range from 15VDC up to 450VDC.Simple Variable Speed Control via a single (VSP) analog input.PWM duty cycle generator provides the 0% to 100% speed control range. Tachometer – Generates the (RPM/60) x (P/2) x 3 Hz speed signal (FG). BOTTOM Arms switch at up to 20kHz via an on-chip OSC/PWM.On-Chip 7.5VDC regulator (CB) with the guaranteed external Min load (25mA). Over-Current protection is set by an external Sense Resistor (RS).Under-Voltage protection for TOP and BOTTOM IGBT Arms.All output IGBT Shut-OFF function.Block DiagramNote : The inside of the bold line shows ECN30206Figure 1. Block DiagramTypes and PackagesECN30206SP ECN30206SPV ECN30206SPRi Package Type:SP-23TA•j (Package Type:SP-23TB) (Package Type:SP-23TR)1. Absolute Maximum RatingsTa = 25 oCNO. Item Symbol Terminal Rating Unit Condition 1 Output Device Breakdown Voltage VSM VS1,VS2 MU,MV,MW 500 V2 Analog Supply Voltage VCC VCC 18 V3 Input Voltage VIN VSP,RS HU,HV,HW-0.5 to VB+0.5V4 Pulse IP 1.5 Note 1 5 Output Current DC IDC MU,MV,MW 0.7 A6 VB Supply Current IBMAX CB 50 mA7 Junction Operating TemperatureTjop - -20 to +135 oC Note 28 Storage Temperature Tstg - -40 to +150 oC General Note: To determine appropriate deratings for these absolute maximum ratings, see pages 14and 15 (the Appendix) paragraphs 1.1, 1.2, 1.3, 1.4 and 1.5. Note 1: Output IGBTs can handle this peak motor current at up to 25 oC junction operating temperature. Note 2: Thermal Resistance1) Between junction and IC case (Tab) : Rjc = 4 oC/W2) Between junction and air : Rja = 40 oC/W2. Electrical CharacteristicsSuffix ( T ; Top arm, B ; Bottom arm ) Ta = 25 OCNo. Item Symbol TerminalMINTYPMAXUnit Condition1 VSop VS1,VS2 15 325450V2 Supply Voltage VCCop VCC 13.515 16.5V3 Standby Current ISH VS1,VS2 - 0.3 1.0mA VSP=0V,VS=325V,VCC=15V4 ICC VCC - 3 10 mA VSP=0V,VCC=15V,IB=0A5 IGBT Collector-Emitter VONT - 2.2 3.0V I=0.35A,VCC=15V6 Saturation Voltage VONB MU,MV,MW - 2.2 3.0V I=0.35A,VCC=15V7 TdONT 0.5 1.0 2.5µs VS=325V,VCC=15V8 Turn ON TdONB 1.0 2.0 3.0µs I=0.35A9 TdOFFT 1.0 2.0 3.0µs Resistive Load10 Output Delay Time Turn OFF TdOFFB MU,MV,MW 1.0 2.0 3.0µs 11 Free Wheel Diode VFDT MU,MV,MW - 2.2 2.8V 12 Forward Voltage VFDB MU,MV,MW - 2.2 2.8V I=0.35A13 VTR Output Resistance RVTR VTR - 200400Ω IVTR=•1mA,VCC=15V14 VSAWH 4.9 5.4 6.1V 15 High or Low Level VSAWL 1.7 2.1 2.5V VCC=15V Note 1 16 SAW WaveAmplitude VSAWWCR 2.8 3.3 3.8V VCC=15V Note 2 17 Reference Voltage Vref RS 0.450.50.55V VCC=15V18 VIH 3.5- - V 19 Voltage VIL - - 1.5V VCC=15V 20 IIL -100- - µA HU,HV,HW=0V VCC=15V21Hall Signal InputCurrent IIH HU, HV, HW -30- - µA HU,HV,HW=5V VCC=15VPull Up Resistor Note 3 22 Current IVSPH 5 - 100µA VSP=5V,VCC=15V Note 4Pull Down Resistor 23 Offset Voltage SPCOMOF -4010 60 mV VCC=15VRefer to CR terminal24 VSP Input All Off Operation Voff VSP 0.85 1.23 1.6V VCC=15V 25 Voltage VB 6.87.58.2V VCC=15V,IB=0A26 VB Supply Output Current IBCB - - 25 mA VCC=15V27 VOL - 1.5- V IOL=-5mA, VCC=15V 28 FG, DM Output Voltage and Resistance ROLFG,DM- 300400Ω IFG=-10mA,VCC=15VNote 5 29 Detect Voltage LVSDON VCC, 11.012.012.9V 30 Recover Voltage LVSDOFF MU,MV,MW 11.112.513.0V 31LVSD Hysteresis Vrh 0.10.50.9V Note 6 32 RS Input Current IILRS RS -100- - µA VCC=15V, RS=0VNote 7.33 OC Shutdown Delay Time Tref RS - 4.0 5.5µs VCC=15VNote 1. See Standard Applications in Section 4, page 8 to set the SAW wave frequency. Note 2. The amplitude of SAW (i.e., VSAWW) is determined by the following equation: VSAWW = VSAWH – VSAWLNote 3. Internal pull up resistors are typically 200 kW. The equivalent circuit is shown in Figure 2. Note 4. Internal pull down resistor is typically 200 kW. The equivalent circuit is shown in Figure 3. Note 5. The equivalent circuit is shown in Figure 4.Note 6. The LVSD (Low Voltage Shut Down) function detects and shuts-down at lower VCC. Note 7. Internal pull up resistor is typically 200 k Ω. The equivalent circuit is shown in Figure 5.VSPFigure 5. Equivalent circuit around RS terminal3.IGBT Motor Bridge Commutations and Logic Functions3.1 Truth TableHall Signal Input U V WStage HU HV HW Top Arm Bottom Arm Top Arm Bottom Arm Top Arm Bottom ArmFG Output(1) H L H OFF ON ON OFF OFF OFF H (2) H L L OFF ON OFF OFF ON OFF L (3) H H L OFF OFF OFF ON ON OFF H (4) L H L ON OFF OFF ON OFF OFF L (5) L H H ON OFF OFF OFF OFF ON H (6) L L H OFF OFF ON OFF OFF ON L - L L L OFF OFF OFF OFF OFF OFF L - H H H OFF OFF OFF OFF OFF OFF H3.2 Timing ChartHUHV HWM U Out putVolt age Hall Signal InputM V Out put Volt age M W Out put Volt ageFG Out put Volt ageStage3.3 PWM OperationThe PWM signal is generated by comparing the input voltage at the VSP pin with an internal SAW wave voltage (available at the CR pin). The Duty Cycle of the resulting PWM signal is thus directly, linearly controlled by VSP pin voltage: from the Min of VSAWL to the Max of VSAWH. That is, when VSP is below VSAWL, the PWM duty cycle is at the Minimum value of 0%. when VSP is above VSAWH, the PWM duty is at the Maximum value of 100%. The ECN30206 operates in 2 quadrants by chopping the BOTTOM Arms with this PWM duty cycle during the appropriate commutation times (phases). Thus, the duty cycle controls motor torque and speed.3.4 Over Current Limit OperationOver-Current is monitored via the voltage drop across an external resistance RS. If the input voltage at the RS pin exceeds the internal Reference voltage (Vref is typically 0.5V), all BOTTOM Arms are Turned-OFF. Following an Over Current event, reset is automatically attempted during each period of the on-chip OSC. This on-chip OSC signal is available at the VTR pin.3.5 Motor Rotation Direction Output FunctionThe rotation direction of the motor is outputted as a logic signal at the DM pin. The table below shows the DM output signals for the two (2) possible rotation directions.Rotation Direction DM OutputU→V→W LowU→W→V High3.6 VCC Under-Voltage DetectionIf VCC drops below LVSDON (12.0V typ), all IGBTs (TOP and BOTTOM Arms) Turn-OFF. Normal operation returns when VCC rises above LVSDOFF: the value of LVSDOFF is LVSDON + Vrh.3.7 All Output IGBT Shut-OFF FunctionWhen VSP drops below Voff (1.23V typ), all IGBTs (TOP and BOTTOM Arms) Shut-OFF.VSP Input Voltage TOP Arm Outputs BOTTOM Arm Outputs0V ≤ VSP < Voff All IGBTs are OFF All IGBTs are OFFVoff ≤ VSP < VSAWL Following the 3.1 Truth Table All IGBTs are OFF VSP ≥ VSAWL Following the 3.1 Truth Table Following the 3.1 Truth TableWhen a motor is rotating and VSP drops below Voff, the VS voltage can rise.Also in this condition VS must not exceed the 500VDC Breakdown Voltage.4. Standard Applications4.1 External ComponentsComponent StandardValue Usage Remark C0 0.22 µF ± 20% Filters the internalpower supply (VB)Stress voltage is VB (=8.2V) C1,C2 1.0 µF ± 20% For charge pump Stress voltage is VCCD1,D2 HitachiDFG1C6(Glassmold type), DFM1F6(Resin mold type) or equivalent For charge pump 600V, 1Atrr ≤ 100nsRs Note 1 Sets Over-Current limitCTR 1800 pF ± 5% Sets PWM frequency Stress voltage is VB (=8.2V) Note 2 RTR 22 kΩ± 5% Sets PWM frequency Stress voltage is VB (=8.2V) Note 2 Note 1 The detection current (IO) for the Over Current limit operation can be calculated as follows.IO(A) = Vref(V) / Rs(Ω)Where Vref is 0.55V and Rs is a minimum value.(These are worst case values.)To determine the Sense Resistor Rs, refer to the above comments and Appendix paragraphs 1.4. Note 2 The PWM frequency is approximated by the following equation:PWM Frequency (Hz) ≈ 0.494 / ( CTR(F) RTR(Ω) )Note 3 The Standard value for RU,RV,RW is 5.6 kΩ± 5%.Note : The inside of the bold line shows ECN30206Figure 6. Block Diagram4.2 Input PinsIn some applications, input pins may be noise sensitive due to their high impedance. This can be minimized with the use of an external resistor and/or external capacitors as follows:Resistor (for the VSP pin) : 5.6kΩ 5% pull down resistorCapacitor (for HU, HV, HW and VSP pins): 500pF±20% ceramic capacitor close to the input pin5. Pinout(Marking side) 2322212019181716151413121110987654321MVVS1MUGH1RSHUHWVTRCRCBC+CLGLMWVS2GH2VCCC-VSPHVFGNCDM6. Terminal definitionsTerminal No. Symbol Definition Remark1 VS2 Power Supply for Upper IGBTs of phases V and W Note1,Note22 MW W phase output (to BLDC motor coil W) Note13 NCNoConnection Note44 GH2 W phase emitter of IGBT and anode of FWD. Connect RS. Note35 VCC Analog/Logic power supply6 GLAnalog/Logicground7 C+ For the Charge Pump circuit, power supply for TOP