第十八章隐函数定理及其应用
数学分析18.2隐函数定理及其应用之隐函数组

第十八章 隐函数定理及其定理1隐函数组一、隐函数组的概念 设方程组⎩⎨⎧==0v)u,y,G(x,0v)u,y,F(x,, 其中F,G 为定义在V ⊂R 4上的四元函数. 若存在平面区域D,E ⊂R 2,对于D 中每一点(x,y), 有唯一的(u,v)∈E, 使得(x,y,u,v)∈V, 且满足该方程组,则称由该方程组确定了隐函数组:⎩⎨⎧==y)g(x,v y)f(x,u , (x,y)∈D, (u,v)∈E, 并有⎩⎨⎧≡≡0y))g(x,y),f(x,y,G(x,0y))g(x,y),f(x,y,F(x,, (x,y)∈D.二、隐函数组定理分析:设概念中的F,G,u,v 都可微,分别对x,y 求偏导数可得:⎩⎨⎧=++=++0v G u G G 0v F u F F x v x u x x v x u x 和⎩⎨⎧=++=++0v G u G G 0v F u F F y v y u yy v y u y , 解出u x ,v x ,u y ,v y 的充分条件是vuv u G G F F ≠0,也可记作:)v (u,)G (F,∂∂≠0, 即 函数F,G 关于变量u,v 的函数行列式(或称雅可比行列式)不为0.定理18.4:(隐函数组定理)若(1)F(x,y,u,v)与G(x,y,u,v)在以P 0(x 0,y 0,u 0,v 0)为内点区域V ⊂R 4上连续; (2)F(x 0,y 0,u 0,v 0)=0, G(x 0,y 0,u 0,v 0)=0(初始条件); (3)在V 上F, G 具有一阶连续偏导数; (4)J=)v (u,)G (F,∂∂在点P 0不等于0,则 1、存在点P 0的某一(四维空间)邻域U(P 0)⊂V ,在U(P 0)上方程组⎩⎨⎧==0v)u,y,G(x,0v)u,y,F(x,惟一地确定了一个定义在点Q 0(x 0,y 0)的某一(二维空间)邻域U(Q 0)的两个二元隐函数u=f(x,y), v=g(x,y) 使得当(x,y)∈U(Q 0)时,u 0=f(x 0,y 0), v 0=g(x 0,y 0);(x,y,f(x,y),g(x,y))∈U(P 0), 且 F(x,y,f(x,y),g(x,y))≡0, G(x,y,f(x,y),g(x,y))≡0; 2、f(x,y), g(x,y)在U(Q 0)上连续;3、f(x,y), g(x,y)在U(Q 0)上有一阶连续偏导数,且x u ∂∂=-)v (x ,)G (F,J 1∂∂,x v ∂∂=-)x (u,)G (F,J 1∂∂; y u ∂∂=-)v (y,)G (F,J 1∂∂,y v ∂∂=-)y (u,)G (F,J 1∂∂.例1:讨论方程组⎩⎨⎧=++==+=01xy -v -u v)u,y,G(x,0y -x -v u v)u,y,F(x,222在点P 0(2,1,1,2)近旁能确定怎样的隐函数组,并任求一组隐函数组的偏导数.解:F,G 在R 4上连续,F(2,1,1,2)=0, G(2,1,1,2)=0. 求F,G 的所有偏导数 得:F u =2u, F v =2v, F x =-2x, F y =2v, G u =-1, G v =1, G x =-y, G y =-x. ∵在P 0处的所有六个雅可比行列式中,仅)v (x ,)G (F,∂∂=0. ∴只有x,v 难以肯定能否作为以y,u 为自变量的隐函数,其余任两个变量都可在P 0近旁作为以另两个变量为自变量的隐函数. 对原方程组分别求关于u,v 的偏导数,得⎩⎨⎧==0xy -yx -1-0y -2xx -2u u u u u ;⎩⎨⎧==0yx -xy -10y -2xx -2v v v v v ,解得 x u =y -x 21x u 22+,y u =-y -x 2yu 2x 22+; x v =y -x 21x v 22+,y v =-y-x 2yv2x 22-.例2:设函数f(x,y), g(x,y)具有连续偏导数,而u=u(x,y), v=v(x,y)是由方程组u=f(ux,v+y), g(u-x,v 2y)=0确定的隐函数,试求x u ∂∂,yv∂∂. 解:记F=f(ux,v+y)-u, G=g(u-x,v 2y), 则有⎪⎪⎭⎫ ⎝⎛v uy xv u y x G G G G F F F F =⎪⎪⎭⎫⎝⎛-2122121212vyg g g v g -f 1xf f uf ; 从而有 J uv =21212vyg g f 1xf -=2xyvf 1g 2-2yvg 2+f 2g 1; J xv =21212vyg g -f uf =2yuvf 1g 2-f 2g 1;J uy =22121g v g f 1xf -=xv 2f 1g 2-v 2g 2+f 2g 1.∴x u ∂∂=-uvxvJ J =122212112g f +2yvg -g 2x yvf g yuvf 2g f -;y v ∂∂=-uv uy J J =122211221222g f +2yvg -g 2xyvf g -f g f xv -g v .三、反函数组与坐标变换设函数组u=u(x,y), v=v(x,y)是定义在xy 平面点集B ⊂R 2上的两个函数, 对每一点P(x,y)∈B, 由方程组u=u(x,y), v=v(x,y)有uv 平面上惟一的一点Q(u,v)∈R 2与之对应,我们称方程组u=u(x,y), v=v(x,y)确定了B 到R 2的一个映射(变换),记作T. 这时映射T 可写成如下函数形式: T :B →R 2, P(x,y)↦Q(u,v),或写成点函数形式Q=T(P), P ∈B, 并 称Q(u,v)为映射T 下P(x,y)的象,而P 则是Q 的原象. 