数学分析第十八章隐函数定理及其应用复习
数学分析18.2隐函数定理及其应用之隐函数组

第十八章 隐函数定理及其定理1隐函数组一、隐函数组的概念 设方程组⎩⎨⎧==0v)u,y,G(x,0v)u,y,F(x,, 其中F,G 为定义在V ⊂R 4上的四元函数. 若存在平面区域D,E ⊂R 2,对于D 中每一点(x,y), 有唯一的(u,v)∈E, 使得(x,y,u,v)∈V, 且满足该方程组,则称由该方程组确定了隐函数组:⎩⎨⎧==y)g(x,v y)f(x,u , (x,y)∈D, (u,v)∈E, 并有⎩⎨⎧≡≡0y))g(x,y),f(x,y,G(x,0y))g(x,y),f(x,y,F(x,, (x,y)∈D.二、隐函数组定理分析:设概念中的F,G,u,v 都可微,分别对x,y 求偏导数可得:⎩⎨⎧=++=++0v G u G G 0v F u F F x v x u x x v x u x 和⎩⎨⎧=++=++0v G u G G 0v F u F F y v y u yy v y u y , 解出u x ,v x ,u y ,v y 的充分条件是vuv u G G F F ≠0,也可记作:)v (u,)G (F,∂∂≠0, 即 函数F,G 关于变量u,v 的函数行列式(或称雅可比行列式)不为0.定理18.4:(隐函数组定理)若(1)F(x,y,u,v)与G(x,y,u,v)在以P 0(x 0,y 0,u 0,v 0)为内点区域V ⊂R 4上连续; (2)F(x 0,y 0,u 0,v 0)=0, G(x 0,y 0,u 0,v 0)=0(初始条件); (3)在V 上F, G 具有一阶连续偏导数; (4)J=)v (u,)G (F,∂∂在点P 0不等于0,则 1、存在点P 0的某一(四维空间)邻域U(P 0)⊂V ,在U(P 0)上方程组⎩⎨⎧==0v)u,y,G(x,0v)u,y,F(x,惟一地确定了一个定义在点Q 0(x 0,y 0)的某一(二维空间)邻域U(Q 0)的两个二元隐函数u=f(x,y), v=g(x,y) 使得当(x,y)∈U(Q 0)时,u 0=f(x 0,y 0), v 0=g(x 0,y 0);(x,y,f(x,y),g(x,y))∈U(P 0), 且 F(x,y,f(x,y),g(x,y))≡0, G(x,y,f(x,y),g(x,y))≡0; 2、f(x,y), g(x,y)在U(Q 0)上连续;3、f(x,y), g(x,y)在U(Q 0)上有一阶连续偏导数,且x u ∂∂=-)v (x ,)G (F,J 1∂∂,x v ∂∂=-)x (u,)G (F,J 1∂∂; y u ∂∂=-)v (y,)G (F,J 1∂∂,y v ∂∂=-)y (u,)G (F,J 1∂∂.例1:讨论方程组⎩⎨⎧=++==+=01xy -v -u v)u,y,G(x,0y -x -v u v)u,y,F(x,222在点P 0(2,1,1,2)近旁能确定怎样的隐函数组,并任求一组隐函数组的偏导数.解:F,G 在R 4上连续,F(2,1,1,2)=0, G(2,1,1,2)=0. 求F,G 的所有偏导数 得:F u =2u, F v =2v, F x =-2x, F y =2v, G u =-1, G v =1, G x =-y, G y =-x. ∵在P 0处的所有六个雅可比行列式中,仅)v (x ,)G (F,∂∂=0. ∴只有x,v 难以肯定能否作为以y,u 为自变量的隐函数,其余任两个变量都可在P 0近旁作为以另两个变量为自变量的隐函数. 对原方程组分别求关于u,v 的偏导数,得⎩⎨⎧==0xy -yx -1-0y -2xx -2u u u u u ;⎩⎨⎧==0yx -xy -10y -2xx -2v v v v v ,解得 x u =y -x 21x u 22+,y u =-y -x 2yu 2x 22+; x v =y -x 21x v 22+,y v =-y-x 2yv2x 22-.例2:设函数f(x,y), g(x,y)具有连续偏导数,而u=u(x,y), v=v(x,y)是由方程组u=f(ux,v+y), g(u-x,v 2y)=0确定的隐函数,试求x u ∂∂,yv∂∂. 解:记F=f(ux,v+y)-u, G=g(u-x,v 2y), 则有⎪⎪⎭⎫ ⎝⎛v uy xv u y x G G G G F F F F =⎪⎪⎭⎫⎝⎛-2122121212vyg g g v g -f 1xf f uf ; 从而有 J uv =21212vyg g f 1xf -=2xyvf 1g 2-2yvg 2+f 2g 1; J xv =21212vyg g -f uf =2yuvf 1g 2-f 2g 1;J uy =22121g v g f 1xf -=xv 2f 1g 2-v 2g 2+f 2g 1.∴x u ∂∂=-uvxvJ J =122212112g f +2yvg -g 2x yvf g yuvf 2g f -;y v ∂∂=-uv uy J J =122211221222g f +2yvg -g 2xyvf g -f g f xv -g v .三、反函数组与坐标变换设函数组u=u(x,y), v=v(x,y)是定义在xy 平面点集B ⊂R 2上的两个函数, 对每一点P(x,y)∈B, 由方程组u=u(x,y), v=v(x,y)有uv 平面上惟一的一点Q(u,v)∈R 2与之对应,我们称方程组u=u(x,y), v=v(x,y)确定了B 到R 2的一个映射(变换),记作T. 这时映射T 可写成如下函数形式: T :B →R 2, P(x,y)↦Q(u,v),或写成点函数形式Q=T(P), P ∈B, 并 称Q(u,v)为映射T 下P(x,y)的象,而P 则是Q 的原象. 记B 在映射T 下的象集为B ’=T(B).若T 为一一映射(每一原象只对应一个象,且不同的原象对应不同的象), 则每一点Q ∈B ’, 由方程组u=u(x,y), v=v(x,y)都有惟一一点P ∈B 与之相对应,由此产生新的映射称为T 的逆映射(逆变换), 记作T -1, 有T -1:B ’→B, Q ↦P ,或P=T -1(Q), Q ∈B ’, 即存在定义在B ’上的函数组:x=x(u,v),y=y(u,v),把它代入原函数组,恒有 u ≡u(x(u,v),y(u,v)), v ≡v(x(u,v),y(u,v)),这时称函数组x=x(u,v),y=y(u,v)为原函数组的反函数组.定理18.5:(反函数组定理)设函数组u=u(x,y), v=v(x,y)及其一阶偏导数在某区域D ⊂R 2上连续,点P 0(x 0,y 0)是D 的内点,且 u 0=u(x 0,y 0),v 0=v(x 0,y 0),P )y (x,)v (u,∂∂≠0,则在点P 0’(u 0,v 0)的某一邻域U(P 0’)上存在惟一的一组反函数x=x(u,v),y=y(u,v),使得x 0=x(u 0,v 0),y 0=y(u 0,v 0), 且当(u,v)∈U(P 0’)时,有(x(u,v),y(u,v))∈U(P 0),及 u ≡u(x(u,v),y(u,v)), v ≡v(x(u,v),y(u,v)).该反函数组在U(P 0’)上存在连续的一阶偏导数,且u x ∂∂=y v ∂∂/)y (x ,)v (u,∂∂,v x ∂∂=-y u ∂∂/)y (x ,)v (u,∂∂;u y ∂∂=x v ∂∂/)y (x ,)v (u,∂∂,v y ∂∂=-x u ∂∂/)y (x ,)v (u,∂∂. 即互为反函数组的雅可比行列式互为倒数.例3:平面上的点P 的直角坐标(x,y)与极坐标(r,θ)之间的坐标变换公式为:x=rcos θ,y=rsin θ, 讨论该函数组所确定的反函数组. 解:由于)θ(r,)y (x ,∂∂=rcos θsin θrsin θ-θcos =r, ∴除原点外,原函数组所确定的反函数组为:r=22y x +, θ=⎪⎩⎪⎨⎧<+>0x x yarctanπ0x x y arctan ,.例4:直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为:x=rsin φcos θ, y=rsin φsin θ, z=rcos φ. 讨论该函数组所确定的反函数组. 