2012中考复习专题--圆(A4版)
2012年全国中考数学试题分类解析--圆(精编)-推荐下载

B。 5. (2012 浙江衢州 4 分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是 10mm, 测得钢珠顶端离零件表面的距离为 8mm,如图所示,则这个小圆孔的宽口 AB 的长度为 mm. 【分析】连接 OA,过点 O 作 OD⊥AB 于点 D,则 AB=2AD, ∵钢珠的直径是 10mm,∴钢珠的半径是 5mm。 ∵钢珠顶端离零件表面的距离为 8mm,∴OD=3mm。 在 Rt△AOD 中,
(1)求证:CB∥MD;(2)若 BC=4,sinM= 2 ,求⊙O 的直径. 3
【答案】解:(1)证明:∵∠C 与∠M 是 BAD 所对的圆周角,
∴∠C=∠M。 又∵∠1=∠C,∴∠1=∠M。∴CB∥MD。
第 2 页 共 13 页
2012 年全国中考数学试题分类解析----圆
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看2与全22过,22度并22工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2012中考数学总复习知识点总结:第十二章 圆

第十二章圆考点一、圆的相关概念(3分)1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”考点二、弦、弧等与圆有关的定义(3分)(1)弦连接圆上任意两点的线段叫做弦。
(如图中的AB)(2)直径经过圆心的弦叫做直径。
(如途中的CD)直径等于半径的2倍。
(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论(3分)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧考点四、圆的对称性(3分)1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。
考点五、弧、弦、弦心距、圆心角之间的关系定理(3分)1、圆心角顶点在圆心的角叫做圆心角。
2、弦心距从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
考点六、圆周角定理及其推论(3~8分)1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2012中考数学专题复习(二)圆

专题二:圆知识要点扫描归纳一 圆的基本概念(1)圆的定义:在平面内到定点的距离等于定长的点的集合叫做圆。
定点叫做圆心,定长叫半径。
(2)确定圆的条件;①已知圆心和半径,圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; ③已知圆的直径的位置和长度可确定一个圆;(3)点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d ,则点与圆的位置关系有三种。
①点在圆外⇔d >r ; ②点在圆上⇔d=r ; ③点在圆内⇔ d <r ;(4)弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直线。
直径是圆中最大的弦。
圆心到弦的距离叫做弦心距。
(5)弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(6)等圆、等弧:能够重合的两个圆叫做等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的两条弧叫做等弧。
(7) 圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
圆绕圆心旋转任何角度,都能够与原来的图形重合,因此圆还具有旋转不变性。
二 圆中的重要定理 1.垂径定理及其推论:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.推论1:一条直线,如果具有①过圆心;②垂直于弦;③平分弦(非直径);④平分弦所对的劣弧;⑤平分弦所对的优弧.这五个性质中的任何两个性质这条直线就具有其余的三条性质.推论2:圆的平行弦所夹的弧相等.2.圆心角、弧、弦、弦心距之间的关系、定理及推论.在同圆或等圆中,四组量:①两个圆心角;②两条弧;③两条弦;④两条弦心距.其中任一组量相等,则其余三组量也分别相等.即在同圆或等圆中:圆心角相等←−−→←−−→←−−→所对所对所对弧相等弦相等弦心距相等3.圆周角①定义:顶点在圆上,且两边与圆相交的角. ②定理及推论定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角;90o 的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.推论4:圆内接四边形定理:圆的内接四边形对角互补,并且任何一个外角都等于它的内对角. 三、直线和圆的位置关系:1.直线和圆的位置关系的定义及有关概念(1)直线和圆有两个公共点时,叫做直线和圆相交(图1),这时直线叫圆的割线. (2)直线和圆有唯一公共点时,叫做直线和圆相切(图2) 这时直线叫做圆的切线,唯一的公共点叫做切点. (3)直线和圆没有公共点时,叫做直线和圆相离(图3)2.直线和圆的位置关系性质和判定如果⊙O 的半径r ,圆心O 割直线l 的距离为d ,那么(1)直线l 和⊙O 相交d r ⇔<(图 1);(2)直线l 和⊙O 相切d r ⇔=(图2);(3)直线l 和⊙O 相离d r ⇔>(图3).四、切线的判定和性质: (一)切线的判定1.切线判定定理:经过半径的外端点并且垂直于这条半径的直线是圆的切线; 2.和圆心距离等于半径的直线是圆的切线; 3.经过半径外端点且与半径垂直的直线是圆的切线. (二)切线的性质1.切线的性质定理,圆的切线垂直于经过切点的半径; 推论1:经过圆心且垂直于切线的直线必经过切点; 推论2:经过切点且垂直于切线的直线必经过圆心. 2.切线的性质:(1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)切线垂直于过切点的半径;l图1 l图2l图2l图1l图2l图3(4)经过圆心垂直于切线的直线过切点; (5)经过切点垂直于切线的直线必过圆心. 五、三角形的内切圆 1.三角形的外接圆过三角形三个顶点的圆,叫做三角形的外接圆,三条边中垂线的交点,叫做三角形的外心。
(word完整版)2012中考圆专题复习总结,推荐文档

