微波功率放大器的非线性功率放大器的非线性共73页

合集下载

放大器的非线性

放大器的非线性
放大器的非线性失真
非线性
电路非线性
输出与输入信号之比为一个变量,即输出与输入 之间的关系不是一条具有固定斜率的直线; 小信号增益随输入信号电平的变化而变化。
放大器的非线性
当输入为正弦信号时,由于放大器的非线性,输 出波形不是一个理想的正弦信号,产生了失真, 这种由于放大器参数的非线性所引起的失真称为 非线性失真。 非线性失真会使输出信号中产生高次谐波成分, 所以又称为谐波失真。
非线性的度量方法(1)
泰勒级数系数表示法
对所关心范围内输入输出特性用泰勒展开来近 似:
y( t ) 1 x( t ) 2 x 2 ( t ) 3 x 3 ( t )
对于小的x,y(t)≈α1x,表明α1是x≈0附近 的小信号增益; α2,α3等即为非线性的系数; 非线性的大小即为确定上式中的α1,α2等系数。
MOS管作为其电阻。
VG R Vo Vi C
Vi C
A
选择VG的电压使MOS管工作在线性区,因 此根据萨氏方程有:
id K N (VGS VDS Vth )VDS 2
+ -
+ -
A
Vo
MOS管作为电阻的非线性
对上式进行泰勒展开得:
id K N (VGS 1 2 Vth )(VD VS ) K N (VD VS2 ) 2
A2 Vm A 4(VGS Vth )
可以看出MOS放大器的非线性失真是由于 输出电流与输入电压的平方关系所引起的。 当Vm很小时,二次谐波可以忽略。
放大器传输特性引起的非线性
带电阻负载的共源放大器的传输特性如图所示。
Vo VDD
Vth

微波功率放大器的非线性功率放大器的非线性共75页文档

微波功率放大器的非线性功率放大器的非线性共75页文档
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利微波功率放大器的非线性Fra bibliotek率 放大器的非线性
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)

微波功率放大器线性化技术研究

微波功率放大器线性化技术研究

摘要摘要现在,无线移动通信技术正在高速发展,高功率放大器在民用移动通信、军事指挥系统、广播电视和航空航天等领域都有着广泛的应用。

作为通信系统中最核心的组成部分,工作频率为微波甚至毫米波频段的高功率放大器输出信号的性能指标对整个通信系统有着重要影响,良好的性能对整个通信系统的传输质量有更好的保证。

但是由于器件、设计方法以及工艺的固有特性,功率放大器随着输入功率的增大,总是逐渐由线性变为非线性状态,出现非线性失真现象,严重影响输出特性。

以往单纯通过功率回退的方式将功率放大器从饱和工作状态回退到线性区,从而获得较好的线性度指标。

但是随着现代无线通信系统对功率放大器线性度的要求逐渐提高,功率放大器的输出功率越来越大,以功率回退来改善非线性失真的方法不能满足实际运用的需求。

在不影响功率放大器输出功率的前提下,人们提出了线性化技术来满足输出信号的线性指标,通过线性化技术保证功率放大器在接近饱和输出下仍然可以满足通信系统的线性度需求。

目前国内的起步较晚,国外对于如何改善功率放大器的非线性失真早在几十年前便已开始研究,不同学者根据放大器非线性产生原理提出各种解决方案,也取得了丰硕的成果。

但是对于目前针对毫米波固态功放尤其是宽带功放的线性化技术仍在研发阶段。

本文便是为了改善Ka波段固态通信功放而展开地对于线性化技术尤其是预失真技术的研究。

本文通过对肖特基二极管的分析且在经典原理电路的基础上改进电路结构,运用射频仿真软件进行计算仿真并且加工实物,最后通过与一款基于氮化镓的Ka波段50W 功放级联测试。