解:∵)θφ,(r,)z y,(x ,∂∂=0rsin φ-cos φcos θ rsin φsin θ rcos φsin θsin φsin θrsin φcos θ rcos φcos θ sin φ-=r 2sin φ, ∴在r 2sin φ≠0, 即除去z 轴上的一切点,原方程组确定的反函数组为: r=222z y x ++, θ=arctan x y, φ=arccos rz .例5:设φ为二元连续可微函数, 对于函数组u=x+at, v=x-at, 试把弦振动方程a 222x φ∂∂=22tφ∂∂ (a>0)变换成以u,v 为自变量的形式.解:∵u x =v x =1, u t =v t =a, ∴)t (x ,)v (u,∂∂=-2a ≠0, ∴所设变换存在逆变换. 又du=u x dx+u t dt=dx+adt, dv=dx-adt, 由微分形式不变性得 d φ=φu du+φv dv=(φu +φv )dx+a(φu -φv )dt, 即φx =φu +φv , φt =a(φu -φv ). ∴以u,v 为自变量, 有φxx =u ∂∂(φu +φv )u x +v ∂∂(φu +φv )v x =φuu +φvu +φuv +φvv =φuu +2φuv +φvv ; φtt =a u ∂∂(φu -φv )u t +a v∂∂(φu -φv )v t =a 2(φuu -2φuv +φvv ). ∴a 2φxx -φtt =4a 2φuv =0.∴将弦振动方程变换为以u,v 作新自变量的方程为:vu φ2∂∂∂=0.注:此方程的解的形式为φ=f(u)+g(v)=f(x+at)+g(x-at).习题1、试讨论方程组⎪⎩⎪⎨⎧=++=+2z y x 2z y x 222在点(1,-1,2)的附近能否确定形如x=f(z), y=g(z)的隐函数组.解:令F(x,y,z)=x 2+y 2-2z 2, G(x,y,z)=x+y+z-2, 则(1)F,G 在点(1,-1,2)的某邻域内连续; (2)F(1,-1,2)=0, G(1,-1,2)=0满足初始条件;(3)F x =2x, F y =2y, F x =-z, G x =G y =G z =1均在点(1,-1,2)的邻域内连续; (4)(1,-1,2))y (x,)G (F,∂∂=)2,1,1(G )2,1,1(G )2,1,1(F )2,1,1(F y x y x ----=1122-=4≠0,∴原方程组在点(1,-1,2)的附近能确定形如x=f(z), y=g(z)的隐函数组.2、求下列方程组所确定的隐函数组的导数:(1)⎩⎨⎧=+=++az y x a z y x 222222, 求dx dy ,dx dz ;(2)⎩⎨⎧==0xu -v -y 0yv -u -x 22, 求x u ∂∂,x v ∂∂,y u ∂∂,dy dv; (3)⎩⎨⎧-=+=)y v ,x u (g v y)v f(ux,u 2, 求x u ∂∂,x v∂∂. 解:(1)设方程组确定的隐函数组为y=y(x), z=z(x).对方程组两边关于x 求导得:⎪⎩⎪⎨⎧=+=++dx dzadx dy y 22x 0dx dz z 2dx dy y 22x ,解得:dxdy =2y 2x -a ,dx dz =-2z a.(2)设方程组确定的隐函数组为u=u(x,y), v=v(x,y).方程组关于x 求偏导得:⎪⎩⎪⎨⎧=∂∂∂∂=∂∂∂∂0x u x -u -x v 2v -0x v y -x u 2u -1, 解得:⎪⎪⎩⎪⎪⎨⎧+=∂∂+=∂∂4uv -xy x 2u x v xy-4uv yu 2v x u 2; 方程组关于y 求偏导得:⎪⎪⎩⎪⎪⎨⎧=∂∂∂∂=∂∂∂∂0y u x -y v 2v -10yv y -v -y u 2u -, 解得:⎪⎪⎩⎪⎪⎨⎧+=∂∂+=∂∂xy-4uv xv 2u y v 4uv -xy y 2v y u 2.(3)方程组关于x 求偏导得:⎪⎩⎪⎨⎧∂∂+-∂∂=∂∂∂∂+∂∂+=∂∂x v 2yvg g x u g xv x v f x u xf uf x u211211, 解得:⎪⎪⎩⎪⎪⎨⎧---=∂∂-=∂∂1221111112211221g f -)2yvg -)(1xf (1)g xf (1g uf x v g f -)2yvg -)(1xf (1g f -)2yvg -(1uf x u.3、求下列函数组所确定的反函数组的偏导数:(1)⎩⎨⎧-=+=ucosv e y usinv e x uu , 求u x ,v x ,u y ,v y ;(2)⎪⎩⎪⎨⎧+=+=+=3322v u z v u y v u x , 求z x . 解:(1)方程组关于u 求偏导得⎩⎨⎧-=+=cosv e y sinve x uu u u , 方程组关于v 求的偏导得⎩⎨⎧==usinv y ucosvx vv ,∴)v (u,)y (x ,∂∂=x u y v -x v y u =usinv(e u +sinv)-ucosv(e u -cosv)(1+e u sinv-e u cosv)u. 由反函数组定理得: u x =vy ∂∂/)v (u,)y (x ,∂∂=cosv)u e sinv e 1(usinv u u -+=cosv e sinv e 1sinv u u -+;v x =-u y ∂∂/)v (u,)y (x ,∂∂=cosv)ue sinv e 1(e -cosv uu u-+; u y =-v x ∂∂/)v (u,)y (x ,∂∂=cosv)u e sinv e 1(ucosv -u u -+=cosv e sinv e 1cosv -u u -+;v y =u x ∂∂/)v (u,)y (x ,∂∂=cosv)ue sinv e 1(sinv e uu u -++. (2)方程组关于x 求偏导得⎪⎩⎪⎨⎧+=+=+=x 2x 2xxx xx vv 3u u 3z vv 2uu 20v u 1, 解得:z x =-3uv.4、设函数z=z(x,y)是由方程组x=e u+v , y=e u-v , z=uv(u,v 为参量)所定义的函数,求当u=0,v=0时的dz.解:∵dz=z x d x +z y d y =(u x v+uv x )dx+(u y v+uv y )dy, ∴当u=0, v=0时,dz=0.5、以u,v 为新的自变量变换下列方程: (1)(x+y)x z ∂∂-(x-y)y z∂∂=0, 设u=ln 22y x +,v=arctan xy ;(2)x 222x z ∂∂-y 222yz ∂∂=0, 设u=xy, v=y x.解:(1)∵x u ∂∂=22y x x +, y u ∂∂=22y x y +; x v ∂∂=-22yx y +, y v∂∂=22y x x +,∴x z ∂∂=x u u z ∂∂∂∂+x vv z ∂∂∂∂=u z y x x 22∂∂+-vz y x y 22∂∂+; y z ∂∂=y u u z ∂∂∂∂+y vv z ∂∂∂∂=u z y x y 22∂∂++vz y x x 22∂∂+; 代入原方程得: u z y x y)x (x 22∂∂++-v z y x y)y(x 22∂∂++-u z y x y)-y(x 22∂∂+-v z y x y)-x (x 22∂∂+=0, 化简得:u z ∂∂=vz∂∂.(2)∵x u ∂∂=y, y u∂∂=x; x v ∂∂=y 1, yv ∂∂=-2y x ,∴x z ∂∂=x u u z ∂∂∂∂+x v v z ∂∂∂∂= y u z ∂∂+v z y 1∂∂; y z ∂∂=y u u z ∂∂∂∂+y v v z ∂∂∂∂= x u z ∂∂-vzy x 2∂∂; ∴22x z ∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x z x =y x u u z 22∂∂ ⎝⎛∂∂+⎪⎪⎭⎫∂∂∂∂∂x v v u z 2+x u v u z y 12∂∂ ⎝⎛∂∂∂+⎪⎪⎭⎫∂∂∂∂x v v z 22 =y 2uz22∂∂+2v u z 2∂∂∂+v z y 1222∂∂;22y z ∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂y z y =x y u u z 22∂∂ ⎝⎛∂∂+⎪⎪⎭⎫∂∂∂∂∂y v v u z 2+v z y 2x 3∂∂-y u v u z y x 22∂∂ ⎝⎛∂∂∂+⎪⎪⎭⎫∂∂∂∂y v v z 22=x 2u z 22∂∂-v u z y 2x 222∂∂∂+v z y x 2242∂∂+vzy 2x 3∂∂; 代入原方程得: x 2(y 2u z 22∂∂+2v u z 2∂∂∂+v z y 1222∂∂22x z ∂∂)-y 2(x 2u z 22∂∂-v u zy 2x 222∂∂∂+v z y x 2242∂∂+vz y 2x 3∂∂)=0,化简得:2xy v u z 2∂∂∂=v z ∂∂, 即2u v u z 2∂∂∂=vz∂∂.6、设函数u=u(x,y)由方程组u=f(x,y,z,t), g(y,z,t)=0, h(z,t)=0所确定,求x u ∂∂,yu∂∂. 