《圆》复习知识点与典型题型知识点1:圆的定义:1. 圆上各点到圆心的距离都等于.2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.例1、(2009太原市)如图,AB是半圆O的直径,点P从点O出发,沿»OA AB BO--的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是( )例2、(2009荆门市)如图,在□ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A、E、C、F四点共圆;(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.知识点2:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念1.在同圆或等圆中,相等的弧叫做2. 同弧或等弧所对的圆周角,都等于它所对的圆心角的.3. 直径所对的圆周角是,90°所对的弦是.例3、(2008年泰州市)如图,⊿ABC内接于⊙O,AD是⊿ABC的边BC上的高,AE是⊙O 的直径,连接B E,⊿ABE与⊿ADC相似吗?请证明你的结论。
知识点3:圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量 ,那么它们所对应的其余各组量都分别 .例4、(2008呼伦贝尔)如图:=,D E ,分别是半径OA 和OB 的 中点,CD 与CE 的大小有什么关系?为什么?知识点4:垂径定理垂直于弦的直径平分 ,并且平分 ;平分弦(不是直径)的 垂直于弦,并且平分 .例5、(2009南宁)如图,AB O 是⊙的直径,303cm CD AB E CDB O ⊥∠=于点,°,⊙的半径为, 则弦CD 的长为( ) A .3cm 2B .3cmC .23cmD .9cm例6、(2008南通)已知:如图,M 是⌒AB 的中点,过点M 的弦MN 交AB 于点C ,设⊙O 的半径为4cm ,MN =43cm . (1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.知识点5:确定圆的条件三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三角形的 、这个三角形是圆的 .例7、(2009年新疆)如图,在平面直角坐标系中,已知一圆弧过小正方形网格的格点A B C ,,,已知A 点的坐标是(35)-,,则该圆弧所在圆的圆心坐标是___________.AB C MNO ·知识点6:点与圆的位置关系(1)点与圆的位置关系:点在圆内、点在圆上、点在圆外. 其中r 为圆的半径,d 为点到圆心的距离, 位置关系点在圆内 点在圆上 点在圆外数量(d 与r)的大小关系 d <rd =rd >r例8、(2009年江西省)在数轴上,点A 所表示的实数为3,点B 所表示的实数为a , ⊙A 的半径为2.下列说法中,不正确...的是( ) A .当a <5 时,点B 在⊙A 内 B .当1<a <5 时,点B 在⊙A 内 C .当a <1 时,点B 在⊙A 外 D .当a >5 时,点B 在⊙A 外知识点7:直线与圆的位置关系直线与圆的位置关系有三种:相交 、相切、相离.设r 为圆的半径,d 为圆心到直线的距离,直线与圆的位置关系如下表: 位置关系 相离 相切 相交 公共点个数 0 1 2 数量关系d >rd =rd <r例9、菱形对角线的交点O ,以O 为圆心,以O•到菱形一边的距离为半径的圆与其它几边的关系为( )A .相交B .相离C .相切D .不能确定 例10、(2009年新疆)如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .知识点8:切线的判定与性质判定切线的方法有三种:①利用切线的定义:即与圆有 惟一公共点 的直线是圆的切线。
2012年中考试题汇编 专题47_圆的有关性质

专题47:圆的有关性质一、选择题1、如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧 AmB 上的一点,则tan APB∠的值是【 A 】A .1B D1题 2题 3题 4题2、如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB=CD=8,则OP 的长为【 C 】A .3B .4C .D .243、如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内 OB上一点,∠BM0=120o,则⊙C 的半径长为【 C 】A .6B .5C .3D 。
4、如图,△ABC 内接于⊙O,OD⊥BC 于D ,∠A=50°,则∠OCD 的度数是【 A 】 A .40° B.45° C.50° D.60°5、如图,两个同心圆的半径分别为4cm 和5cm ,大圆的一条弦AB 与小圆相切,则弦AB 的长为【 C 】A .3cmB .4cmC .6cmD .8cm5题6题 7题6、如图,AB 为⊙O 的直径,弦CD⊥AB 于E ,已知CD=12,则⊙O 的直径为【 D 】A. 8B. 10C.16D.207. 如图,⊙O 的半径为2,弦AB=C 在弦AB 上,AC B 14A =,则OC 的长为【 D 】DCBAO8. 如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是【 D 】A.AE>BE B.AD BCC.∠D=12∠AEC D.△ADE∽△CBE8题 9题 10题 11题9. 如图,⊙O是△ABC的外接圆,∠B=600,0P⊥A C于点P,的半径为【 A 】.10、如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是【 B 】A.45° B.85° C.90° D.95°11、如图,点A、B、C在⊙O上,∠ACB=30°,则sin∠AOB的值是【 C 】A .B .C .D .12、如图,AB是⊙O的直径,点C在⊙O上,若∠A=400,则∠B的度数为【 C 】A、800B、600C、500D、40012题 13题 14题 15题13、如图,已知BD是⊙O直径,点A、C在⊙O上,AB=BC,∠AOB=60°,则∠BDC的度数是【 C 】A.20°B.25°C.30°D. 40°14、如图,AB是⊙O的直径,若∠BAC=350,则么∠ADC=【 B 】A.350B.550C.700D.110015、如下图OA=OB=OC且∠ACB=30°,则∠AOB的大小是【 C 】A.40°B.50°C.60°D.70°16、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是【 D 】A.80° B.160° C.100° D.80°或100°17. 