记B 在映射T 下的象集为B ’=T(B).若T 为一一映射(每一原象只对应一个象,且不同的原象对应不同的象), 则每一点Q ∈B ’, 由方程组u=u(x,y), v=v(x,y)都有惟一一点P ∈B 与之相对应,由此产生新的映射称为T 的逆映射(逆变换), 记作T -1, 有T -1:B ’→B, Q ↦P ,或P=T -1(Q), Q ∈B ’, 即存在定义在B ’上的函数组:x=x(u,v),y=y(u,v),把它代入原函数组,恒有 u ≡u(x(u,v),y(u,v)), v ≡v(x(u,v),y(u,v)),这时称函数组x=x(u,v),y=y(u,v)为原函数组的反函数组.定理18.5:(反函数组定理)设函数组u=u(x,y), v=v(x,y)及其一阶偏导数在某区域D ⊂R 2上连续,点P 0(x 0,y 0)是D 的内点,且 u 0=u(x 0,y 0),v 0=v(x 0,y 0),P )y (x,)v (u,∂∂≠0,则在点P 0’(u 0,v 0)的某一邻域U(P 0’)上存在惟一的一组反函数x=x(u,v),y=y(u,v),使得x 0=x(u 0,v 0),y 0=y(u 0,v 0), 且当(u,v)∈U(P 0’)时,有(x(u,v),y(u,v))∈U(P 0),及 u ≡u(x(u,v),y(u,v)), v ≡v(x(u,v),y(u,v)).该反函数组在U(P 0’)上存在连续的一阶偏导数,且u x ∂∂=y v ∂∂/)y (x ,)v (u,∂∂,v x ∂∂=-y u ∂∂/)y (x ,)v (u,∂∂;u y ∂∂=x v ∂∂/)y (x ,)v (u,∂∂,v y ∂∂=-x u ∂∂/)y (x ,)v (u,∂∂. 即互为反函数组的雅可比行列式互为倒数.例3:平面上的点P 的直角坐标(x,y)与极坐标(r,θ)之间的坐标变换公式为:x=rcos θ,y=rsin θ, 讨论该函数组所确定的反函数组. 解:由于)θ(r,)y (x ,∂∂=rcos θsin θrsin θ-θcos =r, ∴除原点外,原函数组所确定的反函数组为:r=22y x +, θ=⎪⎩⎪⎨⎧<+>0x x yarctanπ0x x y arctan ,.例4:直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为:x=rsin φcos θ, y=rsin φsin θ, z=rcos φ. 讨论该函数组所确定的反函数组. 解:∵)θφ,(r,)z y,(x ,∂∂=0rsin φ-cos φcos θ rsin φsin θ rcos φsin θsin φsin θrsin φcos θ rcos φcos θ sin φ-=r 2sin φ, ∴在r 2sin φ≠0, 即除去z 轴上的一切点,原方程组确定的反函数组为: r=222z y x ++, θ=arctan x y, φ=arccos rz .例5:设φ为二元连续可微函数, 对于函数组u=x+at, v=x-at, 试把弦振动方程a 222x φ∂∂=22tφ∂∂ (a>0)变换成以u,v 为自变量的形式.解:∵u x =v x =1, u t =v t =a, ∴)t (x ,)v (u,∂∂=-2a ≠0, ∴所设变换存在逆变换. 又du=u x dx+u t dt=dx+adt, dv=dx-adt, 由微分形式不变性得 d φ=φu du+φv dv=(φu +φv )dx+a(φu -φv )dt, 即φx =φu +φv , φt =a(φu -φv ). ∴以u,v 为自变量, 有φxx =u ∂∂(φu +φv )u x +v ∂∂(φu +φv )v x =φuu +φvu +φuv +φvv =φuu +2φuv +φvv ; φtt =a u ∂∂(φu -φv )u t +a v∂∂(φu -φv )v t =a 2(φuu -2φuv +φvv ). ∴a 2φxx -φtt =4a 2φuv =0.∴将弦振动方程变换为以u,v 作新自变量的方程为:vu φ2∂∂∂=0.注:此方程的解的形式为φ=f(u)+g(v)=f(x+at)+g(x-at).习题1、试讨论方程组⎪⎩⎪⎨⎧=++=+2z y x 2z y x 222在点(1,-1,2)的附近能否确定形如x=f(z), y=g(z)的隐函数组.解:令F(x,y,z)=x 2+y 2-2z 2, G(x,y,z)=x+y+z-2, 则(1)F,G 在点(1,-1,2)的某邻域内连续; (2)F(1,-1,2)=0, G(1,-1,2)=0满足初始条件;(3)F x =2x, F y =2y, F x =-z, G x =G y =G z =1均在点(1,-1,2)的邻域内连续; (4)(1,-1,2))y (x,)G (F,∂∂=)2,1,1(G )2,1,1(G )2,1,1(F )2,1,1(F y x y x ----=1122-=4≠0,∴原方程组在点(1,-1,2)的附近能确定形如x=f(z), y=g(z)的隐函数组.2、求下列方程组所确定的隐函数组的导数:(1)⎩⎨⎧=+=++az y x a z y x 222222, 求dx dy ,dx dz ;(2)⎩⎨⎧==0xu -v -y 0yv -u -x 22, 求x u ∂∂,x v ∂∂,y u ∂∂,dy dv; (3)⎩⎨⎧-=+=)y v ,x u (g v y)v f(ux,u 2, 求x u ∂∂,x v∂∂. 解:(1)设方程组确定的隐函数组为y=y(x), z=z(x).对方程组两边关于x 求导得:⎪⎩⎪⎨⎧=+=++dx dzadx dy y 22x 0dx dz z 2dx dy y 22x ,解得:dxdy =2y 2x -a ,dx dz =-2z a.