解:方程组关于x 求偏导数得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂∂∂+∂∂+=∂∂0x t h x z h 0x tg xz g x t f x z f f x ut z t zt z x , 解得:x u ∂∂=f x ; 方程组关于y 求偏导数得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂+∂∂+∂∂+=∂∂0y t h y z h 0y tg y z g g y t f y z f f y u t z t zy t z y ,解得:y u∂∂=f y + ⎝⎛∂∂ t),z ( f) ,h (/⎪⎪⎭⎫∂∂)t (z,)h (g,g y .7、设u=u(x,y,z), v=v(x,y,z)和z=z(s,t), y=y(s,t), z=z(s,t)都有连续的一阶偏导数,证明:)t (s,v)u,(∂∂=)t (s,)y (x ,)y (x ,v)u,(∂∂∂∂+)t (s,)z (y,)z (y,v)u,(∂∂∂∂+)t (s,)x (z,)x (z,v)u,(∂∂∂∂. 证:原式右端=t s t s y x y xy y x x v v u u +tst s z y z yz z y y v v u u +tst s x z x z x x z z v v u u =s y s x s y s x y v x v y u x u ++ t y t x t y t x y v x v y u x u +++s z s y s z s y z v y v z u y u ++ t z t y t z t y z v y v z u y u +++s x s z s x s z x v z v x u z u ++t x t z tx t z x v z v x u z u ++=(u x x s +u y y s +u z z s )(v x x t +v y y t +v z z t )-(u x x t +u y y t +u z z t )(v x x s +v y y s +v z z s )=u s v t -u t v s =tst s v v u u =)t (s,v)u,(∂∂=左端. 8、设u=tanx y , v=sinxy. 证明:当0<x<2π, y>0时,u,v 可以用来作为曲线坐标,解出x,y 作为u,v 的函数,画出xy 平面上u=1,v=2所对应的坐标曲线,计算)y (x ,v)u,(∂∂和v)u,()y (x ,∂∂并验证它们互为倒数.证:∵u x =-xsin y2, u y =tanx 1; v x =-x sin ycosx 2, v y =sinx 1;∴)y (x ,v)u,(∂∂=yx y x v v u u =-sinxy. 当0<x<2π, y>0时,u x , u y , v x , v y 都连续,且)y (x ,v)u,(∂∂<0, 由反函数组定理, 知存在反函数组x=x(u,v), y=y(u,v),从而u,v 可以用作为曲线坐标. 由u=tanx y , v=sinx y 得,x=arccos vu , y=22u -v . u=1, v=2分别对应xy 平面上坐标曲线y=tanx, y=2sinx, 如图.又)v (u,y)x ,(∂∂=2222222u -v v u -v u-v u -1v u v u -1v 1-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-v 1=-y sinx 与)y (x ,v)u,(∂∂=-sinx y 互为倒数.9、将以下式中的(x,y,z)变换成球面坐标(r,θ,φ)的形式:△1u=2x u ⎪⎭⎫ ⎝⎛∂∂+2y u ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂, △2u=22x u ∂∂+22y u ∂∂+22z u ∂∂. 解:将⎪⎩⎪⎨⎧===rcos θz sin φ rsin θy cos φ rsin θx 看成由⎪⎩⎪⎨⎧===z z ρsinφy ρcosφx ①和⎪⎩⎪⎨⎧===φφrsin θρrcos θz ②复合而成. 对变换①有2x u ⎪⎭⎫ ⎝⎛∂∂+2y u ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂=2ρu ⎪⎪⎭⎫ ⎝⎛∂∂+22φu ρ1⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂; 对变换②有2ρu ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂+22φu ρ1⎪⎪⎭⎫ ⎝⎛∂∂=2r u ⎪⎭⎫ ⎝⎛∂∂+22θu r 1⎪⎭⎫ ⎝⎛∂∂+222φu θsin r 1⎪⎪⎭⎫ ⎝⎛∂∂; ∴△1u=2x u ⎪⎭⎫ ⎝⎛∂∂+2y u ⎪⎪⎭⎫ ⎝⎛∂∂+2z u ⎪⎭⎫ ⎝⎛∂∂=2r u ⎪⎭⎫ ⎝⎛∂∂+22θu r 1⎪⎭⎫ ⎝⎛∂∂+222φu θsin r 1⎪⎪⎭⎫ ⎝⎛∂∂. 又对变换①有22x u ∂∂+22y u ∂∂+22z u ∂∂=22ρu ∂∂+ρu ρ1∂∂+222φu ρ1∂∂+22z u ∂∂; 对变换②有22ρu ∂∂+22z u ∂∂=22r u ∂∂+r u r 1∂∂+222θu r 1∂∂; ∵r=22z ρ+,θ=arctan z ρ, ∴ρu ∂∂=ρr r u ∂∂∂∂+ρθθu ∂∂∂∂=r ρr u ⋅∂∂+2r z θu ⋅∂∂=sin θr u ∂∂+θu r cos θ∂∂;∴△2u=22x u ∂∂+22yu ∂∂+22z u ∂∂=22r u ∂∂+r u r 2∂∂+222θu r 1∂∂+θu sin θr cos θ2∂∂+2222φu θsin r 1∂∂.10、设u=2r x , v=2r y , w=2rz , 其中r=222z y x ++. (1)试求以u,v,w 为自变量的反函数组. (2)计算)z y,(x ,w)v,u,(∂∂. 解:(1)∵u 2+v 2+w 2=4222r z y x ++=2r 1, ∴r 2=222wv u 1++; ∴x=ur 2=222w v u u ++, y=vr 2=222w v u v ++, y=wr 2=222w v u w ++. (2))z y,(x ,w)v,u,(∂∂=422444422444422r z 2r r 2yz r 2xz r 2yz r y 2r r 2xy r 2xz r 2xy r x 2r ---------=-6r 1.。
第18章隐函数定理及其应用1-4节

暨南大学数学分析精品课程
y y0
y0
y0
+ + + + + + ++ + + + + + ++ + + + + + + + + + + + + + ++ + + + + + + + + + +
y0
+ + + + + + ++ + + + + ++ + + + + + + + + + + + + + + ++ + + + + + + + + + +
S
O x0
x0 x0 x
(a) 一点正,一片正
Fy ( x , y ) 0 , ( x , y ) S ,
其中 S [ x0 , x0 ] [ y0 , y0 ] D.