Arm drive circuit Note18 C- For the Charge Pump circuit Note1, Note29 CL For the Charge Pump circuit Note110 CBInternallyregulated(VB) power supply output11 CR Connect resistance & capacitance to generate the PWM clock frequency Note512 VTR Connect resistance to generate the PWM clock frequency Note513 VSP Input analog voltage that varies the PWM duty cycle from 0% to 100% Note614 FGTachometer output signal whose frequency is (RPM/60)•(P/2)• 3 Hz15 DM Motor rotation direction output Note716 HW Input signal from the Hall IC of phase W17 HV Input signal from the Hall IC of phase V18 HU Input signal from the Hall IC of phase U19 RS RS voltage detect input for the on-chip Over Current limit detection20 GH1 U and V phase emitters of IGBTs and anodes of FWDs. Connect RS. Note321 MU U phase output (to BLDC motor coil U) Note122 VS1 Power supply for Upper IGBT of phase U Note1,Note223 MV V phase output (to BLDC motor coil V) Note1Note1 This is high voltage pin.Note2 The VS1, VS2 and C- pins are connected within the IC. But VS1 and VS2 must be connected by external wiring.Note3 GH1 and GH2 are not connected within the IC and must be connected by external wiring.Note4 Not connected to the internal IC chip.Note5 See paragraph 4.Note6 Can also Turn-OFF all IGBTs. See paragraph 3.7.Note7 See paragraph 3.5.7. InspectionHundred percent inspection shall be conducted on electric characteristics at room temperature. 8. Cautions8.1 Tightening torque at 0.39 to 0.78 N-m should be applied for device to attach to heat sink.8.2 Tab should not be soldered.8.3 Customers are advised to follow the below cautions to protect semiconductor from electrical staticdischarge (ESD).a) IC needs to be dealt with caution to protect from damage by ESD. Material of container or anydevice to carry semiconductor devices should be free from ESD, which may be caused by vibration while transportation. To use electric-conductive container or aluminum sheet is recommended as an effective countermeasure.b) What touches semiconductor devices such as work platform, machine and measuring and testequipment should be grounded.c) Workers should be grounded connecting with high impedance around 100kΩ to 1ΜΩ whiledealing with semiconductor to avoid damaging IC by electric static discharge.d) Friction with other materials such as a high polymer should not be caused.e) Attention is needed so that electric potential will be kept on the same level by short circuitterminals when PC board with mounted IC is carried and that vibration or friction might not occur.f) Air conditioning is needed so that humidity should not drop.8.4 Applying molding or resin coating is recommended for below mentioned pin-to-pin insulation;1-2, 2-4, 6-7, 8-9, 9-10, 20-21, 21-22, 22-238.5 Protective function against short circuit (ex. load short, line-to-ground short or top/bottom armshort) is not built in this IC. External protection needs to prevent IC breakdown.8.6 Refer to “Precautions for Use of High-Voltage Monolithic ICs” (No.IC-0401E) for the otherprecautions and instructions on how to deal with products.8.7 Regardless of changes in external conditions during use, “absolute maximum ratings” should neverbe exceeded in designing electronic circuits that employ products. In a case absolute maximum ratings are exceeded, products may be damaged or destroyed. In no event shall Hitachi be liable for any failure in products or any secondary damage resulting from use at a value exceeding the absolute maximum ratings.8.8 Products may experience failures due to accident or unexpected surge voltages. Accordingly,adopt safe design features, such as redundancy or prevention of erroneous action, to avoid extensive damage in the event of a failure.8.9 Products are not designed, manufactured, or warranted to be suitable for use where extremely highreliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment). Inclusion of products in such application shall be fully at the risk of customers.Hitachi, Ltd. assumes no liability for applications assistance, customer product design, or performance. In such cases it is advised customers to ensure circuit and/or product safety by using semiconductor devices that assures high reliability or by means of user’s fail-safe precautions or other arrangement. (If a semiconductor device fails, there may be cases in which the semiconductor device, wiring or wiring pattern will emit smoke or cause a fire or in which the semiconductor device will burst.)8.10 Lead (Pb)-free solder is used for coating pins and the tab of this IC. In case of flow soldering*, theIC can withstand peak temperature 260o C for less than 10 seconds in liquid solder.