如图,在⊙O 中,弦AB∥CD,若∠ABC=40°,则∠BOD=【 D 】 A .20° B.40° C.50° D.80°17题 18题 19题 20题 21题 18、如图,⊙O 是△ABC 的外接圆,连结OB 、OC ,若OB=BC ,则∠BAC 等于【 C 】 A 、60° B、45° C、30° D、20° 19. 已知AB 、CD 是⊙O 的两条直径,∠ABC=30°,那么∠BAD=【 D 】A.45°B. 60°C.90°D. 30°20.如图,在△ABC 中,AB 为⊙O 的直径,∠B = 60°,∠BOD = 100°,则∠C 的度数为【 C 】A 、50°B 、60°C 、70°D 、80°21. 如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=55°,则∠BCD 的度数为【 A 】A .35° B.45° C.55° D.75°22.如图,已知AB 为⊙O 的直径,∠CAB=300,则∠D 的度数为【 C 】 A .30°B .45°C .60°D .80°23.如图,在⊙O 中,∠ABC=500,则∠CAO 等于【 B 】A .300B .400C .500D .60022题 23题 24题 25题 26题 24.如图,⊙O 是△ABC 的外接圆,已知∠ABO=40°,则∠ACB 的大小为【 C 】 (A )40° (B )30° (C )50° (D )60°25. 如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为M ,下列结论不成立的是【 D 】A .CM=DMB . CB=DBC .∠ACD=∠ADCD .OM=MD 26.如图直径为10的⊙A 经过点C(0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则cos∠OBC 的值为【 B 】A .12 B .2C .35D .45二、填空题1. 如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 的直径,点D 为⊙O 上一点,若∠CAB=550,则∠ADC 的大小为 35 (度).1题 2题 3题 4题2.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD= 60 °.3. 如图,点A 、B 、C 、D 分别是⊙O 上四点,∠ABD=20°,BD 是直径,则∠ACB= 70 。
2012中考圆的知识

2012年全国中考数学试题分类解析汇编(159套63专题)专题48:直线与圆的位置关系一、选择题1. (2012山西省2分)如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°2. (2012宁夏区3分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】A.30o B.45o C.60o D.67.5o3. (2012浙江嘉兴、舟山4分)如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于【】A.15°B.20°C.30°D.70°4. (2012江苏无锡3分)已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】A.相切B.相离C.相离或相切D.相切或相交5. (2012福建三明4分)如图,AB是⊙O的切线,切点为A,OA=1,∠AOB=600,则图中阴影部分的面积是【】A.136π-B.133π-C.316π-D.313π-6. (2012福建泉州3分)如图,点O是△ABC的内心,过点O作EF∥AB,与AC、BC分别交于点E、F,则【】A .EF>AE+BF B. EF<AE+BF C.EF=AE+BF D.EF≤AE+BF7. (2012湖北黄石3分)如图所示,直线CD与线段AB为直径的圆相切于点D,并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为【】A. 15°B. 30°C. 60°D. 90°8. (2012湖北宜昌3分)已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是【】A.B.C.D.9. (2012湖南衡阳3分)已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为【】A.0 B.1 C.2 D.无法确定=-与⊙O的10. (2012四川凉山4分)如图,在平面直角坐标系中,⊙O的半径为1,则直线y x2位置关系是【】A.相离B.相切C.相交D.以上三种情况都有可能11. (2012山东泰安3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则»BC的长为【】A.πB.2πC.3πD.5π12. (2012广西贵港3分)如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】A.80° B.110° C.120° D.140°13. (2012广西南宁3分)如图,在等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为【】A .8B .6C .5D .414. (2012广西玉林、防城港3分)如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切与点D 、E ,过劣弧DE (不包括端点D ,E )上任一点P 作⊙O 的切线MN 与AB ,BC 分别交于点M ,N ,若⊙O 的半径为r ,则Rt △MBN 的周长为【 】A . rB .23r C .2r D . 25r 15. (2012河南省3分)如图,已知AB 为⊙O 的直径,AD 切⊙O 于点A , »»ECCB ,则下列结论不一定正确的是【 】A .BA ⊥DAB .OC ∥AEC .∠COE =2∠CAED .OD ⊥AC二、填空题1. (2012海南省3分)如图,∠APB =300,圆心在边PB 上的⊙O 半径为1cm ,OP =3cm ,若⊙O 沿BP 方向移动,当⊙O 与PA 相切时,圆心O 移动的距离为 ▲ cm .2. (2012江苏连云港3分)如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC=▲°.3. (2012江苏扬州3分)如图,PA、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上,如果ACB =70°,那么∠P的度数是▲.4. (2012福建漳州4分)如图,⊙O的半径为3cm,当圆心O到直线AB的距离为▲ cm时,直线AB 与⊙O相切.5. (2012湖北荆州3分)如图,在直角坐标系中,四边形OABC是直角梯形,BC∥OA,⊙P分别与OA、OC、BC相切于点E、D、B,与AB交于点F.