别对于函数 z F ( x0 , y ), 由
y y0
y0
+
+
+ +
件 F ( x0 , y0 ) 0 可知
数学分析(下)18-1隐函数

江西财经大学统计学院隐函数是函数关系的另一种表现形式.讨论隐函数的存在性、连续性与可微性,不仅是出于深刻了解这类函数本身的需要,同时又为后面研究隐函数组的存在性问题打好了基础.§1隐函数返回四、隐函数求导数举例一、隐函数概念二、隐函数存在性条件分析三、隐函数定理一、隐函数概念江西财经大学统计学院则成立恒等式.,0))(,(I x x f x F κR,,I J x I ÌÎ若存在、使得对任一有惟一确定的y J Î与之对应, 能使(,),x y E Î且满足方程(1) , 则称由方程(1) 确定了一个定义在, 值域含于I J ,,,)(J y I x x f y ÎÎ=的隐函数. 如果把此隐函数记为(,)0.(1)F x y =江西财经大学统计学院122=+y x 取值范围取值范围..例如由方程可确定如下两个函数个函数::注2不是任一方程都能确定隐函数, 0),(=y x F 例如显然不能确定任何隐函数显然不能确定任何隐函数..0122=++y x 注1隐函数一般不易化为显函数隐函数一般不易化为显函数,,也不一定需要)(x f y =化为显函数化为显函数..上面把隐函数仍记为,这与它能否用显函数表示无关与它能否用显函数表示无关..注3隐函数一般需要同时指出自变量与因变量的2江西财经大学统计学院二、隐函数存在性条件分析条件时条件时,,由方程(1) 能确定隐函数, 并使)(x f y =),(y x F 要讨论的问题是要讨论的问题是::当函数满足怎样一些该隐函数具有连续该隐函数具有连续、、可微等良好性质? )(x f y =),(y x F z =(a)把上述看作曲面与坐标0=z 平面的交线的交线,,故至少要求该交集非空故至少要求该交集非空,,即),(000y x P $.)(,0),(0000x f y y x F ==,满足连续是合理的连续是合理的..0P )(x f y =0x ),(y x F (b)为使在连续连续,,故要求在点)y=x)f(xy=(xf可导,,即曲线在(c)为使在可导江西财经大学统计学院三、隐函数定理定理18.1 ( 隐函数存在惟一性定理)设方程(1) 中),(y x F 的函数满足以下四个条件满足以下四个条件::),(000y x P 2R ÌD (i)在以为内点的某区域上连续上连续;;(ii)( 初始条件);0),(00=y x F D ),(y x F y (iii)在内存在连续的偏导数;00(,)0.y F x y ¹(iv) 则有如下结论成立则有如下结论成立::江西财经大学统计学院00(),(,),y f x x x x a a =Î-+;0))(,(,)())(,(0ºÎx f x F P U x f x 在上连续上连续..)(2x f o),(00a a +-x x 惟一地确定了一个隐函数它满足它满足::00()f x y =),(00a a +-Îx x x , 且当时, 使得证首先证明隐函数的存在与惟一性首先证明隐函数的存在与惟一性..证明过程归结起来有以下四个步骤( 见图18-1 ):D P U Ì)(0)(0P U 存在某邻域,在内由方程(1)1+yy(a) “一点正, 一片正 ” 由条件 (iv), 不妨设Fy ( x0 , y0 ) > 0. 因为 Fy ( x, y) 连续,所以根据保号性,$ b > 0 , 使得yy0 +by0y0 - bS ++ ++ + ++++++++++++++·+++++++++++++++++++++O x0-b x0 x0 +b x(a) 一点正,一片正Fy(x, y) > 0, (x, y)Î S,其中 S = [ x0 - b , x0 + b ] ´[ y0 - b , y0 + b ] Ì D.江西财经大学 统计学院(b) “正、负上下分 ”因 Fy ( x, y) > 0, ( x, y)Î S , 故 " x Î[ x0 - b , x0 + b ], 把 F ( x, y) 看作 y 的函数,它在 [ y0 - b , y0 + b ] 上严格增,且连续 ( 据条件 (i) ). 特别对于函数 F ( x0, y), 由条 件 F ( x0, y0 ) = 0 可知F ( x0 , y0 + b ) > 0,y+y0 +b·+++y0___· 0y0 - b_·O x0-b x0 x0 +b x(b) 正、负上下分F ( x0 , y0 - b ) < 0.江西财经大学 统计学院(c) “同号两边伸”因为 F ( x, y0 - b ) , F ( x, y0 + b ) 关于 x 连续,故由(b) 的结论,根据保号性,$a (0 < a £ b ), 使得F ( x, y0 + b ) > 0 , F ( x, y0 - b ) < 0 , x Î( x0 - a , x0 + a ). (d) “利用介值性”y y0+by0++·++·y0- b· - - - -O x0-a x0 x0+a x(c) 同号两边伸" xˆ Î ( x0 - a , x0 + a ) , 因 F ( xˆ , y) 关于 y 连续, 且严格增,故由 (c) 的结论,依据介值性定理, 存在惟江西财经大学 统计学院一的 yˆ Î ( y0 - b , y0 + b ), 满足 F ( xˆ , yˆ ) = 0. 由 xˆ 的任意性, 这 就证得存在惟一的隐函数:y = f ( x),ìï x Î I = ( x0 - a , x0 + a ), í ïî y Î J = ( y0 - b , y0 + b ).yy0 + by0· ++++ U (P0 )·y0 - by = f (x) ·----O x0-a x0 x0+a x(d) 利用介值性若记 U (P0 ) = I ´ J , 则定理结论 1o 得证.下面再来证明上述隐函数的连续性:即 " x Î ( x0-a , x0+a ) , 欲证上述 f ( x) 在 x 连续.江西财经大学 统计学院如图 18-2 所示, "e > 0, 取ye 足够小,使得y0 +b y +e.++++y0 - b £ y - e < y + e £ y0 + b ,y.P.0其中 y = f ( x). 由 F ( x, y) 对 y 严格增,而y -e y0 -b.----O x-d x x +dxF ( x, y) = 0,图 18-2推知F(x, y-e )< 0 , F(x, y+e )> 0 .类似于前面 (c) ,$d > 0, 使得江西财经大学 统计学院( x - d , x + d ) Ì ( x0 - a , x0 + a ), 且当 x Î ( x - d , x + d ) 时,有F(x, y -e ) < 0, F(x, y + e ) > 0. 类似于前面 (d) ,由于隐函数惟一,故有y -e < f (x) < y + e , xÎ(x -d , x +d ), 因此 f ( x) 在 x 连续. 由 x 的任意性, 便证得 f ( x) 在 ( x0-a , x0+a ) 上处处连续.江西财经大学 统计学院注1 定理 18.1 的条件 (i) ~ (iv) 既是充分条件, 又是一组十分重要的条件. 