(2)设方程组确定的隐函数组为u=u(x,y), v=v(x,y).方程组关于x 求偏导得:⎪⎩⎪⎨⎧=∂∂∂∂=∂∂∂∂0x u x -u -x v 2v -0x v y -x u 2u -1, 解得:⎪⎪⎩⎪⎪⎨⎧+=∂∂+=∂∂4uv -xy x 2u x v xy-4uv yu 2v x u 2; 方程组关于y 求偏导得:⎪⎪⎩⎪⎪⎨⎧=∂∂∂∂=∂∂∂∂0y u x -y v 2v -10yv y -v -y u 2u -, 解得:⎪⎪⎩⎪⎪⎨⎧+=∂∂+=∂∂xy-4uv xv 2u y v 4uv -xy y 2v y u 2.(3)方程组关于x 求偏导得:⎪⎩⎪⎨⎧∂∂+-∂∂=∂∂∂∂+∂∂+=∂∂x v 2yvg g x u g xv x v f x u xf uf x u211211, 解得:⎪⎪⎩⎪⎪⎨⎧---=∂∂-=∂∂1221111112211221g f -)2yvg -)(1xf (1)g xf (1g uf x v g f -)2yvg -)(1xf (1g f -)2yvg -(1uf x u.3、求下列函数组所确定的反函数组的偏导数:(1)⎩⎨⎧-=+=ucosv e y usinv e x uu , 求u x ,v x ,u y ,v y ;(2)⎪⎩⎪⎨⎧+=+=+=3322v u z v u y v u x , 求z x . 解:(1)方程组关于u 求偏导得⎩⎨⎧-=+=cosv e y sinve x uu u u , 方程组关于v 求的偏导得⎩⎨⎧==usinv y ucosvx vv ,∴)v (u,)y (x ,∂∂=x u y v -x v y u =usinv(e u +sinv)-ucosv(e u -cosv)(1+e u sinv-e u cosv)u. 由反函数组定理得: u x =vy ∂∂/)v (u,)y (x ,∂∂=cosv)u e sinv e 1(usinv u u -+=cosv e sinv e 1sinv u u -+;v x =-u y ∂∂/)v (u,)y (x ,∂∂=cosv)ue sinv e 1(e -cosv uu u-+; u y =-v x ∂∂/)v (u,)y (x ,∂∂=cosv)u e sinv e 1(ucosv -u u -+=cosv e sinv e 1cosv -u u -+;v y =u x ∂∂/)v (u,)y (x ,∂∂=cosv)ue sinv e 1(sinv e uu u -++. (2)方程组关于x 求偏导得⎪⎩⎪⎨⎧+=+=+=x 2x 2xxx xx vv 3u u 3z vv 2uu 20v u 1, 解得:z x =-3uv.4、设函数z=z(x,y)是由方程组x=e u+v , y=e u-v , z=uv(u,v 为参量)所定义的函数,求当u=0,v=0时的dz.解:∵dz=z x d x +z y d y =(u x v+uv x )dx+(u y v+uv y )dy, ∴当u=0, v=0时,dz=0.5、以u,v 为新的自变量变换下列方程: (1)(x+y)x z ∂∂-(x-y)y z∂∂=0, 设u=ln 22y x +,v=arctan xy ;(2)x 222x z ∂∂-y 222yz ∂∂=0, 设u=xy, v=y x.解:(1)∵x u ∂∂=22y x x +, y u ∂∂=22y x y +; x v ∂∂=-22yx y +, y v∂∂=22y x x +,∴x z ∂∂=x u u z ∂∂∂∂+x vv z ∂∂∂∂=u z y x x 22∂∂+-vz y x y 22∂∂+; y z ∂∂=y u u z ∂∂∂∂+y vv z ∂∂∂∂=u z y x y 22∂∂++vz y x x 22∂∂+; 代入原方程得: u z y x y)x (x 22∂∂++-v z y x y)y(x 22∂∂++-u z y x y)-y(x 22∂∂+-v z y x y)-x (x 22∂∂+=0, 化简得:u z ∂∂=vz∂∂.(2)∵x u ∂∂=y, y u∂∂=x; x v ∂∂=y 1, yv ∂∂=-2y x ,∴x z ∂∂=x u u z ∂∂∂∂+x v v z ∂∂∂∂= y u z ∂∂+v z y 1∂∂; y z ∂∂=y u u z ∂∂∂∂+y v v z ∂∂∂∂= x u z ∂∂-vzy x 2∂∂; ∴22x z ∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x z x =y x u u z 22∂∂ ⎝⎛∂∂+⎪⎪⎭⎫∂∂∂∂∂x v v u z 2+x u v u z y 12∂∂ ⎝⎛∂∂∂+⎪⎪⎭⎫∂∂∂∂x v v z 22 =y 2uz22∂∂+2v u z 2∂∂∂+v z y 1222∂∂;22y z ∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂y z y =x y u u z 22∂∂ ⎝⎛∂∂+⎪⎪⎭⎫∂∂∂∂∂y v v u z 2+v z y 2x 3∂∂-y u v u z y x 22∂∂ ⎝⎛∂∂∂+⎪⎪⎭⎫∂∂∂∂y v v z 22=x 2u z 22∂∂-v u z y 2x 222∂∂∂+v z y x 2242∂∂+vzy 2x 3∂∂; 代入原方程得: x 2(y 2u z 22∂∂+2v u z 2∂∂∂+v z y 1222∂∂22x z ∂∂)-y 2(x 2u z 22∂∂-v u zy 2x 222∂∂∂+v z y x 2242∂∂+vz y 2x 3∂∂)=0,化简得:2xy v u z 2∂∂∂=v z ∂∂, 即2u v u z 2∂∂∂=vz∂∂.6、设函数u=u(x,y)由方程组u=f(x,y,z,t), g(y,z,t)=0, h(z,t)=0所确定,求x u ∂∂,yu∂∂. 