已知A(2,0),B(1,2),则tan∠FDE= ▲ .6. (2012湖北孝感3分)把如图所示的长方体材料切割成一个体积最大的圆柱,则这个圆柱的体积是▲ (结果不取近似值).,7. (2012湖南怀化3分)如图,点P是⊙O外一点,PA是⊙O的切线,切点为A,⊙O的半径OA2cm∠=o,则PO= cm.P038. (2012湖南衡阳3分)如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧»BC的长为▲ cm.EFH上9. (2012四川乐山3分)如图,⊙O是四边形ABCD的内切圆,E、F、G、H是切点,点P是优弧¼异于E、H的点.若∠A=50°,则∠EPH= ▲ .10. (2012山东菏泽4分)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲度.11. (2012山东济南3分)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是▲ .12. (2012山东枣庄4分)如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB 的长为8cm,则图中阴影部分的面积为▲cm2.13. (2012江西省3分)如图,AC经过⊙O的圆心O,AB与⊙O相切与点B,若∠A=50°,则∠C=▲ 度.14. (2012甘肃兰州4分)如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P 在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是▲ .三、解答题1. (2012天津市8分)已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.(Ⅰ)如图①,若∠BAC=250,求∠AMB的大小;(Ⅱ)如图②,过点B作BD⊥AC于点E,交⊙O于点D,若BD=MA,求∠AMB的大小.2. (2012陕西省8分)如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.3. (2012广东佛山8分)如图,直尺、三角尺都和圆O相切,AB=8cm.求圆O的直径.4. (2012广东湛江10分)如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC 相切于点D.(1)求证:AD平分∠BAC;(2)若BE=2,BD=4,求⊙O的半径.5. (2012浙江丽水、金华8分)如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)如果AB=12,BC=8,求圆心O到BC的距离.6. (2012浙江宁波8分)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=12,⊙O的半径为4,求图中阴影部分的面积.7. (2012浙江衢州8分)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.(1)求证:AC是⊙O的切线;(2)已知AB=10,BC=6,求⊙O的半径r.8. (2012浙江温州10分)如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB.E是BC上的一点,以EC为直径的⊙O经过点D。
2012年中考数学试题汇编---圆的性质1
2012年全国各地中考题汇编选择题(每小题x 分,共y 分)(2012•安徽省)7. 如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧BC 的长是………………………………………………………………………【 B 】 A.5π B. 25π C. 35π D.45π(2012•达州)6、如图3,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=10,CD=8, 那么线段OE 的长为CA 、5B 、4C 、3D 、2(2012•重庆市潼南县)3. 如图,AB 为⊙O 的直径,点C 在⊙O 上,∠A =30°,则∠B 的度数为 DA .15°B . 30°C . 45° D. 60°〔2012•芜湖市〕8.如图,直径为10的⊙A 山经过点C(0,5)和点0(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( C )A. 12 B .34 C. 32 D .45CABO3题图第7题图(2012●嘉兴)6.如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( A ) (A )6(B )8(C )10(D )12(2012•乐山) 6.如图(3),CD 是⊙O 的弦,直径AB 过CD 的中点M ,若∠BOC=40°,则∠ABD=C(A) 40° (B) 60° (C )70° (D )80°(2012•泰安市)10.如图,⊙O 的弦AB 垂直平分半径OC ,若AB=,6则⊙O 的半径为A(A )2 (B )22 (C )22 (D )26〔2012•浙江省衢州〕10、如图,一张半径为1的圆形纸片在边长为a(3a ≥)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的 面积是( D )A 、π-2a B 、2a )4(π- C 、π D 、π-4(2012•金华市)10.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是 ( C ▲ )A .点(0,3)B . 点(2,3)C .点(5,1)D . 点(6,1)O1ACB 1xy第10题图(第10题)(第6题)ABO(2012•茂名市)10、如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是A A .π2 B .2π C .π21 D .π2〔2012•浙江省衢州〕8、一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB长100m ,测得圆周角∠ACB=45°,则这个人工湖的直径AD 为( B ) A 、m 250 B 、m 2100 C 、m 2150 D 、m 2200〔2012•德州市〕7.一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为1a ,2a ,3a ,4a ,则下列关系中正确的是B(A )4a >2a >1a (B )4a >3a >2a (C )1a >2a >3a (D )2a >3a >4a 〔2012•福州市〕7.