例如: ① F ( x, y) = y3 - x3 = 0, Fy (0,0) = 0, 在点 (0, 0) 虽 不满足条件 (iv),但仍能确定惟一的隐函数 y = x. ② F ( x , y) = ( x2 + y2 )2 - x2 + y2 = 0 (双纽线), 在点 (0, 0) 同样不满足y条件 (iv); 如图18-3 所示, 在该点无论多Ox么小的邻域内, 确实图 18-3江西财经大学 统计学院不能确定惟一的隐函数. 注 2 条件 (iii) 、 (iv) 在证明中只是用来保证在邻 域 U (P0 ) 内 F ( x, y) 关于 y 为严格单调.之所以采 用这两个较强的条件,一则是使用时便于检验, 二则是在后面的定理 18.2 中它们还将起到实质性 的作用. 注3 读者必须注意, 定理 18.1 是一个局部性的隐 函数存在定理.例如从以上双纽线图形看出: 除了 (0,0), (1, 0), (-1, 0) 三点以外, 曲线上其余各点处都江西财经大学 统计学院存在局部隐函数 y = f ( x) ( 这不难用定理 18.1 加 以检验,见后面第四段的例1). 注4 在方程 F ( x, y) = 0 中, x 与 y 的地位是平等 的. 当条件 (iii) 、 (iv) 改为“ Fx ( x, y) 连续, 且 Fx ( x0 , y0 ) ¹ 0 ” 时,将存在局部的连续隐函数 x = g( y).江西财经大学 统计学院定理 18.2 ( 隐函数可微性定理 ) 设函数 F ( x, y) 满足定理 18.1 中的条件 (i) ~ (iv), 在 D 内还存在连续的 Fx ( x, y) . 则由方程 F ( x , y ) = 0 所确定的隐 函数 y = f ( x) 在 I 内有连续的导函数,且f ¢( x) = - Fx ( x, y) , ( x, y) Î I ´ J .(2)Fy(x, y)( 注: 其中I = ( x0 - a , x0 +a ) 与 J = ( y0 - b , y0 + b )示于定理18.1 的证明 (d) ).江西财经大学 统计学院江西财经大学统计学院()()y f x ,y y f x x J.=+D =+D Î.0),(,0),(=D +D +=y y x x F y x F 使用微分中值定理,使得,)10(<<$q q 0(,)(,)F x x y y F x y =+D +D -,,I x x x ÎD +证设则由条件易知F 可微可微,,并有(,)y F x x y y y,q q ++D +D D (,)x F x x y y xq q =+D +D D),(y y x x F y D +D +D q qF)x(y,存在二阶连续偏导数时,,所得隐函注1 当存在二阶连续偏导数时注2 利用公式(2) , (3) 求隐函数的极值:江西财经大学统计学院设在以点为内点的某区域上,),,(0000z y x P 3R ÌD ,0),,(000=z y x F .0),,(000¹z y x F z 则存在某邻域在其内存在惟一的在其内存在惟一的、、连,)(0D P U Ì续可微的隐函数,且有),(y x f z =注3由方程0),,(=z y x F (5)),(y x f z =确定隐函数的相关定理简述如下的相关定理简述如下::F 的所有一阶偏导数都连续的所有一阶偏导数都连续,,并满足F江西财经大学统计学院0)(22222=+-+y x y x 解令它有连续的,)(),(22222y x y x y x F +-+=.2)(4,2)(42222y y x y F x y x x F y x ++=-+=求解分别得到,0),(0),(0),(0),(îíì==îíì==y x F y x F y x F y x F y x 与四、隐函数求导数举例例1 试讨论双纽线方程()().y f x x g y ==或所能确定的隐函数2 6224)-4由公式(2) 求得22=¢y类似于例1 的方法, 求出曲线上使的点为对方程两边微分,,得解法1 ( 形式计算法) 对方程两边微分因此在点P附近能惟一地确定连续可微的隐函数yfyxF(8) =x-()),(=.0(,)z z x y =(,)0F x z y z --=例5 设是由方程复习思考题4. 试对例3 的两种解法(形式计算法与隐函数法) 作一比较, 指出两者各有哪些优缺点? 江西财经大学统计学院江西财经大学统计学院作业P162:3(1)(3)(5);5。
第十八章 隐函数定理及其应用

∂z f ′ + yz ⋅ f2′ = 1 ∂x 1 − f1′ − xy ⋅ f 2′
x3 + y 3 + z 3 = 3 xyz
x , 所确定的隐函数,求 u ′ . x 解:在方程两端对 求导,其中视 z 为 x, y 的函数,
′ 3 x 2 + 3 z 2 ⋅ z′ x = 3 yz + 3 xy ⋅ z x ,
z′ x =
由此得
x 2 − yz xy − z 2 .
⎞ ⎟ ⎠.
− a 2 − y 2 (a + a 2 − y 2 )
a − y2
2
,
d2 y = d x2 从而
− a2 − y2 ⋅
dy y2 dy + ⋅ 2 2 dx a − y dx a2 y = a2 − y2 (a 2 − y 2 )2
- 2 -
∂z ∂z (5) x + y + z − 2x + 2 y − 4z − 5 = 0 ,求 ∂x , ∂y ; 2 2 2 解:设 F ( x, y, z) = x + y + z − 2x + 2 y − 4z − 5 ,则
=
y a 2 − y 2 (a + a 2 − y 2 )
−ay 2 − a 2 a 2 − y 2 − a (a 2 − y 2 ) + ay 2 + y 2 a 2 − y 2
分析方法 第十八章 隐函数定理及其应用

2)F ( x0 , y0 ) 0; 3)Fy ( x0 , y0 ) 0,
则在点P0 ( x0 , y0 )的某邻域U ( P0 )内方程F ( x, y) 0确定唯一一个有连续导 数的隐函数
y f ( x),且f ( x) Fx ( x, y) . Fy ( x, y)
F ( x, y, u, v) 0 G( x, y, u, v) 0
既有恒等式组
成立, 则该方程组确定了定义 在D上的一组隐函数 , 分别表示为 u f ( x, y), v g ( x, y)
F ( x, y, f ( x, y), g ( x, y)) 0 , G( x, y, f ( x, y), g ( x, y)) 0
于是在原点的某邻域内 方程F ( x, y) 0确定了唯一一个有连续 导数的隐函数 y f ( x),
且 f ( x)
Fx 1 2 . Fy 1 1 cos y 2 cos y 2 例2 讨论笛卡尔叶形线 x3 y3 3axy 0所确定的隐函数 y f ( x)的一阶与二阶导数 .
4 1)在以P ( x , y , u , v ) 为内点的区域 V R 内具有一阶连续偏导; 0 0 0 0 0
2) F ( x0 , y0 , u0 , v0 ) 0, G( x0 , y0 , u0 , v0 ) 0(称为初始条件 );
( F , G) 3) J 0. (u , v ) P0
第十八章 隐函数定理及其应用
一 隐函数概念 以前我们学习的函数都 是用一个解析表达式给 出的, 如
§1一个方程所确定的隐函数
y 2x3 3x sin 2 x e x , z 3x 2 y 5e xy 6 sin xy 1.