解:方程组关于x 求偏导数得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂∂∂+∂∂+=∂∂0x t h x z h 0x tg xz g x t f x z f f x ut z t zt z x , 解得:x u ∂∂=f x ; 方程组关于y 求偏导数得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂+∂∂+∂∂+=∂∂0y t h y z h 0y tg y z g g y t f y z f f y u t z t zy t z y ,解得:y u∂∂=f y + ⎝⎛∂∂ t),z ( f) ,h (/⎪⎪⎭⎫∂∂)t (z,)h (g,g y .7、设u=u(x,y,z), v=v(x,y,z)和z=z(s,t), y=y(s,t), z=z(s,t)都有连续的一阶偏导数,证明:)t (s,v)u,(∂∂=)t (s,)y (x ,)y (x ,v)u,(∂∂∂∂+)t (s,)z (y,)z (y,v)u,(∂∂∂∂+)t (s,)x (z,)x (z,v)u,(∂∂∂∂. 证:原式右端=t s t s y x y xy y x x v v u u +tst s z y z yz z y y v v u u +tst s x z x z x x z z v v u u =s y s x s y s x y v x v y u x u ++ t y t x t y t x y v x v y u x u +++s z s y s z s y z v y v z u y u ++ t z t y t z t y z v y v z u y u +++s x s z s x s z x v z v x u z u ++t x t z tx t z x v z v x u z u ++=(u x x s +u y y s +u z z s )(v x x t +v y y t +v z z t )-(u x x t +u y y t +u z z t )(v x x s +v y y s +v z z s )=u s v t -u t v s =tst s v v u u =)t (s,v)u,(∂∂=左端. 8、设u=tanx y , v=sinxy. 证明:当0<x<2π, y>0时,u,v 可以用来作为曲线坐标,解出x,y 作为u,v 的函数,画出xy 平面上u=1,v=2所对应的坐标曲线,计算)y (x ,v)u,(∂∂和v)u,()y (x ,∂∂并验证它们互为倒数.证:∵u x =-xsin y2, u y =tanx 1; v x =-x sin ycosx 2, v y =sinx 1;∴)y (x ,v)u,(∂∂=yx y x v v u u =-sinxy. 当0<x<2π, y>0时,u x , u y , v x , v y 都连续,且)y (x ,v)u,(∂∂<0, 由反函数组定理, 知存在反函数组x=x(u,v), y=y(u,v),从而u,v 可以用作为曲线坐标. 由u=tanx y , v=sinx y 得,x=arccos vu , y=22u -v . u=1, v=2分别对应xy 平面上坐标曲线y=tanx, y=2sinx, 如图.又)v (u,y)x ,(∂∂=2222222u -v v u -v u-v u -1v u v u -1v 1-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-v 1=-y sinx 与)y (x ,v)u,(∂∂=-sinx y 互为倒数.9、将以下式中的(x,y,z)变换成球面坐标(r,θ,φ)的形式:△1u=2x u ⎪⎭⎫ ⎝⎛∂∂+2y u ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂, △2u=22x u ∂∂+22y u ∂∂+22z u ∂∂. 解:将⎪⎩⎪⎨⎧===rcos θz sin φ rsin θy cos φ rsin θx 看成由⎪⎩⎪⎨⎧===z z ρsinφy ρcosφx ①和⎪⎩⎪⎨⎧===φφrsin θρrcos θz ②复合而成. 对变换①有2x u ⎪⎭⎫ ⎝⎛∂∂+2y u ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂=2ρu ⎪⎪⎭⎫ ⎝⎛∂∂+22φu ρ1⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂; 对变换②有2ρu ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂+22φu ρ1⎪⎪⎭⎫ ⎝⎛∂∂=2r u ⎪⎭⎫ ⎝⎛∂∂+22θu r 1⎪⎭⎫ ⎝⎛∂∂+222φu θsin r 1⎪⎪⎭⎫ ⎝⎛∂∂; ∴△1u=2x u ⎪⎭⎫ ⎝⎛∂∂+2y u ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂=2r u ⎪⎭⎫ ⎝⎛∂∂+22θu r 1⎪⎭⎫ ⎝⎛∂∂+222φu θsin r 1⎪⎪⎭⎫ ⎝⎛∂∂. 