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD =6,DF =4,则菱形ABCD 的边长为( D ) A.42 B.32 C.5 D.7〔2012•山东省烟台市〕11、如图,△ ABC 内接于⊙O ,D 为线段AB 的中点,延长OD 交⊙O 于点E ,连接AE ,BE ,则下列五个结论①AB ⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤,正确结论的个数是BA 、2B 、3C 、4D 、5A BC DEFO(第6题)第10题图 ABC DO(第8题)二、填空题(每小题x分,共y分)(2012•安徽省)13.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是___5______.(2012•天津)(1S) 如图,AD,AC分别是⊙O的直径和弦.且∠CAD=30°.OB⊥AD,交AC于点B.若OB=5,则BC的长等于_____5____。
2012年全国部分地区中考试题分类汇编——圆
一、选择题1. (2012•遵义)如图,半径为1cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )A.πcm 2B.32πcm 2C.21cm 2 D .32cm 2 2. (2012•自贡)如图,圆锥形冰淇淋盒的母线长是13cm ,高是12cm ,则该圆锥形底面圆的面积是( )A .10πcm 2B .25πcm 2C .60πcm 2D .65πcm 23.(2012•珠海)如果一个扇形的半径是1,弧长是3π ,那么此扇形的圆心角的大小为( ) A .30° B .45° C .60° D .90°4. (2012•重庆)已知:如图,OA ,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20°5. (2012•漳州)如图,一枚直径为4cm 的圆形古钱币沿着直线滚动一周,圆心移动的距离是( )A .2πcmB .4πcmC .8πcmD .16πcm6. (2012•湛江)一个扇形的圆心角为60°,它所对的弧长为2πcm ,则这个扇形的半( )A .6cmB .12cmC . 23cm D.6cm7. (2012•云南)如图,AB 、CD 是⊙O 的两条弦,连接AD 、BC .若∠BAD=60°,则∠BCD 的度数为( )A .40°B .50°C .60°D .70°8. (2012•宜昌)已知⊙O 的半径为5,圆心O 到直线l 的距离为3,则反映直线l 与⊙O 的位置关系的图形是( )A .B .C .D .9.(2012•岳阳)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,AD 与CD 相交于D ,BC 与CD 相交于C ,连接OD 、OC ,对于下列结论:①OD 2=DE •CD ;②AD+BC=CD ;③OD=OC ;④S ABCD 梯形 =21 CD •OA ;⑤∠DOC=90°,其中正确的是( ) A .①②⑤ B .②③④ C .③④⑤ D .①④⑤10. (2012•巴中)已知两圆的半径分别为1和3,当这两圆内含时,圆心距d 的范围是( )A .0<d <2B .1<d <2C .0<d <3D .0≤d <211. (2012•北海)已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为( )A .外离B .相交C .内切D .外切12. (2012•成都)已知两圆外切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径是( )A .8cmB .5cmC .3cmD .2cm13. (2012•赤峰)已知两圆的半径分别为3cm 、4cm ,圆心距为8cm ,则两圆的位置关系( )A .外离B .相切C .相交D .内含14. (2012•哈尔滨)如图,⊙O 是△ABC 的外接圆,∠B=60°,OP ⊥AC于点P ,OP=23,则⊙O 的半径为( )A .43B .63C .8D .1215. (2012•大庆)如图所示,已知△ACD 和△ABE 都内接于同一个圆,则∠ADC+∠AEB+∠BAC=( )A .90°B .180°C .270°D .360°16. (2012•黄冈)如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,已知CD=12,BE=2,则⊙O 的直径为( )A .8B .10C .16D .2017. (2012•陕西)如图,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且AB=CD=8,则OP 的长为( )A .3B .4C .32D .42二、填空题1. (2012•成都)如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=23,0C=1,则半径OB 的长为________________ .2. (2012•郴州)圆锥底面圆的半径为3cm ,母线长为9cm ,则这个圆锥的侧面积为___________________ cm2(结果保留π).3. (2012•长沙)在半径为1cm 的圆中,圆心角为120°的扇形的弧长是_____________ cm .4. (2012•鞍山)如图,△ABC 内接于⊙O ,AB 、CD 为⊙O 直径,DE⊥AB 于点E ,sinA=21 ,则∠D 的度数是____________ .5. (2012•广元)平面上有⊙O 及一点P ,P 到⊙O 上一点的距离最长为6cm ,最短为2cm ,则⊙O 的半径为______________ cm .6. (2012•大连)如图,△ABC 是⊙O 的内接三角形,若∠BCA=60°,则∠ABO=___________°.7. (2012•淮安)如图,⊙M 与⊙N 外切,MN=10cm ,若⊙M 的半径为6cm ,则⊙N 的半径为________________ cm .8. (2012•怀化)如图,点P 是⊙O 外一点,PA 是⊙O 的切线,切点为A ,⊙O 的半径OA=2cm ,∠P=30°,则PO= ________________cm .9. (2012•黑龙江)如图,已知AB 是⊙O 的一条直径,延长AB 至点C ,使AC=3BC ,CD 与⊙O 相切,切点为D ,若CD=33,则线段BC=____________ .10. .(2012•南平)如图,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上,∠ADC=68°,则∠BAC=_____________ °.三、解答题1.