数学分析18隐函数定理及其应用总练习题

第十八章 隐函数定理及其定理总练习题1、方程:y 2-x 2(1-x 2)=0在哪些点的邻域内可惟一地确定连续可导的隐函数y=f(x).解:由y 2=x 2(1-x 2)知1-x 2≥0, ∴|x|≤1; 且y 2=x 2(1-x 2)≤22221⎪⎪⎭⎫ ⎝⎛-+x x =41, ∴|y|≤21. 记F=y 2-x 2(1-x 2), 则F, F x =2x 3-2x(1-x 2)=4x 3-2x, F y =2y; 由F y ≠0得y ≠0, 即x ≠0且x ≠±1. 令D={(x,y)||x|≤1,|y|≤21且y ≠0 }, 则F 在D 内每一个邻域内有定义, 且F, F x , F y 在D 上处处连续. 又由F(x,y)=0, F y ≠0知 原方程在D 上唯一确定隐函数y=f(x).2、设函数f(x)在区间(a,b)内连续,函数φ(y)在区间(c,d)内连续,而且φ’(y)>0, 问在怎样条件下,方程φ(y)=f(x)能确定函数y=φ-1(f(x)). 并研究例子(1)siny+shy=x; (2)e -y =-sin 2x.解:记F(x,y)=φ(y)-f(x), 由F y =φ’(y)>0知, 若f[(a,b)]∩φ[(c,d)]≠Ø, 就存在点(x 0,y 0), 满足F(x 0,y 0)=0, 即 可在(x 0,y 0)附近确定隐函数y=φ-1(f(x)).(1)设f(x)=x, φ(y)=siny+shy, 由f,φ在R 上连续且φ’(y)=cosy+chy>0, 又 f(R)∩φ(R)=R ≠Ø, ∴原方程可确定函数y=y(x). (2)∵f(x)=-sin 2x ≤0, φ(y)=e -y >0, ∴f(R)∩φ(R)=Ø, ∴原方程不能确定函数y=y(x).3、设f(x,y,z)=0, z=g(x,y), 试求dx dy ,dxdz . 解:对方程组f(x,y,z)=0, z=g(x,y)关于x 求导得: f x +f y dx dy +f z dx dz =0, dx dz =g x +g y dx dy , 解得:dx dy =-yz y x z x g f f g f f ++; dx dz =y z y y x x y g f f gf g f +-.4、已知G 1(x,y,z), G 2(x,y,z), f(x,y)都可微,g i =G i (x,y,f(x,y)), i=1,2.证明:),(),(21y x g g ∂∂=zyxz y xy xG G G G G G f f 2221111--. 证:∵g 1x =G 1x +G 1z f x , g 1y =G 1y +G 1z f y ; g 2x =G 2x +G 2z f x , g 2y =G 2y +G 2z f y∴),(),(21y x g g ∂∂=yx y xg g g g 2211=(G 1x +G 1z f x )(G 2y +G 2z f y )-(G 1y +G 1z f y )(G 2x +G 2z f x )=G 1x G 2y +G 1x G 2z f y +G 1z G 2y f x -G 1y G 2x -G 1y G 2z f x -G 1z G 2x f y =zyxz y xy xG G G G G G f f 2221111--.5、设x=f(u,v,w), y=g(u,v,w), z=h(u,v,w), 求x u ∂∂,y u ∂∂,zu ∂∂. 解:方程组对x 求导得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂001x w h x v h xu h x wg x v g xu g x w f x v f x uf w v u w v uw v u , 解得:x u ∂∂=),(),(w v h g ∂∂/),,(),,(w v u h g f ∂∂. 同理可得: y u ∂∂=),(),(w v f h ∂∂/),,(),,(w v u h g f ∂∂;z u ∂∂=),(),(w v g f ∂∂/),,(),,(w v u h g f ∂∂.6、试求下列方程所确定的函数的偏导数x u ∂∂,yu ∂∂. (1)x 2+u 2=f(x,u)+g(x,y,u); (2)u=f(x+u,yu). 解:(1)方程两边对x 求导得:2x+2u x u ∂∂=f x +f u x u ∂∂+g x +g u xu ∂∂, 解得:x u ∂∂=uu x x g f u xg f ---+22; 两边对y 求导得:2u y u ∂∂=f u y u ∂∂+g y +g u y u ∂∂,解得:y u∂∂=uu y g f u g --2.(2)方程两边对x 求导得:x u ∂∂=f 1(1+x u ∂∂)+yf 2x u ∂∂, 解得:x u∂∂=2111yf f f --; 两边对y 求导得:y u ∂∂=f 1y u ∂∂+ f 2(u+y y u ∂∂), 解得:y u ∂∂=2121yf f uf --.7、据理说明:在点(0,1)近旁是否存在连续可微的f(x,y)和g(x,y), 满足f(0,1)=1, 且g(0,1)=-1, 且[f(x,y)]3+xg(x,y)-y=0, [g(x,y)]3+yf(x,y)-x=0.解:设⎩⎨⎧=-+==-+=0),,,(0),,,(33x yu v v u y x G y xv u v u y x F , 则 (1)F,G 在以P 0(0,1,1,-1)为内点的R 4内连续; (2)F,G 在R 4内具有连续一阶偏导数; (3)F(P 0)=0, G(P 0)=0;(4)),(),(P v u G F ∂∂=02233P v y xu =9≠0.由隐函数组定理知,方程组在P 0附近唯一地确定了在点(0,1)近旁连续可微的两个二元函数u=f(x,y),v=g(x,y). 满足f(0,1)=1, g(0,1)=-1且 [f(x,y)]3+xg(x,y)-y=0, [g(x,y)]3+yf(x,y)-x=0.8、设(x 0,y 0,z 0,u 0)满足方程组⎪⎩⎪⎨⎧=++=++=++)()()()()()()()()()()()(u H z h y h x h u G z g y g x g u F z f y f x f ,这里所有的函数假定有连续的导数.(1)说出一个能在该点邻域上确定x,y,z 为u 的函数的充分条件; (2)在f(x)=x, g(x)=x 2, h(x)=x 3的情形下,上述条件相当于什么?解:(1)设⎪⎩⎪⎨⎧=-++==-++==-++=0)()()()(),,,(0)()()()(),,,(0)()()()(),,,(u H z h y h x h u z y x H u G z g y g x g u z y x G u F z f y f x f u z y x F , 则F ,G ,H ,在R 4内连续且具有一阶连续偏导数; F (x 0,y 0,z 0,u 0)=0,G (x 0,y 0,z 0,u 0)=0,H (x 0,y 0,z 0,u 0)=0, 当),,(),,(P z y x H G F ∂∂≠0时,原方程组能在P 0(x 0,y 0,z 0,u 0)邻域内确定x,y,z 作为u 的函数.(2)上述条件相当于2022000111z y x z y x ≠0, 即x 0,y 0,z 0两两互异.9、求由下列方程所确定的隐函数y=f(x)的极值. (1)x 2+2xy+2y 2=1;(2)(x 2+y 2)2=a 2(x 2-y 2) (a>0).解:(1)令F(x,y)=x 2+2xy+2y 2-1, 则F x =2x+2y, F y =2x+4y, 令dx dy =-yx y x 4222++=0, 有x=-y, 代入原方程得:x 2-2x 2+2x 2=1, 解得x=±1.