又对变换①有22x u ∂∂+22y u ∂∂+22z u ∂∂=22ρu ∂∂+ρu ρ1∂∂+222φu ρ1∂∂+22z u ∂∂; 对变换②有22ρu ∂∂+22z u ∂∂=22r u ∂∂+r u r 1∂∂+222θu r 1∂∂; ∵r=22z ρ+,θ=arctan z ρ, ∴ρu ∂∂=ρr r u ∂∂∂∂+ρθθu ∂∂∂∂=r ρr u ⋅∂∂+2r z θu ⋅∂∂=sin θr u ∂∂+θu r cos θ∂∂;∴△2u=22x u ∂∂+22yu ∂∂+22z u ∂∂=22r u ∂∂+r u r 2∂∂+222θu r 1∂∂+θu sin θr cos θ2∂∂+2222φu θsin r 1∂∂.10、设u=2r x , v=2r y , w=2rz , 其中r=222z y x ++. (1)试求以u,v,w 为自变量的反函数组. (2)计算)z y,(x ,w)v,u,(∂∂. 解:(1)∵u 2+v 2+w 2=4222r z y x ++=2r 1, ∴r 2=222wv u 1++; ∴x=ur 2=222w v u u ++, y=vr 2=222w v u v ++, y=wr 2=222w v u w ++. (2))z y,(x ,w)v,u,(∂∂=422444422444422r z 2r r 2yz r 2xz r 2yz r y 2r r 2xy r 2xz r 2xy r x 2r ---------=-6r 1.。
分析方法第十八章隐函数定理及其应用

分析方法第十八章隐函数定理及其应用隐函数定理是微积分中的一个重要工具,用于研究隐含在方程中的函数的性质。
它的应用非常广泛,涉及到物理、经济、生态等领域的多个问题。
本文将对隐函数定理进行分析,并探讨其在实际问题中的应用。
首先,让我们来了解什么是隐函数定理。
隐函数定理是微积分中的一个重要定理,用于研究隐含在方程中的函数的性质。
具体而言,隐函数定理指出,如果一个方程组满足一定条件,那么在该方程组的一些解附近,可以找到一个连续可微的函数来表示其中一个变量,而其他变量可以表示为该函数的函数。
简单来说,通过隐函数定理,我们可以找到一个表达式来表示方程中的其中一变量,而不需要对其他变量进行明确的表达。
隐函数定理的应用非常广泛。
在物理学中,隐函数定理常常用于研究物体的运动轨迹以及力学系统的动力学方程。
例如,当我们考虑一个物体在空气中自由下落的过程时,我们可以建立一个方程组来描述空气摩擦对物体的影响。
通过隐函数定理,我们可以得到物体下落的具体函数表达式,进而研究其速度、加速度等参数的变化规律。
在经济学中,隐函数定理常用于分析供需关系、市场均衡等经济问题。
例如,当我们考虑一个市场中商品供需的关系时,我们可以建立一个供需方程组来描述供给量与需求量的关系。
通过隐函数定理,我们可以找到一个函数来表示市场价格与供给量和需求量之间的关系,从而分析价格的变化对供需的影响。
在生态学中,隐函数定理被应用于研究物种之间的相互作用。
例如,当我们考虑一个食物链系统中物种数量的变化时,我们可以建立一个方程组来描述物种之间的捕食关系。
通过隐函数定理,我们可以找到一个函数来表示物种数量与时间的关系,进而研究物种的数量变化趋势以及物种之间相互作用的影响。
总而言之,隐函数定理是微积分中重要的工具,广泛应用于实际问题的分析中。
通过该定理,我们可以建立方程组,从中找到隐含的函数表示方式,并利用这些函数表达式来研究各种实际问题。
无论是物理、经济还是生态领域,隐函数定理都扮演着重要的角色,帮助我们深入了解和解决各种复杂的问题。
第十八章隐函数定理及其应用共92页

§8-5 隐函数的 微分法
每与一一个元方函程数都的能情形类x2似,y2多1元函0
也有隐函数。确定一个隐函数吗?
如果在方程式 F(x,y,z)0中, (x此,y外) , 隐 函R数2时不,一相定应都地能总显有化满。足 该方程的唯一的 z 值存在 , 则称该方 程在 内确定隐函数 zf(x, y)。
dGz dz dxz d x
G x0
当 (F,G) 0 时,方程组有唯一解:
(y, z)
dy
dx
(F ,G) (x, z)
(F ,G) ( y, z)
dz
dx
(F ,G) ( y, x)
(F ,G) ( y, z)
这样我们实际上已找到了求方程组确 定的隐函数的偏导数的公式(之一)。
F F
二、由一个方程确定
的隐函数的求导法
定理 2 (隐函数存在定理)
设 1. F (x ,y ,z) C 1 (U x 0 ,y 0 (,z0 );)
2. F(x0,y0,z0)0;
3. F z(x0,y0,z0)0,
则方程 F(x,y,z)0在 U(x(0, y0))内唯一 确定一个函数 zf(x,y) C 1(U x0,y (0)) 且 z0f(x0,y0),F(x,y,f(x,y))0。
xn
Fn x1
F n
Fn
x2
xn
当所出现的函数均有一阶连续偏导数 时,雅可比行列式有以下两个常用的性质:
1. (u1,u2,,un)(x1,x2,,xn)1. (x1,x2,,xn)(u1,u2,,un)
2. (u1,u2,,un) (t1,t2, ,tn) (u1,u2,,un) (x1,x2,,xn). (x1,x2,,xn) (t1,t2,,tn)
第十八章 隐函数定理及其应用

∂z f ′ + yz ⋅ f2′ = 1 ∂x 1 − f1′ − xy ⋅ f 2′
x3 + y 3 + z 3 = 3 xyz
x , 所确定的隐函数,求 u ′ . x 解:在方程两端对 求导,其中视 z 为 x, y 的函数,
′ 3 x 2 + 3 z 2 ⋅ z′ x = 3 yz + 3 xy ⋅ z x ,
z′ x =
由此得
x 2 − yz xy − z 2 .
⎞ ⎟ ⎠.