*Only pins are in liquid solder. The package body and the tab must not be in it.ECN302069. Important Notices9.1 Hitachi warrants performance of its power semiconductor products (hereinafter called “products”) tothe specifications applicable at the time of sale in accordance with the Product Specification.Testing and other quality control techniques are utilized to the extent Hitachi needs to meet specifications described in the Product Specification. Specific testing of all parameters of each device is not necessarily performed, except those mandated by related laws and/or regulations.9.2 Should any claim be made within one month of product delivery about products’ failure to meetperformance described in the Product Specification, all the products in relevant lot(s) shall be retested and re-delivered. Products delivered more than one month before of such claim shall not be counted for such response.9.3 Hitachi assumes no obligation or any way of compensation should any fault about customer’sgoods using products be found in marketplace. Only in such a case fault of Hitachi is evident and products concerned do not meet the Product Specification, compensation shall be conducted if claimed within one year of product delivery up to in the way of product replacement or payment of equivalent amount.9.4 Hitachi reserves the right to make changes in the Product Specification and to discontinue massproduction of the relevant products without notice. Customers are advised before purchasing to confirm specification of the product of inquiry is the latest version and that the relevant product is on mass production status in such a case purchasing is suspended for one year or more.9.5 In no event shall Hitachi be liable for any damage that may result from an accident or any othercause during operation of the user’s units according to this Product Specification. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this Product Specification.9.6 No license is granted by this Product Specification under any patents or other rights of any thirdparty or Hitachi, Ltd.9.7 This Product Specification may not be reproduced or duplicated, in any form, in whole or in partwithout the expressed written permission of Hitachi, Ltd.9.8 The products (technologies) described in this Product Specification are not to be provided to anyparty whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.ECN30206Appendix - Supplementary DataRefer to the derating information below when designing with the ECN30206.1. Safe Operation Area (SOA) and Derating Standards 1.1 SOAThe ECN30206 must not be used outside the SOA shown in Figure 7, where the current and voltage are at the MU, MV and MW pins (motor coils).4001.5 0SOA1.0VCC=15V Tj=25•O u t p u t P i n C u r r e n t (A )450Output Pin Voltage (V) Figure 7. SOA1.2 Current Derating for VCCThe current derating for VCC is shown in Figure 8. Use the ECN30206 below the derating curve. When the current limit is less than 1A, power supply sequence is free.1.3 Current Derating for Junction Operating TemperatureThe SOA has a dependence on junction operating temperature (Tjop) and Vs power supply voltage.The current derating for junction operating temperature is shown in Figure 9.1.4 Sense Resistor Determination for Over Current Limit OperationWhen determining the sense resistor (Rs) for over current limit operation, consider the variability of the reference voltage (Vref) and the sense resistor.The current must be below the derating curves of Figure 8 and Figure 9.1.5 General Design Derating Standardsa) Temperature - Junction Operating Temperature must be kept under 110 o C.b) Supply Voltage - VS power supply voltage must be kept under 450 V.2. Package Dimensions (Unit: mm)(1) ECN30206SP (SP-23TA)(3) ECN30206SPR (SP-23TR)Precautions for Safe Use and NoticesIf semiconductor devices are handled inappropriate manner, failures may result. For this reason, be sure to read “Precaution for Use” before use.NOTICES1. This Data Book contains the specifications, characteristics (in figures and tables), dimensionsand handling notes concerning power semiconductor products (hereinafter called “products”) to aid in the selection of suitable products.2. The specifications and dimensions, etc. stated in this Data Book are subject to change withoutprior notice to improve products characteristics. Before ordering, purchasers are advised to contact Hitachi’s sales department for the latest version of this Data Book and specifications.3. In no event shall Hitachi be liable for any damage that may result from an accident or any othercause during operation of the user’s units according to this Data Book. Hitachi assumes to responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this Data Book.4. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondarydamage resulting from use at a value exceeding the absolute maximum rating.5. No license is granted by this Data Sheet under any patents or other rights of any third party orHitachi, Ltd.6. This Data Book may not be reproduced or duplicated, in any form, in whole or in part, withoutthe expressed written permission of Hitachi, Ltd.7. The products (technologies) described in this Data Book are not to be provided to any partywhose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.。
步进电机的选型及计算方法

步进电机的选型及计算方法步进电机是一种将电脑指令转化为机械运动的电机,广泛应用于打印机、绘图仪、数控机床、自动化设备等领域。
步进电机的选型和计算方法是确保电机能够满足使用要求的重要环节。
本文将介绍步进电机的选型和计算方法,以帮助读者了解如何正确选择步进电机。
**一、步进电机的选型**选型是步进电机设计的第一步,主要考虑以下几个因素:1.**载荷特性**:首先需要知道电机所需驱动的载荷特性,包括重量、转动惯量等。
根据载荷特性,选取适当的电机功率和扭矩。
2.**运动要求**:了解运动要求,包括速度、加速度、定位精度等。
根据运动要求,选取适当的步进角和步数。
3.**工作环境**:考虑工作环境的温度、湿度、粉尘、振动等因素,选取能够适应工作环境的电机。
4.**可靠性要求**:根据应用的可靠性要求,选取有良好可靠性的步进电机。
5.**成本**:考虑成本因素,选取能够满足需求且价格合理的电机。
选型过程中,通常需要参考制造商提供的电机规格书和技术手册,以获取详细的电机参数信息。
**二、步进电机的计算方法**1.**功率计算**:选择适当的功率可确保步进电机能够正常工作。
功率计算公式如下:功率(W)=扭矩(N·m)×转速(RPM)/9.54882.**扭矩计算**:根据应用的载荷特性计算步进电机所需的最大扭矩。
扭矩计算公式如下:扭矩(N·m)=载荷转动惯量(kg·m²)×角加速度(rad/s²)其中,角加速度可根据速度和加速度计算得到:角加速度(rad/s²)=加速度(rad/s²)/ 微步数(步)3.**速度计算**:根据应用的速度要求,计算步进电机的理论最大速度和可用的速度范围。
理论最大速度可按照电机额定的最大转速计算。
通常步进电机的最大转速范围在100-5000RPM之间。
可用速度范围受到供电电压、电机驱动方式、驱动电流等因素的影响。
Allegro A3916双路DMOS全桥马达驱动方案(英文)

摘要:Allegro MicroSystems 公司的A3916是新型低压双极步进马达或双路马达驱动IC,集成了所有的马达控制的功能,包括固定关断时间的PWM 稳压器,单电源2.7-15 V 输入电压,每路输出电流高达1A,低RDS(ON)输出,低电流睡眠模式,过流保护,内部UVLO 和热关断,集成了电荷泵.主要用在工业自动化,点负载,3D 打印,医疗设备,CCTV,玩具市场和其它应用.本文介绍了A3916主要特性和优势,框图和典型应用电路以及演示板电路图,材料清单和PCB 设计图。
Allegro MicroSystems,LLC announces a new low voltage bipolar stepper or dual DC motor driver IC.The A3916 device was designed for pulse-width-modulated (PWM) control of low-voltage stepper motors or dual DC motors and is capable of output currents up to 1 A per channel and operating voltages from 2.7 to 15 V. Allegro’s new motor driver IC is targeted at the office and industrial automation, point of sale, 3 D printing, medical, CCTV, toy markets, and other applications that run off single, Li-ion cell or 3 AA batteries.The A3916 integrates all motor control including a fixed off-time PWM regulator that sets a peak current in motor winding based on the selection of a low value a current sense resistor. A single supply eliminates the need for external LDO and an integrated charge pump requires only one external capacitor. Output diagnostic is provided by an active low fault output that notifies the user of a TSD or overcurrent protection event.Designed for pulse-width-modulated (PWM) control of lowvoltagestepper motors and single and dual DC motors, theA3916 is capable of output currents up to 1 A per channel andoperating voltages from 2.7 to 15 V.The A3916 has an internal fixed off-time PWM timer that setsa peak current based on the selection of a current sense resistor. An output fault flag is provided that notifies the user of a TSDor overcurrent protection event.图1 A3916框图Allegro A3916双路DMOS 全桥马达驱动方案The A3916 is supplied in a low-profile 3 × 3 mm 16-terminalQFN (suffix “ES”) and a low-profile 4mm×4mm 20-terminalQFN (suffixes “ES, -1”) both with exposed power tabs for enhanced thermal dissipation.A3916主要特性和优势•Wide, 2.7 to 15 V input voltage operating range•Dual DMOS full-bridges: drive two DC motors orone stepper motor •Low RDS(ON) outputs•Synchronous rectification for reduced power dissipation •Low-current sleep mode •Overcurrent protection•Internal UVLO and thermal shutdown circuitry •Integrated charge pump•Pin-to-pin compatible with A3906图2 A3916典型应用电路图3 A3916演示板电路图图4 A3916演示板PCB 设计图表1 A3916演示板材料清单详情:/en/Products/Motor-Driver-And-Interface-ICs/Brush-DC-Motor-Drivers/A3916.aspx。