(2012•遵义)如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.(1)判断AC与⊙O的位置关系,并证明你的结论;(2)若OA=5,OD=1,求线段AC的长.2.(2012•自贡)如图AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)若AB=2,∠P=30°,求AP的长;(2)若D为AP的中点,求证:直线CD是⊙O的切线.3.(2012•株洲)如图,已知AD为⊙O的直径,B为AD延长线上一点,BC与⊙O切于C点,∠A=30°.求证:(1)BD=CD;(2)△AOC≌△CDB.4.(2012•资阳)如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线;如果你解答这个问题有困难,可以参考如下信息:为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在进行小组交流的时候,小明说:“设OP交AC于点G,证△AOG∽△CPG”;小强说:“过点C作CH⊥AB于点H,证四边形CHOP是矩形”.5.(2012•肇庆)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连接BE、AD交于点P.求证:(1)D是BC的中点;(2)△BEC∽△ADC;(3)AB•CE=2DP•AD.6. (2012•珠海)已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP 对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.7. (2012•湛江) 如图,已知点E 在直角△ABC 的斜边AB 上,以AE 为直径的⊙O 与直角边BC 相切于点D .(1)求证:AD 平分∠BAC ;(2)若BE=2,BD=4,求⊙O 的半径.8. (2012•岳阳)如图所示,在⊙O 中,C A D A ,弦AB 与弦AC 交于点A ,弦CD 与AB交于点F ,连接BC .(1)求证:AC 2=AB •AF ;(2)若⊙O 的半径长为2cm ,∠B=60°,求图中阴影部分面积.9. (2012•永州)如图,AC 是⊙O 的直径,PA 是⊙O 的切线,A 为切点,连接PC 交⊙O 于点B ,连接AB ,且PC=10,PA=6.求:(1)⊙O 的半径;(2)cos ∠BAC 的值.10.(2012•扬州)如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.(1)求证:AC平分∠BAD;(2)若AC=25,CD=2,求⊙O的直径.11.(2012•孝感)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.12.(2012•厦门)已知:⊙O是△ABC的外接圆,AB为⊙O的直径,弦CD交AB于E,∠BCD=∠BAC.(1)求证:AC=AD;(2)过点C作直线CF,交AB的延长线于点F,若∠BCF=30°,则结论“CF一定是⊙O的切线”是否正确?若正确,请证明;若不正确,请举反例.13. (2012•温州)如图,△ABC 中,∠ACB=90°,D 是边AB 上一点,且∠A=2∠DCB .E 是BC 边上的一点,以EC 为直径的⊙O 经过点D .(1)求证:AB 是⊙O 的切线;(2)若CD 的弦心距为1,BE=EO ,求BD 的长.14. (2012•威海)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E .K 为C A 上一动点,AK ,DC 的延长线相交于点F ,连接CK ,KD .(1)求证:∠AKD=∠CKF ;(2)若AB=10,CD=6,求tan ∠CKF 的值.15. (2012•铜仁地区)如图,已知⊙O 的直径AB 与弦CD相交于点E ,AB ⊥CD ,⊙O 的切线BF 与弦AD 的延长线相交于点F .(1)求证:CD ∥BF ;(2)若⊙O 的半径为5,cos ∠BCD=54 ,求线段AD 的长.16.(2012•福州)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)若∠B=60°,CD=23,求AE的长.17.(2012•大庆)如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.18.(2012•大庆)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.。
2012中考数学试题和答案分类汇编:圆
2012中考数学试题及答案分类汇编:圆一、选择题1. (天津3分)已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是(A) 相交 (B) 相离 (C) 内切 (D) 外切【答案】D 。
【考点】圆与圆位置关系的判定。
【分析】两圆半径之和3+4=7,等于两圆圆心距12O O =7,根据圆与圆位置关系的判定可知两圆外切。
2.(内蒙古包头3分)已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是A 、相交B 、外切C 、外离D 、内含【答案】B 。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
∵两圆的直径分别是2厘米与4厘米,∴两圆的半径分别是1厘米与2厘米。
∵圆心距是1+2=3厘米,∴这两个圆的位置关系是外切。
故选B 。
3,(内蒙古包头3分)已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于A 、30°B 、60°C 、45°D 、50°【答案】【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。
【分析】连接OC ,∵OC=OA ,,PD 平分∠APC ,∴∠CPD=∠DPA ,∠CAP=∠ACO 。
∵PC 为⊙O 的切线,∴OC ⊥PC 。
∵∠CPD+∠DPA+∠CAP +∠ACO=90°,∴∠DPA+∠CAP =45°,即∠CDP=45°。
故选C 。
4.(内蒙古呼和浩特3分)如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为A. 14B. 15C. 32D. 23【答案】B 。
(完整版)中考数学专题复习圆压轴八大模型题(学生用)(最新整理)
2.(2018·云南昆明)如图,AB 是⊙O 的直径,ED 切⊙O 于点 C,AD 交⊙O 于点 F,∠AC 平分∠BAD,连接 BF. (1)求证:AD⊥ED; (2)若 CD=4,AF=2,求⊙O 的半径.