− a 2 − y 2 (a + a 2 − y 2 )
a − y2
2
,
d2 y = d x2 从而
− a2 − y2 ⋅
dy y2 dy + ⋅ 2 2 dx a − y dx a2 y = a2 − y2 (a 2 − y 2 )2
- 2 -
∂z ∂z (5) x + y + z − 2x + 2 y − 4z − 5 = 0 ,求 ∂x , ∂y ; 2 2 2 解:设 F ( x, y, z) = x + y + z − 2x + 2 y − 4z − 5 ,则
=
y a 2 − y 2 (a + a 2 − y 2 )
−ay 2 − a 2 a 2 − y 2 − a (a 2 − y 2 ) + ay 2 + y 2 a 2 − y 2
分析方法 第十八章 隐函数定理及其应用

2)F ( x0 , y0 ) 0; 3)Fy ( x0 , y0 ) 0,
则在点P0 ( x0 , y0 )的某邻域U ( P0 )内方程F ( x, y) 0确定唯一一个有连续导 数的隐函数
y f ( x),且f ( x) Fx ( x, y) . Fy ( x, y)
F ( x, y, u, v) 0 G( x, y, u, v) 0
既有恒等式组
成立, 则该方程组确定了定义 在D上的一组隐函数 , 分别表示为 u f ( x, y), v g ( x, y)
F ( x, y, f ( x, y), g ( x, y)) 0 , G( x, y, f ( x, y), g ( x, y)) 0
于是在原点的某邻域内 方程F ( x, y) 0确定了唯一一个有连续 导数的隐函数 y f ( x),
且 f ( x)
Fx 1 2 . Fy 1 1 cos y 2 cos y 2 例2 讨论笛卡尔叶形线 x3 y3 3axy 0所确定的隐函数 y f ( x)的一阶与二阶导数 .
4 1)在以P ( x , y , u , v ) 为内点的区域 V R 内具有一阶连续偏导; 0 0 0 0 0
2) F ( x0 , y0 , u0 , v0 ) 0, G( x0 , y0 , u0 , v0 ) 0(称为初始条件 );
( F , G) 3) J 0. (u , v ) P0
第十八章 隐函数定理及其应用
一 隐函数概念 以前我们学习的函数都 是用一个解析表达式给 出的, 如
§1一个方程所确定的隐函数
y 2x3 3x sin 2 x e x , z 3x 2 y 5e xy 6 sin xy 1.
隐函数定理及其应用

第18章 隐函数定理及其应用第1节 隐函数求导法在此之前,我们所接触的函数,其表达式大多是自变量的某个算式,如)sin sin (sin ,1zx yz xy eu x y xyz++=+=这种形式的函数称为显函数。
但在不少场合常会遇到另一种形式的函数,其自变量与因变量之间的对应法则是由一个方程式所决定的。
这种形式的函数称为隐函数。
本节将介绍由一个方程0),,(=z y x F 所确定的隐函数求导法以及由方程组⎩⎨⎧==0),,,,(0),,,,(v u z y x G v u z y x F 所确定的隐函数求导法。
一 一个方程0),,(=z y x F 的情形在《数学分析》上册,第六章 导数与微分(第三节 高阶导数和其它求导法则P149)——曾对形如0),(=y x F 的方程,认定是x y 是的函数,介绍过隐函数求导法)。
不过,那里只是对具体方程未求的.利用偏函数符号, 我们可以得出一般的结果。
根据复合函数求导法则, 在),(y x F 两边对x 求导, 得到:yX y Y X F F y F y F F -=≠⇒=⋅+''00时,当方程中的变量多于2个时, 例如, 设方程0),,(=z y x F 确定了y x z 和是的函数, 并且?,yz xz y x z ∂∂∂∂前,如何求的偏导数都存在,在此,关于对0),,(=z y x F 求导,利用链式法则:,关于y x0(0);0(0)z z FFF F z zF F z z y xF F F F xz xxxz yyzz∂∂∂∂∂∂∂∂∂∂∂∂+=⇒=-≠+=⇒=-≠∂∂∂∂∂∂∂∂∂∂∂∂说明:(1) 求yz xz ∂∂∂∂,需要假定,0)(≠∂∂z F zF ,这一假设是很重要的;(2) 这里只用到了“链式法则”;(3) 对0),,(=z y x F 求导,只在假定y x z 和是的函数的情况下,求导数,如何确定),(y x z z =。
第十八章 隐函数定理及其应用

同理可得
(F ,G ) (u , x ) (F ,G ) ( y, v) (F ,G ) (u , y )
2u 1 0 1 2u 1
1 0 1 2v 0 1
v
1
x u 1
1
1
4 uv 1
2u
2u 4 uv 1
F z G z
(F ,G ) F y G ( y, z) y F z G z
F (F ,G ) y G ( y, x) y
F x G x
问题2
依葫芦画瓢哦 !