BLDC与主控芯片,先进控制带来高效优势

BLDC与主控芯片,先进控制带来高效优势目录1.前言 (1)2.高效BLDC的复杂控制 (1)3.低成本高性价比方波控制 (2)4.高成本高效率FOC先进控制 (2)5.小结 (4)1.前言从简单的电动工具、电风扇到复杂的机器人、汽车电机,许多机器设备都使用高能效的无刷直流电机BLDe将电能转换为旋转运动。
在高效率、高扭矩、低噪音、长寿命、响应快速等优势的加持下,越来越多电动设备开始向BLDC转变。
虽然BLDC有着这么多优势,但实现BLDC的控制是相对较难的,比有刷电机难很多而且硬件成本也更高。
2.高效BLDC的复杂控制从工作原理上来看,BLDC作为电机,其基本构造也是定子加转子,不过其定子和转子和有刷电机是相反的。
BLDe的定子是通电的线圈,转子是永磁体。
那么根据电磁感应原理,只要给定子上的线圈接入适当方向的电流,让产生的磁极方向与永磁体的磁极相对应,就可以旋转起来。
也就是说,控制电流的大小和方向,就能控制转子的旋转。
进一步对接入电流线圈的定子进行优化,就能产生很多控制方式。
BLDC的控制虽然在原理上和有刷电机相似,但实现起来却要难得多,BLDe需要复杂的控制器才能将单个直流电源转换为三相电压,而有刷电机可以直接通过调节直流电压来控制。
原理层面固然通俗易懂,但是真正实现起来,控制BLDC的难度还是不小的。
控制电流的大小和方向就能控制转子的旋转,这里有很多控制算法的应用。
然后还需要知道转子的位置,对位置的测量是确定电机何时换相所需的输入。
对于转子位置的感测,又区分出有传感器和无传感器的路线。
对开环控制而言,这些已经足够,但是在需要精确速度控制的场景里,加入PID闭环的控制是有必要的。
对于闭环速度控制,需要对转子速度或电机电流以及PWM 信号进行测量,以控制电机速度以及功率。
目前的BLDC配置,硬件层面绝大多数控制方式都以六个功率开关器件构成的电子换相电路搭配成全桥,控制和驱动组合,再加上位置反馈电路和电流采样电路。
基于纳芯微nsi6602的隔离半桥电源驱动方案

基于纳芯微nsi6602的隔离半桥电源驱动方案纳芯微NSI6602是一款高度集成的隔离半桥驱动芯片,主要用于驱动直流无刷电机(BLDC)和步进电机。
它提供了一种简单、高效的方式来控制这些电机,同时具有很高的性价比。
基于纳芯微NSI6602的隔离半桥电源驱动方案主要包括以下几个部分:1. 电源输入:为整个系统提供稳定的电源输入,通常为12V或24V直流电源。
2. 隔离半桥驱动器:纳芯微NSI6602作为隔离半桥驱动器,负责将输入的低压信号转换为高压输出,以驱动电机。
3. 电机:直流无刷电机(BLDC)或步进电机,根据实际应用场景选择合适的电机类型。
4. 控制器:用于接收外部控制信号(如PWM信号),并将其转换为纳芯微NSI6602所需的信号格式。
常见的控制器有Arduino、Raspberry Pi等。
5. 编码器:如果需要对电机进行闭环控制,可以添加一个编码器来实时监测电机的位置和速度,并将这些信息反馈给控制器。
基于纳芯微NSI6602的隔离半桥电源驱动方案的工作原理如下:1. 控制器接收到外部控制信号(如PWM信号)。
2. 控制器将PWM信号转换为纳芯微NSI6602所需的信号格式(例如H桥模式)。
3. 控制器通过SPI接口将转换后的信号发送给纳芯微NSI6602。
4. 纳芯微NSI6602根据接收到的信号,控制其内部的功率MOSFET开关,从而驱动电机。
5. 如果需要闭环控制,编码器会实时监测电机的位置和速度,并将这些信息反馈给控制器。
控制器根据反馈信息调整PWM信号的占空比,从而实现对电机的精确控制。
总之,基于纳芯微NSI6602的隔离半桥电源驱动方案是一种简单、高效的方式来驱动直流无刷电机(BLDC)和步进电机。
通过合理的电路设计和参数配置,可以实现对电机的精确控制,满足各种应用场景的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厂家型号描述Allegro A3901Dual Full Bridge Low Voltage Motor DriverAllegro A3916Dual DMOS Full-Bridge Motor DriverAllegro A3966Dual Full-Bridge PWM Motor DriverAllegro A3967Microstepping Driver with TranslatorAllegro A3977Microstepping DMOS Driver with TranslatorAllegro A3979Microstepping DMOS Driver with TranslatorAllegro A3981K Automotive, Programmable Stepper DriverAllegro A3982DMOS Stepper Motor Driver with TranslatorAllegro A3983DMOS Microstepping Driver with TranslatorAllegro A3984DMOS Microstepping Driver with TranslatorAllegro A3985Digitally Programmable Dual Full-Bridge MOSFET DriverAllegro A3987DMOS Microstepping Driver with TranslatorAllegro A3988Quad DMOS Full Bridge PWM Motor DriverAllegro A3989Bipolar Stepper and High Current DC Motor DriverAllegro A3992DMOS Dual Full-Bridge Microstepping PWM Motor DriverAllegro A3995DMOS Dual Full Bridge PWM Motor DriverAllegro A3998Dual DMOS Full Bridge Motor Driver With Serial Port Control and Allegro A4970Dual Full-Bridge PWM Motor DriverAllegro A4975Full-Bridge PWM Microstepping Motor DriverAllegro A4979Microstepping Programmable Stepper Motor Driver With Stall Dete Allegro A4980K Automotive, Programmable Stepper DriverAllegro A4982DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A4983DMOS Microstepping Driver with TranslatorAllegro A4984DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A4985DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A4986DMOS Dual Full-Bridge PWM Motor Driver With Overcurrent Protect Allegro A4987DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protect Allegro A4988DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A4989Dual Full-Bridge MOSFET Driver with Microstepping Translator Allegro A4990K Automotive Dual Full Bridge DriveAllegro A4992K Automotive Stepper DriverAllegro A4993Automotive Stepper Motor DriverAllegro A5976Microstepping DMOS Driver with TranslatorAllegro A5977Microstepping DMOS Driver with TranslatorAllegro