测试结果表明,加了线性化器后,该功放在饱和回退3dB处,三阶交调指标改善了接近6-7dB,达到小于-25dBc,能够满足通信功放的运用需求。

关键词:线性化技术;微波;功率放大器;预失真;肖特基二极管论文类型:c.应用研究西南科技大学硕士学位论文ABSTRACTNow, wireless mobile communication technology is developing at high speed, and high-power amplifiers are widely used in civil mobile communications, military command systems, broadcast television, aerospace and other fields. As the core component of the communication system, the performance index of the output signal of the high-power amplifier whose operating frequency is microwave or even millimeter wave has an important impact on the entire communication system, and good performance has a better guarantee for the transmission quality of the entire communication system . However, due to the inherent characteristics of the device, design method, and process, as the input power increases, the power amplifier always gradually changes from linear to nonlinear state, and nonlinear distortion occurs, which seriously affects the output characteristics.In the past, the power amplifier was retreated from the saturated working state to the linear region simply by power back-off to obtain a better linearity index. However, as the requirements of modern wireless communication systems for the linearity of power amp- lifiers are gradually increasing, the output power of power amplifiers is getting larger and larger, and the method of using power back-off to improve nonlinear distortion cannot meet the needs of practical applications. On the premise of not affecting the output power of the power amplifier, linearization technology is proposed to meet the linear index of the output signal, and the linearization technology is used to ensure that the power amplifier can still meet the linearity requirements of the communication system when the output is close to saturation.At present, China started late, and foreign countries have begun to improve the nonlinear distortion of power amplifiers decades ago. Different scholars have proposed various solutions based on the principle of nonlinear generation of amplifiers, and have also achieved fruitful results. However, the current linearization technology for millimeter wave solid-state power amplifiers, especially broadband power amplifiers, is still in the research and development stage. This article is to improve the research of linearization technology, especially predistortion technology, to improve the Ka-band solid-state communication power amplifier.In this paper, through the analysis of Schottky diodes and the improvement of the circuit structure on the basis of the classic principle circuit, the use of RF simulation software for calculation simulation and processing of the physical, and finally passed a cascade test with a gallium nitride-based Ka-band 50W amplifier. The test results show that after the linearizer is added, the power amplifier is at 3dB of saturation back-off, and the third-order intermodulation index is improved by close to 6-7dB, reaching less than -25dBc, which can meet the needs of the communication power amplifier.KEY WORDS: Microwave;Power amplifier;Linearization technology;Predistortion;Schottky diode TYPE OF THESIS: c.Application Researc目录目录摘要 (I)ABSTRACT (II)目录 (III)第一章绪论 ....................................................................................................................- 1 -1.1 课题研究背景及意义...............................................................................................- 1 -1.2 线性化技术的国内外研究动态...............................................................................- 2 -1.3 论文主要内容...........................................................................................................- 5 -第二章功率放大器非线性特性及线性化方法 ............................................................- 6 -2.1 功率放大器的非线性分析.......................................................................................- 6 -2.1.1 非线性幅度失真与非线性相位失真特性........................................................- 6 -2.1.2 互调失真............................................................................................................- 7 -2.1.3 记忆效应............................................................................................................- 8 -2.2 功率放大器线性度描述...........................................................................................- 8 -2.2.1 1dB压缩点 .........................................................................................................- 8 -2.2.2 三阶交调和三阶截断点....................................................................................- 9 -2.3 功率放大器的主要线性化技术...............................................................................- 9 -2.3.1 功率回退技术..................................................................................................- 10 -2.3.2 负反馈法..........................................................................................................- 10 -2.3.3 非线性器件法.................................................................................................. - 11 -2.3.4 前馈线性化技术..............................................................................................- 12 -2.3.5 预失真技术......................................................................................................- 12 -2.3.6 各种线性化技术的比较..................................................................................- 16 -2.4 小结.........................................................................................................................- 16 -第三章基于肖特基二极管的预失真技术研究 ..........................................................- 17 -3.1 肖特基二极管的非线性特性分析.........................................................................- 17 -3.2 肖特基二极管的选择及测试.................................................................................- 18 -3.3 并联式二极管预失真器.........................................................................................- 20 -3.4 串联式二极管预失真器.........................................................................................- 22 -3.5 反射式肖特基二极管预失真器.............................................................................- 24 -3.6 多级级联结构预失真.............................................................................................- 26 -3.7 小结.........................................................................................................................- 26 -第四章Ku波段预失真线性化器的设计.....................................................................- 27 -4.1 两级级联式预失真器原理分析.............................................................................- 27 -4.2 无源器件仿真.........................................................................................................- 29 -西南科技大学硕士学位论文4.2.1 偏置高阻线......................................................................................................- 29 -4.2.2 交指电容..........................................................................................................- 30 -4.3 线性化电路设计及仿真.........................................................................................- 32 -4.4 功率放大器模拟仿真.............................................................................................- 33 -4.5 线性化器和功率放大器级联仿真.........................................................................- 35 -4.6 小结.........................................................................................................................- 37 -第五章Ka波段预失真线性化器的设计.....................................................................- 38 -5.1 新型反射式预失真器的原理介绍.........................................................................- 38 -5.2 无源器件的仿真.....................................................................................................- 40 -5.2.1 交指电容..........................................................................................................- 40 -5.2.2 偏置高阻线......................................................................................................- 41 -5.2.3 射频接地结构..................................................................................................- 43 -5.2.4 3dB定向耦合器 ...............................................................................................- 44 -5.3 整体电路仿真.........................................................................................................- 46 -5.4 小结.........................................................................................................................- 48 -第六章Ka波段功放的设计与级联测试.....................................................................- 49 -6.1 Ka 50W固态功率放大器的研制............................................................................- 49 -6.1.1 功放组成..........................................................................................................- 49 -6.1.2 驱动模块..........................................................................................................- 50 -6.1.3 末级模块设计..................................................................................................- 50 -6.1.4 末级功率合成..................................................................................................- 51 -6.2 功率放大器三阶交调及AM-AM,AM-PM测试方法 .......................................- 52 -6.2.1 测试仪器..........................................................................................................- 52 -6.2.2 测试原理..........................................................................................................- 53 -6.3 预失真器与功率放大器的级联测试.....................................................................- 54 -6.3.1 功放测试..........................................................................................................- 54 -6.3.2 预失真器测试..................................................................................................- 56 -6.3.3 级联测试..........................................................................................................- 58 -6.4 小结.........................................................................................................................- 59 -第七章总结 ..............................................................................................................- 60 -致谢................................................................................................................................- 61 -参考文献............................................................................................................................- 62 -第一章绪论第一章绪论1.1课题研究背景及意义在最近的几十年里,移动通信技术不断发展,到现在已经进入了第五个技术时代。