将 x 或 y 看成常数 G ( x, y, u , v) 0 F ( x, y, u , v) 0
将 yx看成常数 将 看成常数
FF G ) ) (( , ,G
FF G ) ) (( , ,G
u u y x
( y v v ) ( x, , )
v v y x
( F, G ) ) (F ,G uu v v ) (( , , )
设 F (x z
y z , xyz ) 0 确定 z z ( x , y ), F1 yz F 2
F y
F1 xz F 2 ,
z y
F1 xz F 2
F1 xy F 2
定理
(隐函数存在定理)
1
X 设 1. F ( F, u ) C (U( X 0 , u 0 )) ; 请同学们自己将上面的隐函数存在
则方程 F ( x , 且 z0
y, z) 0
在 U((
x 0 , y 0 )) 内唯一
1
高等数学第18章第1节隐函数(精品文档)

第十八章 隐函数定理及其应用§1 隐函数一 、 隐函数概念(P144)在这之前我们所接触的函数,其表达式大多是自变量的某个算式,如 12+=x y ,).sin sin (sin zx yz xy eu xyz++=这种形式的函数称为显函数。
但在不少场合常会遇到另一种形式的函数,其自变量与因变量之间的对应法则是由一个方程式或方程组所确定。
这种形式的函数我们称为隐函数。
☆ 本节将介绍由一个方程0),,(=z y x F 所确定的隐函数求导法;☆ 下一节将介绍由方程组⎩⎨⎧==0),,,,(0),,,,(v u z y x G v u z y x F 所确定的隐函数求导法。
设R X ⊂,R Y ⊂,函数.:R Y X F →⨯注.:1)定义中的)(x f y = ,,J y I x ∈∈仅表示定义域为I,值域为J 的函数,而y 未必能 用x 的显式表示2)隐函数是表达函数的又一种方法. 是用隐形关系式表示函数关系的一种。
结论..:若由..0),(=y x F 确定..的隐函数为.....)(x f y = .,J y I x ∈∈则成立恒等式.......,0))(,(I x x F x F ∈≡例: 方程 01=-+y xy ,当x 定义在),1()1,(+∞---∞ 上时,可得隐函数)(x f y =。
其显函数形式为:.11xy +=例: 圆方程122=+y x 能确定一个定义在[]1,1+-上,函数值不小于0的隐函数21x y -=;又能确定另一个定义在[]1,1+-上,函数值不大于0的隐函数21x y --=。
注.:1)隐函数必须在指出确定它的方程以及y x ,的取值范围后才有意义。
2)当然在不至于产生误解的情况下,其取值范围也可不必一一指明。
3)并不是任一方程都能确定出隐函数,如方程.022=++c y x当0>c 时,就不能确定任何函数()x f ,使得[].0)(22≡++c x f x而只有当0≤c 时,才能确定隐函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八章 隐函数定理及其应用一、证明题1.证明:设方程F(x,y)=0所确定的隐函数y=f(x)具有二阶导数,则当 时,有2.设tgxy u =,x sin y v =.证明:当2x 0π<<,y>0时,u,v 可以用来作为曲线坐标;解出x,y 作为u,v 的函数;画出xy 平面上u=1,v=2所对应的坐标曲线;计算()()y ,x v ,u ∂∂和()()v ,u y ,x ∂∂并验证它们互为倒数. 3.将以下式子中的(x,y,z)变换成球面从标()ϕθ,,r 的形式:2221z u y u x u u ⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∆, 2222222zu y u x u u ∂∂+∂∂+∂∂=∆. 4.证明对任意常数ρ,ϕ,球面2222z y x ρ=++与锥面2222z tg y x ⋅ϕ=+是正交的.5.试证明:函数()y ,x F 在点()000y ,x P 的梯度恰好是F 的等值线在点P 0的法向量(设F 有连续一阶偏导数).6.证明:在n 个正数的和为定值条件x 1+x 2+x 3+…+x n =a 下,这n 个正数的乘积x 1x 2x 3…x n 的最大值为n nha .并由此结果推出n 个正数的几何中值不大于算术中值.≤⋅⋅⋅⋅n n 21x x x nx x x n 21+⋅⋅⋅++二、计算题1.方程 能否在原点的某邻域内确定隐函数 或 .2.方程 在点(0,1,1)的某邻域内能否确定出一个变量为另外两个变量的函数.3.求下列方程所确定的隐函数的偏导数:(1)x+y+z= ,求Z 对x,y 的一阶与二阶偏导数;(2)F(x,x+y,x+y+z)=0,求 , 和 .4.设f 是一元函数,试问应对f 提出什么条件,方程2f(xy)= f(x)+f(x)在点(1,1)的邻域内就能确定出唯一的y 为x 的函数?1.试讨论方程组⎪⎩⎪⎨⎧=++=+2z y x 2z y x 22y 在点(1,-1,2)的附近能否确定形如x=f(z),y=g(z)的隐函数组.5.求下列方程组所确定的隐函数组的导数:(1)⎪⎩⎪⎨⎧=+=++axy x a z y x 222222, 求x y ∂∂,x z ∂∂; (2)⎪⎩⎪⎨⎧=--=--0xu v y 0yv u x 2222, 求x u ∂∂,x v ∂∂,y u ∂∂,y v ∂∂. (3)()()⎩⎨⎧-=+=y v ,x u g v y v .ux f u 2, 求x u ∂∂,x v ∂∂. 6.求下列函数组所确定的反函数组的偏导数:(1)⎪⎩⎪⎨⎧-=+=,v cos u e y ,v sin u e x u u 求y x y x v ,v ,u ,u ; (2)⎪⎩⎪⎨⎧+==+=3322v u z v u y ,v u x ,求x z .7.设函数z=z(x,y)由方程组v u e x +=,v u e y -=,uv z =(u,v 为参量)所定义的函数,求当u=0,v=0时的dz.8.设u,v 为新的自变量变换下列方程:(1)()()0yz y x x z y x =∂∂--∂∂+,设22y x ln u +=, x y arctg v =; (2)0y z y x z x 222222=∂∂-∂∂,设xy u =,y x v =. 