A5979Microstepping DMOS Driver with TranslatorAllegro A5984DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A5985DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A5988Bipolar Stepper and High-Current DC Motor DriverAllegro A5989Bipolar Stepper and High-Current DC Motor DriverAllegro A5990Quad DMOS Full-Bridge PWM Motor DriverAllegro AMT49701Quad DMOS Full-Bridge PWM Motor DriverAllegro AMT49702Dual DMOS Full-Bridge Motor Driver后缀“K”表示汽车级产品(通过 AEC-Q100 认证)下列器件已停产:A3986, A3972电桥数量峰值输出电流最大电源电压接口位置反馈最小电源电压Parallel External 2.5 5.50.4Full-Bridge x2 Parallel External 2.7151Full-Bridge x2 PH/EN External 4.75300.75Full-Bridge x2 Translator (Step/DIR)External 4.75300.85Full-Bridge x2 Translator (Step/DIR)External835 2.5Full-Bridge x2 Translator (Step/DIR)External835 2.5Full-Bridge x2 SPI,Translator (Step/DIR)External732 1.4Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 SPI External1250Full-Bridge x2 Translator (Step/DIR)External850 1.5Full-Bridge x2 Parallel External836 1.2Full-Bridge x4 Parallel,PH/EN External836 1.2Full-Bridge x4 SPI External1550 1.5Full-Bridge x2 PH/EN External836 2.4Full-Bridge x4 SPI External950 1.5Full-Bridge x2 Parallel External7.45451Full-Bridge x2 Parallel External550 1.5Full-Bridge x1 SPI,Translator (Step/DIR)External750 1.5Full-Bridge x2 SPI,Translator (Step/DIR)External 3.332 1.4Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 Translator (Step/DIR)External835 2.5Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 Translator (Step/DIR)External8351Full-Bridge x2 Parallel External8352Full-Bridge x2 Parallel External8351Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 Translator (Step/DIR)External1250 1.2Full-Bridge x2 Parallel External632 1.4Full-Bridge x2 SPI,Translator (Step/DIR)External 3.832 1.4Full-Bridge x2 SPI,Translator (Step/DIR)Open Loop 3.532 1.4Full-Bridge x2 Translator (Step/DIR)External840 2.8Full-Bridge x2 Translator (Step/DIR)External840 2.8Full-Bridge x2 Translator (Step/DIR)External840 2.8Full-Bridge x2 Translator (Step/DIR)External8402Full-Bridge x2 Translator (Step/DIR)External8402Full-Bridge x2 Parallel External840 1.6Full-Bridge x4 Parallel External840 1.6Full-Bridge x4 Parallel External840 1.6Full-Bridge x4 Parallel External4181Full-Bridge x4 Parallel External 3.5151Full-Bridge x2封装DFN Consumer,Industrial QFN Consumer,Industrial SOIC Consumer,Industrial SOIC Consumer,Industrial TSSOP Consumer,Industrial TSSOP Consumer,Industrial TSSOP AutomotiveSOIC Consumer,Industrial TSSOP Consumer,Industrial TSSOP Consumer,Industrial TSSOP Consumer,Industrial TSSOP Consumer,Industrial QFN,LQFP Consumer,Industrial QFN Consumer,Industrial DIP,TSSOP Consumer,Industrial QFN Consumer,Industrial QFN Consumer,Industrial SOIC Consumer,Industrial DIP,SOIC Consumer,Industrial TSSOP Consumer,Industrial TSSOP AutomotiveQFN,TSSOP Consumer,Industrial QFN Consumer,Industrial QFN,TSSOP Consumer,Industrial QFN,TSSOP Consumer,Industrial QFN,TSSOP Consumer,Industrial QFN,TSSOP Consumer,Industrial QFN Consumer,Industrial TSSOP Consumer,Industrial TSSOP AutomotiveTSSOP AutomotiveTSSOP AutomotiveTSSOP Consumer,Industrial TSSOP Consumer,Industrial TSSOP Consumer,Industrial QFN,TSSOP Consumer,Industrial QFN Consumer,Industrial QFN Consumer,Industrial QFN Consumer,Industrial QFN Consumer,Industrial,Of QFN Consumer,Industrial TSSOP AutomotiveFull, Half Step Resolution, Single Supply, Sleep ModeInternal PWM Current Control, Single Supply, OCP Protection, Fault Output, Sleep Mode, Parallel Ope Internal PWM Current Control, Full, Step Resolution, Sleep ModeInternal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, Sleep Mode, Automatic Mixed Dec Internal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, Sleep Mode, Automatic Mixed Dec Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, Sleep Mode, Automatic Mixed De Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Programable Fa Internal PWM Current Control, Full, Half Step Resolution, Sleep Mode, Automatic Mixed DecayInternal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, Sleep Mode, Automatic Mixed Dec Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, Sleep Mode, Automatic Mixed De Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, Sleep