第5章 微波系统的非线性及补偿技术

第5章 微波系统的非线性及补偿技术

ui (t ) Acos( 1t ) cos( 2t 9 uO (t ) A a1 a3 A2 cos 1t cos 2t 4 3a3 A3 cos 21 2 t cos 22 1 t 4 3a3 A3 cos 22 1 t cos 21 2 t ....... 4
2
(t ) a3ui (t )
3
A2远大于A1
因为A2远大于A1
随着干扰信号的强度的增加,系统相对于弱信号的增 益在降低,当干扰信号的强度达到一定程度时,增益几 乎接近于零,信号处于阻塞状态。
北京理工大学信息科学技术学院 2003
3 3 2 a1 A1 a3 A13 a3 A1 A2 cos(1t ) 4 2 3 2 uo (t ) a1 A1 a3 A1 A2 cos(1t ) 2
AIIP3 3 a11 3 4 a3 2 2a1a2 2 a1 3
北京理工大学信息科学技术学院 2003
级联非线性网络的IP3(2)
3 1 4 a3 2 2a1a2 2 a1 3 2 3 a11 A
IIP 3
8a 2 2 a12 2 2 31 A ,1 A ,2 1
IIP 3 IIP 3
如果每级是窄带信号,二次方项产生的和频、差 频、倍频及三次方产生的三次谐波均被滤除。
对更多级数
1 1 a12 2 2 2 A A ,1 A , 2
IIP 3 IIP 3 IIP 3
1 1 G1 IIP 3 IIP 31 IIP 32
1 1 G1 G1G2 1 1 a12 a12 12 2 2 2 2 IIP3 IIP31 IIP32 IIP32 AIIP 3 AIIP 3 ,1 AIIP 3 , 2 AIIP 3 ,3

放大器的非线性

放大器的非线性
在所关心的电压范围[0 Vi,max]内,画一条通 在所关心的电压范围 内 过实际特性曲线二个端点的直线, 过实际特性曲线二个端点的直线,该直线就为 理想的输入/输出特性曲线 输出特性曲线; 理想的输入 输出特性曲线; 求出它与实际的特性曲线间的最大偏差∆V,并 求出它与实际的特性曲线间的最大偏差 , 对最大输出摆幅V 归一化。如图所示。 对最大输出摆幅 o,max归一化。如图所示。
v s = Vm cos ωt
MOS管特性引起的非线性 管特性引起的非线性
根据饱和萨氏方程可计算出该放大器的漏极 电流为: 电流为:
I D = K N (VGS − Vth + Vm cos ωt ) 2
2 = K N (VGS − Vth ) 2 + 2 K N (VGS − Vth )Vm cos ωt + K NVm cos 2 ωt + ⋯⋯
2 = K NVid 4(VGS − Vth ) 2 − Vid
如果|V 假设输入信号为V 如果 id|<<VGS-Vth,假设输入信号为 mcosωt, 则可简化为: 则可简化为:
I D1 − I D 2
3 3 Vm cos( 3ωt ) 3Vm cos ωt − g m = g m Vm − 2 32(VGS − Vth ) 32(VGS − Vth )2
非线性的度量方法( ) 非线性的度量方法(1)
泰勒级数系数表示法
对所关心范围内输入输出特性用泰勒展开来近 似:
y( t ) = α 1 x( t ) + α 2 x 2 ( t ) + α 3 x 3 ( t ) + ⋯
对于小的x, 对于小的 ,y(t)≈α1x,表明 1是x≈0附近 ,表明α 附近 的小信号增益; 的小信号增益; α2,α3等即为非线性的系数; 等即为非线性的系数; 非线性的大小即为确定上式中的α 等系数。 非线性的大小即为确定上式中的 1,α2等系数。