圆压轴题八大模型题(二)
引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题 的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化 与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用 技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。
直线 CM 是⊙O 的切线.
【变式运用】
1.(2018·四川宜宾)如图,AB 是半圆的直径,AC 是一条弦,D 是 AC 的中点,DE⊥AB 于点 E 且 DE 交 AC 于点 F,DB 交 AC 于点 G,若 = ,则
= .
(图 1-2)
2.(2018·泸州)如图,在平行四边形 ABCD 中,E 为 BC 边上的一点,且 AE 与 DE 分别 平分∠BAD 和∠ADC。(1)求证:AE⊥DE;(2)设以 AD 为直径的半圆交 AB 于 F,连接 DF
求 PA 和 AD.
求 AD、PD、PA 的长.
【典例】 (2018·四川乐山)如图,P 是⊙O 外的一点,PA、PB 是⊙O 的两条切线,A、B 是切点,PO 交 AB 于点 F,延长 BO 交⊙O 于点 C,交 PA 的延长交于点 Q,连结 AC. (1)求证:AC∥PO;
(2)设 D 为 PB 的中点,QD 交 AB 于点 E,若⊙O 的半径为 3,CQ=2,求 的值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考复习专题---圆一、选择题1.(2011年安徽省)如图,⊙O 半径是1,A 、B 、C 是圆周上的三点,∠BAC =36°,则劣弧⌒BC 的长是 ( ) A .5πB .25π C .35π D .45π2.(2011年重庆)如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数等于 ( )A .60°B .50°C .40°D .30° 3.(2011年黄冈)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠PCA = ( ) A .30° B .45° C .60° D .67.5°4.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y x =的图象被⊙P 的弦AB的长为,则a 的值是( )A. B .22+ C. D.2 5.(2011年舟山)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是 ( ) A .两个外离的圆 B .两个外切的圆 C .两个相交的圆 D .两个内切的圆6.(2011年天门)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点,作△ABC 的外接圆⊙O ,则⌒AC 的长等于 ( )ABCD7.(2011年金华)如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是 ( )A .点(0,3)B .点(2,3)C .点(5.1)D .点(6,1) 8.如图,⊙O 的弦CD 与直径AB 相交,若∠BAD 50=°,则∠ACD= °. 9.(2011年潍坊)如图,半径为1的小圆在半径为9的大圆内滚动,且终始与大圆相切,则小圆扫过的阴影部分的面积为( )A .17π B .32π C .49π D .80π 10.(2011年滨州)如图,在平面直角坐标系中,正方形ABCO 的顶点A 、C 分别在y 轴、x 轴上以AB 为弦的⊙M 与x 轴相切,若点A 的坐标为(0,8),则圆心M 的坐标为 ( ) A .(-4,5) B .(-5,4) C .(5,-4) D .(4.-5)11.如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的⌒EF 上,若OA =1,∠1=∠2,则扇形OEF 的面积为 ( )A.6π B. 4π C. 3π D. 32π(第5题图) (第8题图) (第7题图) (第6题图)(第4题图) (第3题图) (第2题图) (第1题图)12.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为2,则该半圆的半径为()A. (4cmB. 9 cmC.D.二、填空题13.若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为__________.14.(2011年天津)如图,AD、AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B,若OB=5,则BC的长等于_______.15.(2011年杭州)如图,点A,B,C,D都在⊙O上,⌒CD的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=______°.16.(2011年台州)如图,CD是⊙O的直径,弦AB⊥CD,垂足为点M,AB=20,分别以DM、CM 为直径作两个大小不同的⊙O1和⊙O2,则图中所示阴影部分的面积为_______(结果保留π).17.如图,圆柱底面半径为2 cm,高为9π cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,则棉线最短为_______ cm.18.(2011年宿迁)如图,把一个半径为12 cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是_______cm.19.