Mode, Mixed Decay Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Sleep Mode, Au Internal PWM Current Control, Full, Half, 1/4 Step Resolution, Automatic Mixed DecayInternal PWM Current Control, Full, Half, 1/4 Step Resolution, Automatic Mixed DecayInternal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Sleep Mode, Mi Internal PWM Current Control, Automatic Mixed DecayInternal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, OCP Protection, Sleep Mode, 3.3 Internal PWM Current Control, Full, Half Step Resolution, Sleep ModeInternal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, Automatic Mixed DecayInternal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Programable Fa Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Programable Fa Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Sleep Mode, Au Internal PWM Current Control, Full, Half, 1/4, 1/8, 1/16 Step Resolution, Sleep Mode, Automatic Mix Internal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, OCP Protection, Sleep Mode, Aut Internal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, OCP Protection, Sleep Mode, Aut Internal PWM Current Control, Full, Half, 1/4 Step Resolution, OCP Protection, Sleep Mode, Mixed De Internal PWM Current Control, Full, Half, 1/4 Step Resolution, OCP Protection, Sleep Mode, Mixed De Internal PWM Current Control, Full, Half, 1/4, 1/8, 1/16 Step Resolution, OCP Protection, Sleep Mod Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, Sleep Mode, Mixed Decay Internal PWM Current Control, Full Step Resolution, Single Supply, Sleep ModeInternal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, Single Supply, OCP Protection, Integrated Current Sense, Internal PWM Current Control, 50V Transient compatible, Full, Half, 1/4, Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Fault Output, Internal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, OCP Protection, Sleep Mode, Aut Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Sleep Mode, Au Internal PWM Current Control, Full, Half, 1/4, 1/8, 1/16, 1/32 Step Resolution, Single Supply, OCP Internal PWM Current Control, Full, Half, 1/4, 1/8, 1/16, 1/32 Step Resolution, Single Supply, OCP Internal PWM Current Control, Full, Half, 1/4 Step Resolution, Single Supply, OCP Protection, Sleep Internal PWM Current Control, Full, Half, 1/4 Step Resolution, Single Supply, OCP Protection, Sleep Adaptive Percent fast decay, Adjustable off time, Internal PWM Current Control, Full, Half, 1/4 Ste Internal PWM Current Control, Full, Half, 1/4 Step Resolution, Single Supply, OCP Protection, Sleep Internal PWM Current Control, Half step resolution, Single Supply, OCP Protection, Fault Output, SlParallel OperationAutomatic Mixed DecayAutomatic Mixed Decay, Automatic Mixed Decaytion, Programable Fault Output, Sleep Mode, Advanced DiagnosticsMixed DecayAutomatic Mixed Decay, Automatic Mixed Decay, Mixed Decaytion, Sleep Mode, Automatic Mixed Decaytion, Sleep Mode, Mixed Decayion, Sleep Mode, 3.3/5.0V LDO, Mixed Decayixed Decaytion, Programable Fault Output, Sleep Mode, Advanced Diagnosticstion, Programable Fault Output, Sleep Mode, Advanced Diagnosticstion, Sleep Mode, Automatic Mixed DecayMode, Automatic Mixed Decayion, Sleep Mode, Automatic Mixed Decayion, Sleep Mode, Automatic Mixed DecaySleep Mode, Mixed DecaySleep Mode, Mixed Decayrotection, Sleep Mode, Automatic Mixed Decay, Mixed Decayply, OCP Protection, Programmable Fault Output, Sleep Mode, Mixed Decaye, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Programable Fault Output, Sleep Mode, Advanced Dia tion, Fault Output, Sleep Mode, Automatic Mixed Decayion, Sleep Mode, Automatic Mixed Decaytion, Sleep Mode, Automatic Mixed DecaySingle Supply, OCP Protection, Fault Output, Sleep Mode, Adaptive Percent Fast DecaySingle Supply, OCP Protection, Fault Output, Sleep Mode, Adaptive Percent Fast DecayCP Protection, Sleep Mode, Mixed DecayCP Protection, Sleep Mode, Mixed DecayFull, Half, 1/4 Step Resolution, Single Supply, OCP Protection, Sleep Mode, Mixed Decay, diagnostic output CP Protection, Sleep Mode, Mixed Decayon, Fault Output, Sleep Modeep Mode, Advanced Diagnostic d Decay, diagnostic output。