∴隐函数y=f(x)有稳定点±1, 且f(1)=-1, f(-1)=1.又22dxy d =⎪⎭⎫ ⎝⎛dx dy dx d =-⎪⎪⎭⎫⎝⎛-+++x y x y x y x 2)(2)2(122. 从而)1,1(22-dxyd =1>0, )1,1(22-dx yd =-1<0,∴当x=1时有极小值-1, x=-1时有极大值1. (2)(x 2+y 2)2=a 2(x 2-y 2) (a>0).令F(x,y)=(x 2+y 2)2-a 2(x 2-y 2), 则F x =4x(x 2+y 2)-2a 2x, F y =4y(x 2+y 2)+2a 2y,令dx dy =-ya )y +2y(x x a -)y +2x(x 222222+=0, 有x=0或y 2=2a 2-x 2.当x=0时,y=0, F y =0, 不符合题意,舍去.将y 2=2a 2-x 2代入原方程得:4a 4=a 2(2x 2-2a2), 解得x=±83a.又f(83a)=±81a, f(-83a)=±81a. ∴隐函数y=f(x)的稳定点有: P 1⎪⎪⎭⎫ ⎝⎛a a 81,83, P 2⎪⎪⎭⎫ ⎝⎛-a a 81,83, P 3⎪⎪⎭⎫ ⎝⎛-a a 81,83, P 4⎪⎪⎭⎫ ⎝⎛--a a 81,83. 由22dx y d =⎪⎭⎫ ⎝⎛dx dy dx d =-[]2222222222ya )y +2y(x y]a )y +][2y(x a -)y 2y 2x(2x )y +[2(x ++'++ +[]2222222222ya )y +2y(xx]a -)y +][2x(x y a )y 2y 2y(2x )y +(x y [2+'+'++',且在稳定点P i (i=1,2,3,4)均有x 2+y 2=2a 2及y ’(P i )=0,代入上式有:i P dx y d 22=-iP y a 2x 22, 即22dx y d 与y 异号, ∴ia a dx yd ⎪⎪⎭⎫⎝⎛±81,8322<0, ia a dxyd ⎪⎪⎭⎫ ⎝⎛-±81,8322>0,即在点P 1, P 3取得极大值a 81,在点P 2, P 4取得极小值-a 81.10、设y=F(x)和函数x=φ(u,v), y=ψ(u,v), 那么由方程ψ(u,v)=F(φ(u,v))可以确定函数v=v(u). 试用u,v, du dv , 22du v d 表示dx dy , 22dxyd .解:由x=φ(u,v), y=ψ(u,v), ∴dx dy =u u ∂∂∂∂ϕψ=dudv du dvvu vu ϕϕψψ++. 于是 22dx y d =⎪⎭⎫ ⎝⎛dx dy dx d =222⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+++du dv du dv du v d du dv du dv du dv v u v u v vv vu uv uu ϕϕϕϕψψψψψ -222⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+du dv du v d du dv du dv du dv du dv v u v vv vu uv uu v u ϕϕϕϕϕϕϕψψ.11、试证:二次型f(x,y,z)=Ax 2+By 2+Cz 2+2Dyz+2Ezx+2Fxy 在单位球面x 2+y 2+z 2=1上的最大值和最小值恰好是矩阵φ=⎪⎪⎪⎭⎫⎝⎛C D E D B F E F A 的最大特征值和最小特征值.试:记L(x,y,z,λ)=Ax 2+By 2+Cz 2+2Dyz+2Ezx+2Fxy-λ(x 2+y 2+z 2-1), 列方程组:⎪⎪⎩⎪⎪⎨⎧=-++==-++==-++==-++=④1③02222②02222①02222222z y x L z Dy Cz Ex L y Dz By Fx L x Ez Fy Ax L z y xλλλλ, 由①x+②y+③z 得:Ax 2+By 2+Cz 2+2Dyz+2Ezx+2Fxy-λ(x 2+y 2+z 2)=0, 又由④得f(x,y,z)=λ.由①,②,③知λ是对称矩阵φ=⎪⎪⎪⎭⎫ ⎝⎛C D E D B F E F A 的特征值.又f 在有界闭集{f(x,y,z)|x 2+y 2+z 2=1}上连续,∴有最大值,最小值存在. ∴最大值和最小值恰好是矩阵φ的最大特征值和最小特征值.12、设n 为正整数, x,y>0. 用条件极值方法证明:2n n y x +≥ny x ⎪⎭⎫⎝⎛+2.证:记L(x,y,λ)=2n n y x ++λ(x+y-a), 列方程组得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+==+==+=--a y x L ny L nx L n y n x λλλ020211, 解得:x=y=2a. ∵当x →∞或y →∞时, 2n n y x +→∞,∴2n n y x +必在唯一的稳定点(2a ,2a )处取得最小值na ⎪⎭⎫⎝⎛2, 即2n n y x +≥na ⎪⎭⎫ ⎝⎛2=ny x ⎪⎭⎫ ⎝⎛+2.13、求出椭球22a x +22by +22c z =1在第一卦限中的切平面与三个坐标面所成四面体的最小体积.解:椭球面上任一点(x,y,z)处的切平面方程为:22a x (X-x)+22b y (Y-y)+22cz(Z-z)=0, 切平面在坐标轴上的截距分别为:x a 2,y b 2,zc 2. 则椭球面在第一卦限部分上任一点处的切平面与三个坐标面围成的四面体体积为V=xyzc b a 6222. ∴问题转化为求函数V 在条件22a x +22by +22c z =1 (x>0,y>0,z>0)下的最小值. 记L(x,y,z,λ)=xyz c b a 6222+λ(22a x +22by +22c z -1), 列方程组有:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=-++==+-==+-==+-=01026026026222222222222222222222cz b y a x L cz xyz c b a L b yz xy c b a L axyz x c b a L z x x λλλλ, 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧===333c z b y a x ,∴最小体积V m =abc c b a 6)3(3222=23abc.14、设P 0(x 0,y 0,z 0)是曲面F(x,y,z)=1的非奇异点,F 在U(P 0)可微,且为n 次齐次函数.证明:此曲面在P 0处的切平面方程为:xF x (P 0)+yF y (P 0)+ zF z (P 0)=n. 证:∵F 为n 次齐次函数, 且F(x,y,z)=1,∴xF x +yF y +zF z =nF=n. 曲面在P 0处的切平面方程为:F x (P 0)(x-x 0)+F y (P 0)(y-y 0)+F z (P 0)(z-z 0)=0 即xF x (P 0)+yF y (P 0)+ zF z (P 0)=x 0F x (P 0)+y 0F y (P 0)+ z 0F z (P 0)=n, 得证!。
第十八章 隐函数定理及其应用

同理可得
(F ,G ) (u , x ) (F ,G ) ( y, v) (F ,G ) (u , y )
2u 1 0 1 2u 1
1 0 1 2v 0 1
v
1
x u 1
1
1
4 uv 1
2u
2u 4 uv 1
F z G z
(F ,G ) F y G ( y, z) y F z G z
F (F ,G ) y G ( y, x) y
F x G x
问题2
依葫芦画瓢哦 !