9.设函数u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0所确定,求x u ∂∂和yu ∂∂.10.设2r x u =,2r y v =,2rz w =,其中222z y x r ++=, (1)试求以u,v,w 为自变量的反函数组;(2)计算()()z ,y ,x w ,v ,u ∂∂. 11.求平面曲线323232a y x =+()0a >上任何一点处的切线方程,并证明这些切线被坐标轴所截取的线段等长.12.求下列曲线在所示点处的切线方程与法平面:(1)t sin a x 2=,t cos sin b y =,t cos c z 2=在点4t π=; (2)9z y 3x 2222=++.222y x 3z +=,在点(1,-1,2).13.求下列曲线在所示点处的切平面与切线:(1)0e y z x 2==-,在点(1,1,2); (2)1c z b y a x 222222=++,在点(3a ,3b 3c ). 14.求曲面上过点21z 3y 2x 222=++的切平面,使它平行于平面0z 6y 4x =++.15.在曲线x=t,2t y =,3t z =上求出一点,使曲线在此点处的切线平行于平面x+2y+z=4.16.求函数222z y x x u ++=在点M(1,2,-2)处沿曲线x=t,2t 2y =,4t 2z -=在该点切线方向上的方向导数. 17.确定正数λ,使曲面λ=xyz 与椭球面++2222b y a x 1cz 22=在某一点相切. 18.求曲面x z y x 222=++的切平面,使其垂直于平面2z 21y x =--和2z y x =--. 19.求两曲面F(x,y,z)=0,G(x,y,z)=0的交线在xy 平面上的投影曲线的切线方程.20.应用拉格朗日乘数法,求下列函数的条件极值:(1)f(x,y)=22y x +,若x+y-1=0(2)f(x,y,z,t)=x+y+z+t,若xyzt=c 4(其中x,y,z,t>0,c>0);(3)f(x,y,z)=xyz,若222z y x ++=1,x+y+z=0.21.(1)求表面积一定而体积最大的长方体.(2)求体积一定而表面积最小的长方体.22.(1)求空间一点()000z ,y ,x 到平面Ax+By+Cz+D=0的最短距离.(2)求原点到二平面1111d z c y b x a =++, ++y b x a 22 22d z c =的交线的最短距离.23.设a 1,a 2,…,a n 为已知的n 个正数,求()n 21x ,,x ,x f ⋅⋅⋅=∑=n1k k k x a 在限制条件1x x x 2n 2221≤+⋅⋅⋅++ 下的最大值.24.求函数 ()n 21x ,,x ,x f ⋅⋅⋅=2n 2221x x x +⋅⋅⋅++在条件∑==n1k k k 1x a,()n ,,2,1k ,0a k ⋅⋅⋅=> 下的最小值.三、考研复习题1.方程()222x 1x y --=0在那些点的邻域内可唯一地确定连续可导的隐函数y=()x f ?2.设函数f(x)在区间(a,b)内连续,函数()y ϕ在区间(c,d)内连续,而()0y >ϕ'.问在怎样的条件下,方程()()x f y =ϕ能确定函数y=()()x f 1-ϕ.并研究例子:(Ⅰ)siny+shy=x;(Ⅱ)x sin e 2y -=-. 3.设f(x,y,z)=0,z=g(x,y),试求dx dy ,dxdz . 4.已知G 1(x,y,z),G 2(x,y,z),f(x,y)都是可微的, g i (x,y)= G i (x,y, f (x,y)),(i=1,2) 证明: ()()y ,x g ,g 21∂∂=2z2y 2x 1z 1y 1x y x G G G G G G 1 f ,f --. 5.设x=f(u,v,w),y=g(u,v,w),z=h(u,v,w).求x u ∂∂,y u ∂∂,zu ∂∂. 6.试求下列方程所确定的函数的偏导数x u ∂∂,y u ∂∂: (1)x 2+u 2=f(x,u)+g(x,y,u)(2)u=f(x+u,yu)7.据理说明:在点(0,1)近傍是否存在连续可微的f(x,y)和g(x,y).满足f(0,1)=1,g(0,1)=-1,且()[]3y ,x f +xg(x,y)-y=0, ()[]3y ,x g +yf(x,y)-x=0.8.设()0000u ,z ,y ,x 满足方程组()()()()u F z f y f x f =++()()()()u G z g y g x g =++()()()()u H z h y h x h =++这里所有的函数假定有连续的导数.(1)说出一个能在该点邻域内确定x,y,z 作为u 的函数的充分条件;(2)在f(x)=x.,g(x)=x 2,h(x)=x 3的情形下,上述条件相当于什么?9.求下列由方程所确定的陷函数的极值:(1)1y 2xy 2x 22=++(2)()()222222y x a y x -=+,(a>0) 10.设f=F(x)和一组函数()v ,u x ϕ=,()v ,u y φ=,那么由方程()()()v ,u F v ,u ϕ=ϕ可以确定函数v=v(u).试用u,v ,du dv ,22du v d 表示dx dy ,22dx y d . 11.试证明:二次型()z ,y ,x f =Fxy 2Ezx 2Dyz 2Cz By Ax 222+++++在单位球面 1z y x 222=+上的最大值和最小值恰好是矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ΦC D E D B F E F A 的最大特征值和最小特征值.12.设n 为自然数,0y ,x ≥,用条件极值方法证明:2y x n n + ()2y x n+≥ 13.求出椭球22ax +22b y +22c z =1在第一卦限中的切平面与三个坐标面所成四面体的最小体积. 14.设()0000z ,y ,x P 是曲面F(x,y,z)=1的非奇异点,F 在U(p 0)可微,且为n 次齐次函数.证明:此曲面在P 0处的切平面方程为()0x P XF +()0y P yF +()0z P ZF =n.。