微波功率放大器的线性化技术

微波功率放大器的线性化技术
研究具有适度非线性 的二端 口网络 , 使其输出 e() 。t 用式 ( )的前三项表示 , 1 即:
e() :ke( )+ke( )+ke() 。t l t 2 t 3 t
() 1
() 2
假设输人信号 由两个等振幅不同频率 g 和 g 组成 , e f . O . O 2 设 i )=A(OO t O ) + )将 e f 代人 ( CS +CS 2 t , j ) ) O (
程度上改变了生活方式 。从全球范围来看 , 无线通信用户 的年增量都在逐年大幅度增长, 无线通信
已经进人规模化发展的阶段 。如今 , 快速发展 的无线通信 已成为信息产业 中最为耀眼 的亮点, 并成为推 动社会经济发展 的强劲动力。 所有的无线通信系统都要求对相邻频段的用户产生最小的干扰 , 也就是必须在所规定的频段范围内 传送信号。但通信系统中的半 导体器件必定会使发送信号产生非线性失真 , 从而对相邻信道产生不同程 度的干扰 , 因此必须改善非线性器件 的线性化程度。微波功率放大器是发射机 系统 中非线性最强 的器 件, 因此提高功率放大器的线性度成为线性化发射机系统的关键 。其中常用的方法是采用各种线性化技
微 波功 率 放大 器 的线 性 化 技 术
石 海 霞
( 攀枝花学 院电气信息工程系 , 四川攀枝花 670 ) 10 0


随着无线通信技术 的飞速发展 , 功率放大器 的线性化 已成为一个重要 的研 究课题。本文介绍 了微波
功放非线性产生 的原 因 , 阐述 了常 见的线性化技术 , 并 以便于微波功放设计者参考 。
维普资讯
第2 第3 4卷 期
V0. 4 N . 12 . o 3
攀枝花学院学报

微波功率放大器的线性化技术研究

微波功率放大器的线性化技术研究

微波功率放大器的线性化技术研究微波功率放大器是无线通信系统中最为关键的设备之一。

在信号传输过程中,微波功率放大器所承担的任务是放大信号。

由于放大器在放大过程中会产生非线性失真,因此人们就需要对微波功率放大器进行线性化处理。

本文将探讨微波功率放大器的线性化技术研究。

一、微波功率放大器的非线性失真微波功率放大器的非线性失真主要表现为谐波失真和交叉调制失真。

谐波失真指的是放大器将输入信号的基波频率变得更高,也会产生原信号频率整数倍的谐波。

交叉调制失真是指输入的两路信号在放大过程中发生交叉调制,产生新的混频信号。

这些失真信号对无线通信系统的性能会产生极大的影响,因此需要对放大器进行线性化处理。

二、微波功率放大器的线性化技术1. 负反馈技术负反馈技术是一种通过引入反馈信号来改变放大器的放大特性,以降低非线性失真的方法。

具体做法是将部分输出信号引入到放大器的输入端,相当于让放大器输出信号与输入信号相减。

通过控制负反馈的程度,来实现对功率放大器的线性化处理。

2. 前向修正技术前向修正技术是在放大器的输入端引入与非线性组件相同的非线性元件,用其产生的反向信号进行修正。

该方法主要是通过在输入信号中加入一定量的反向信号来抵消放大器内部产生的非线性失真。

3. 预失真技术预失真技术是通过在输入端对信号进行预处理,以达到合理的输入幅度和相位来避免微波功率放大器的非线性失真。

与前向修正技术类似,预失真技术也是在输入端对信号进行处理,不同之处在于,预失真技术是将预加工电路中的信号与微波功率放大器的输出信号相减来抵消非线性失真。

三、微波功率放大器线性化技术的研究方向目前,微波功率放大器的线性化技术已经得到了广泛应用,并且取得了一定的进展。

但是,人们对微波功率放大器线性化技术的研究仍然在不断的深入中。

目前,微波功率放大器线性化技术的研究主要是针对以下几个方向:1. 高阶非线性失真的抑制。

在多载波通信系统中,非线性失真的级数往往较高,研究高阶非线性失真的抑制,对于提高微波功率放大器的性能至关重要。

微波功率放大器全解共42页

微波功率放大器全解共42页

1
0











之易安ຫໍສະໝຸດ 。46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
微波功率放大器全解
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档