将 x 或 y 看成常数 G ( x, y, u , v) 0 F ( x, y, u , v) 0
将 yx看成常数 将 看成常数
FF G ) ) (( , ,G
FF G ) ) (( , ,G
u u y x
( y v v ) ( x, , )
v v y x
( F, G ) ) (F ,G uu v v ) (( , , )
设 F (x z
y z , xyz ) 0 确定 z z ( x , y ), F1 yz F 2
F y
F1 xz F 2 ,
z y
F1 xz F 2
F1 xy F 2
定理
(隐函数存在定理)
1
X 设 1. F ( F, u ) C (U( X 0 , u 0 )) ; 请同学们自己将上面的隐函数存在
则方程 F ( x , 且 z0
y, z) 0
在 U((
x 0 , y 0 )) 内唯一
1
数学分析隐函数定理及应用

第18章 隐函数定理及其应用第1节 隐函数求导法在此之前,咱们所接触的函数,其表达式大多是自变量的某个算式,如)sin sin (sin ,1zx yz xy e u x y xyz ++=+=这种形式的函数称为显函数。
但在很多场合常会碰到另一种形式的函数,其自变量与因变量之间的对应法则是由一个方程式所决定的。
这种形式的函数称为隐函数。
本节将介绍由一个方程0),,(=z y x F 所肯定的隐函数求导法和由方程组⎩⎨⎧==0),,,,(0),,,,(v u z y x G v u z y x F 所肯定的隐函数求导法。
一 一个方程0),,(=z y x F 的情形在《数学分析》上册,第六章 导数与微分(第三节 高阶导数和其它求导法则P149)——曾对形如0),(=y x F 的方程,认定是x y 是的函数,介绍过隐函数求导法)。
不过,那里只是对具体方程未求的.利用偏函数符号, 咱们能够得出一般的结果。
按照复合函数求导法则, 在),(y x F 两边对x 求导, 取得:yX y Y X F F y F y F F -=≠⇒=⋅+''00时, 当方程中的变量多于2个时, 例如, 设方程0),,(=z y x F 肯定了y x z 和是的函数, 而且?,yz x z y x z ∂∂∂∂前,如何求的偏导数都存在,在此,关于 对0),,(=z y x F 求导,利用链式法则:,关于y x0(0);0(0)z z F FF F z z F F z z y x F F F F x z x x x z y yz z∂∂∂∂∂∂∂∂∂∂∂∂+=⇒=-≠+=⇒=-≠∂∂∂∂∂∂∂∂∂∂∂∂说明:(1) 求y z x z ∂∂∂∂,需要假定,0)(≠∂∂z F zF ,这一假设是很重要的;(2) 这里只用到了“链式法则”;(3) 对0),,(=z y x F 求导,只在假定y x z 和是的函数的情形下,求导数,如何肯定),(y x z z =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、( 隐函数存在唯一性定理 ) 若满足下列条件:
ⅰ> 函数在以为内点的某一区域D上连续 ;
ⅱ> ; ( 通常称这一条件为初始条件 )
ⅲ> 在D内存在连续的偏导数;
ⅳ> .
则在点的某邻域()D内 , 方程唯一地确定一个定义在
某区间内的隐函数, 使得
⑴,时()且
.
⑵函数在区间内连续 .
二、隐函数可微性定理:
Th 2 设函数满足隐函数存在唯一性定理的条件 , 又设在D内
存在且连续 . 则隐函数在区间内可导 , 且
. ( 证 )
例1 验证方程
在点
满足隐函数存在唯一性定
理的条件 , 并求隐函数的导数 . P149例1 例2
. 其中
为由方程
所确定的隐函
数 . 求
. P150例2 ( 仿 )
例3 ( 反函数存在性及其导数 ) 设函数
在点
的某邻域内有连续的导函数
, 且
, . 用隐函数定理验证存在反函数 , 并求反函数的导数(后面的例题P162)
.
0),()
,(
(iv);, (iii));0(),,,( 0,),,,( (ii);
),,,(),,,(),,,( (i) :
00000000400000≠∂∂===⊂P v u G F J G F V v u y x G v u y x F R V v u y x P v u y x G v u y x F 具有一阶连续偏导数内在初始条件内连续为内点的区域在以和若满足下列条件隐函数组定理)( 18.4 定理
性质三:雅可比
.
)
,()
,(1
,),(),(1,
),()
,(1
,),(),(1
,)()),(),,0y u G F J
y v v y G F J
y u x u G F J x v v x G F J
x u Q U y x g y ∂∂-
=∂∂∂∂-=∂∂∂∂-
=∂∂∂∂-=∂∂且内有一阶连续偏导数在
并求其偏导数数附近能确定怎样的隐函在讨论方程组
,)2,1,1,2(
,01),,,(,0),,,( 0222P xy v u v u y x G y x v u v u y x F ⎩⎨
⎧=+-+-==--+= 例1
;
)2,1,1,2(,1,1 ,, ,2,2,1,2 3 ;
0)()( 2 ;)2,1,1,2(, 1 0o 00o 0o 的邻域内连续在的邻域内连续在解:P G G x G y G v F u F F x F P G P F P G F v u y x v u y x =-=-=-===-=-===
:
6!
2!2!
4)2,1,1,2(4 240o 个雅克比式处在=⋅=C P
.01
144 ),()
,(,
0,61
14
2
),()
,( 00
0=--=∂∂≠=-==∂∂P P v
u
v u P v x G F G G F F v u G F 仅
. ,,,)2,1,1,2(0变量的隐函数变量可以作为其余两个任何两个的隐函数外难以确定为附近除在u y v x P
⎪⎩
⎪
⎨⎧===.cos ,
sin sin ,
cos sin ),,(),,(θϕθϕθϕθr z r y r x r z y x 之间的变换公式
与球坐标讨论直角坐标 例4
几何应用
平面曲线的切线和法线;
.0))(,())(,( ),
()
,()
,( :000000000000=-+---
=-y y y x F x x y x F x x y x F y x F y y y x y x 即则切线方程
,0))(,())(,( ),
()
,(),(:000000000000=----=
-y y y x F x x y x F x x y x F y x F y y x y x y 即法线方程
空间曲线的切线和法平面;
,0))(,())(,( ),
()
,(),(:000000000000=----=
-y y y x F x x y x F x x y x F y x F y y x y x y 即法线方程
)
6( .0))(())(())(( :000000=-'+-'+-'z z t z y y t y x x t x 法平面方程
曲面的切平面和法线。
1),,(),,(),,(),,(
:0
00000000000000--=
--=--z z z y x F z y x F y y z y x F z y x F x x z y z x 法线方程
,
0))(,,())(,,())(,,(:
,000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x 切平面方程写为
.
)1,2(09)(2 33处的切线和法线在点求笛卡儿叶形线
=-+xy y x 例1
.
012)1,2(015)1,2( 96),(,96),(,9)(22233≠-=≠=-=-=-+=y x y x F F x y y x F y x y x F xy y x F ,全平面连续,在解:
.0645,0)1(12)2(51 :=--=---y x y x 即切线方程.01354 ,0)1(15)2(21 :=-+=----y x y x 即法线方程 处的切线和法线方程在求:)2,2(4 22--=+y x 练习1
.
04)2,2(04)2,2( 2,2,4222≠-=--≠-=--==-+=y x y x F F R y F x F y x F ,上连续,在解: 0)2(4)2(4 =+-+-y x 切线方程: .0 =-y x 方程:法线
平面方程
处的切线和法在求螺旋线:3,sin ,cos π====t bt z t a y t a x 练习2
.
),,( .,cos ,sin 223b a T b z t a y t a x a -
=='='-='
切向量:解:,
:32
23
2
32
b
b z a y a x a a
π--
-
-=
=
切线方程
.0)()()(:32
3222
3
=-+-
+--
b z b a y x a a
a π法平面方程
.
)5,4,3(50222222处的切线和法平面方程点所截出的曲线的与锥面求球面z y x z y x =+=++ 例2
.0868
6),(),(120610610),(),(160108108),(),(,10,8,6,10,8,6)5,4,3(,
2,2,2,2,2,2,
,50222222==∂∂==∂∂-==∂∂-======-======-+=-++=y x G F -x z G F -z y G F G G G F F F z G y G x G z F y F x F z y x G z y x F z y x z y x z y x z y x ,,并且处,在解:
⎩⎨
⎧=-=-+--=-=-.05,0)4(4)3(3,0512041603 :)5,4,3(z y x z y -x 即点切线方程在
.034 ,0)5(0)4(3)3(4 :=-=-+-+--y x z y x 即法平面方程
.
)2,2(42
2处的切线和法线方程在求:--=+y x 练习1。