(2010湖北孝感)如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦AB与小半圆N相切于点F,且AB∥CD,AB=4,设⌒CD、⌒CE的长分别为x、y,线段ED的长为z,则z(x+y)= . 20.(2011年成都)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为⌒BD,则图中阴影部分的面积是_______.21.(2011年十堰)如图,一个半径为的圆经过一个半径为4的圆的圆心,则图中阴影部分的面积为______.22.(2011年福州)以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图,如果两个扇形的圆弧部分(⌒AB和⌒CD)相交,那么实数a 的取值范围是.(第19题图)(第20题图)(第21题图)(第22题图)(第14题图)(第15题图)(第16题图)(第17题图)(第18题图)(第9题图)(第10题图)EFOABC21(第11题图)(第12题图)23. (2011浙江省)如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A. 12个单位B. 10个单位C.4个单位D. 15个单位24. (2011甘肃兰州)如图,⊙O 过点B 、C ,圆心O 在等腰Rt△ABC 的内部,∠BAC=90°,OA=1,BC=6。
则⊙O 的半径为 ( ) A .6B .13CD.25.(2011广东茂名)如图,⊙1o 、⊙2o 相内切于点A ,其半径分别是8和4,将⊙2o 沿直线1o 2o 平移至两圆相外切时,则点2o 移动的长度是 ( )A .4B .8C .16D .8 或1626. (2011安徽)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是 .27. (2011浙江省舟山)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②OE CE =;③△ODE∽△ADO ;④AB CE CD ⋅=22.其中正确结论的序号是 .28. (2011山东日照)如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是29.(2011山东枣庄)如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a ,0),半径为5.如果两圆内含,那么a 的取值范围是________. 三、解答题30.(2011年襄阳)如图,在⊙O 中,弦BC 垂直于半径OA ,垂足为E ,D 是优弧⌒BC 上一点,连接BD ,AD ,OC ,∠ADB =30°. (1)求∠AOC 的度数;(2)若弦BC =6 cm ,求图中阴影部分的面积.第24题图 第25题图 第26题图 第23题图 第27题图 第28题图 第29题图31.(2011年北京市)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF =12∠CAB . (1)求证:直线BF 是⊙O 的切线. (2)若AB =5,sin ∠CBF,求BC 和BF 的长. 32.(2011年陕西省)如图,在△ABC 中,∠B =60°,⊙O 是△ABC 的外接圆,过点A 作⊙O 的切线,交CO 的延长线于点P ,CP 交⊙O 于点D . (1)求证:AP =AC ;(2)若AC =3,求PC 的长.33. (2011江苏盐城)如图,在△ABC 中,∠C = 90°,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F . (1)若AC =6,AB = 10,求⊙O 的半径; (2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四边形, 试判断四边形OFDE 的形状,并说明理由.A34.(2011山东德州)观察计算:当5a =,3b =时, 2a b+的大小关系是_ _____________.当4a =,4b =时,2a b+_________________. 探究证明:如图所示,ABC ∆为圆O 的内接三角形,AB 为直径,过C 作CD AB ⊥于D ,设AD a =,BD =b .(1)分别用,a b 表示线段OC ,CD ;(2)探求OC 与CD 表达式之间存在的关系 . (用含a ,b 的式子表示).归纳结论:根据上面的观察计算、探究证明,你能得出2a b+与的大小关系是:_________________________.实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.35.(2011浙江衢州)木工师傅可以用角尺(如图),测量并计算出圆的半径r .用角尺的较短边紧靠⊙O ,并使较长边与⊙O 相切于点C .假设角尺的较长边足够长,角尺的顶点B ,较短边8cm AB =.若读得BC 长为a cm ,请用含a 的代数式表示r . (并写出a 的取值范围)36. (2011山东潍坊)如图,AB是半圆O的直径,AB=2. 射线AM、BN为半圆的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D 点做半圆的切线DP,切点为P,与BN相交于点Q.(1)求证:△ABC∽ΔOFB;(2)当ΔABD与△BFO的面积相等时,求BQ的长;(3)求证:当D在AM上移动时(A点除外),点Q始终是线段BF的中点.(4)判断:点A、P、F三点是否共线,并说明理由.(5)连接CF,判断直线CF与⊙O的位置关系,并请说明理由。
37.(2011山东济宁)如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM 于点D,交BN于点C,F是CD的中点,连接OF,(1)求证:OD∥BE;(2)猜想:OF与CD有何数量关系?并说明理由.(3)延长BE交AM于点G点,求证AD=DG。