2321 中心对称
人教版九年级数学上册2321中心对称课件共38张

B'
A'
O
C'
C
B A
2、新课引入
B'
A'
O
C'
C
B A
2、新课引入
B'
A'
O
C'
C
B A
2、新课引入
B'
A'
180°
C'
O
C
B A
动画重放
中心对称
? 把一个图形绕着某一点旋转180°,如果它能够与另一个 图形重合,那么称这两个图形关于这点对称,也称这两个 图形成中心对称。
? 这个点叫做对称中心。 ? 这两个图形中的对应点叫做对称点.
新人教版初中数学九年级(上册)
趣味游戏
? 小明和小红在一张圆形的桌面上摆棋子,规定每人每次放 一粒棋子,当桌面摆满后,摆放棋子多的一方获胜.小明说: 如果让我先放棋子,我一定能赢你。
? 如果你是小明,你会用什么方法,能一定获胜呢?
小明获胜的方法就是我们今天所要学习的知识 ---中心对称
观察与思考
我来试一试
练习:
1、观察双曲线的对称特点? 既是轴对称也是中心对称
2、若点 A坐标为( 3,2 ),则 A′的坐标 为多少? (-3,-2) 3、若点A坐标为( a,b), 则 A′的坐标为多少?
(-a,-b)
y
A
o
x
A′
对比与总结 :中心对称与轴对称的 区别:
L
A
A/ALeabharlann OA/你知道中心对称与轴对称有什么区别与联系吗?
巩固与思考
? △OAB和△OCD关于哪一点对称? ? 答:点O ? 在图中有那些点互为对称点? ? 答:点A和点C,点B和点D,点O和点O
人教版九年级上册2321《中心对称》教案x

测量法
测量两个图形对应点到疑 似对称中心的距离是否相 等,如果相等则可能是中 心对称。
04
范例分析:典型题目解析与讨论
选择题、填空题解题技巧指导
观察选项,利用排除 法缩小范围
注意题目中的陷阱, 如“不一定”、“可 能”等词语
利用对称性质,判断 图形是否中心对称
解答题规范书写示范
明确题目要求,理解中心对称的定义 和性质
艺术品中的中心对称
在绘画、雕塑、剪纸等艺术形式中, 艺术家们经常运用中心对称来创作具 有美感和视觉冲击力的作品。
建筑物中的中心对称
许多建筑如教堂、宫殿、塔楼等,在 设计时都采用了中心对称的结构,以 体现平衡与和谐。
提出问题,激发学生思考兴趣
01
02
03
问题一
请举出生活中你观察到的 中心对称现象,并思考它 们为什么具有这种对称性?
称概念的理解。
尝试对图形进行旋转、平移等操 作,观察变换后的图形与原图形 的关系,探究中心对称在图形变
换中的应用。
小组合作,完成探究任务并展示成果
分组进行探究,每组选择一个与中心对 称相关的主题,如“中心对称在建筑设 计中的应用”、“中心对称在自然界中
的体现”等。
小组成员分工合作,搜集相关资料和信 通过制作PPT、海报、视频等形式,展
中心对称与轴对称关系辨析
联系:两者都是图形之间的对称关系,都 有对应的对称轴或对称中心。
轴对称的对应点连线垂直于对称轴,而中 心对称的对应点连线经过对称中心。
轴对称的图形可以是不全等的,但中心对 称的图形一定是全等的。
区别
轴对称是关于一条直线对称,而中心对称 是关于一个点对称。
性质定理和判定方法介绍
投影仪、电脑、课件等。利用多媒体课件展示中心对称图形和动态演示中心对 称变换过程,帮助学生更好地理解和掌握中心对称的概念和性质。同时,通过 投影仪展示例题和练习的解答过程,提高课堂教学效率。
2321中心对称第1课时 共36页

点对称,也称这
这个点叫作对称中心
两个图形成中
心对称
两个图形中的对应点叫做关于中心对称点
三、中心对称性质
B' A
C O
C'
A' B
(1)关于中心对称的两个图形是全等形;
(2)关于中心对称的两个图形,对称点 所连线段都经过对称中心,而且被对称中 心平分.
四、灵活运用
例1 如图,选择点O为对称中心,画出与
等于旋转角
二、新课:
23.2.1 中心对称
一、看看下面的图形旋转
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
OC’C来自B AB’A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
2321中心对称

23.2 .1中心对称(1)教学设计第一课时教学内容两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.重难点、关键1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.2.难点与关键:从一般旋转中导入中心对称.教具、学具准备小黑板、三角尺教学过程一、检查导读单完成情况1、组长检查自己小组成员的完成情况,然后向老师汇报2、每个小组派代表对导读单上的问题进行展示、讲解,老师给予评价二、生成单问题的解决1、各同学对生成单上的问题进行交流,讨论,作答。
(老师在各小组巡视,讲解共同存在的问题)2、每小组派一名代表在黑板上展示本组老师指定的问题,并讲解本组的解题思路、方法,板书过程。
3、其他小组可以补充,存在问题的指出问题,老师最后指导,进行评价三、交流本节课的收获1、各小组畅所欲言,谈本节课的收获、感悟,包括知识、模糊点的澄清、经验的获得、获得成功后的成就感。
2、归纳出本节课的要点。
四、重点的训练、拓展发放训练单,对重点知识强化训练,个别指导差生,教师组织参与评价,针对共性问题集中指导。
五、教师归纳总结,布置作业。
23.2.1.中心对称(1)问题导读生成单——评价单班级:组名:姓名:一.自读课本1.什么叫旋转?什么叫旋转角?2. 请同学们独立完成下题.如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,•并写出简要做法二、探索新知问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对称点绕O旋转180°后,这三点是否在一条直线上?像这样,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.三、巩固练习:教材P64 练习1.2中心对称问题拓展训练单——评价单班级:姓名:组名:一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()个.A.1 B.2 C.3 D.42.下面的图案中,是中心对称图形的个数有()个A.1 B.2 C.3 D.43.如图,把一张长方形ABCD的纸片,沿EF折叠后,与BC交点为G,•点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55° B.125°C.70° D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,•那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(•填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)•梯形.三、综合提高题1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.对称形式轴对称旋转对称中心对称只有一条对称轴有两条对称轴2。
人教版九级数学上册2321 中心对称新课课件(共24张PPT)[可修改版ppt]
![人教版九级数学上册2321 中心对称新课课件(共24张PPT)[可修改版ppt]](https://img.taocdn.com/s3/m/18fee323172ded630a1cb607.png)
你知道旋转的性质吗?
旋转的性质
对应点到旋转中心的距离相等 对应点与旋转中心所连线段的夹角等于旋转角
旋转前、后的图形全等
情景1
• 观察下面的2组图形,看一看各组中2个图形
No 的形状、大小是否相同?怎样将一个图形旋
转得到另一个图形?
Image
情景2
(2)画一个图形关于某点的对称图形的画法是:
先画出图形中的几个特殊点(线段的端点、如多 边形的顶点、圆的圆心等)关于某点的对称点,然后 再顺次连结有关对称点即可。
课堂练习
1、如图,已知等边△ABC和点O,画△ A' B' C‘ 使△A′B′C′和△ABC关于点O成中心对称.
A
C′
B′
O
B
C
A′
2、画一个与已知四边形ABCD中心对称图形。
(村庄)在不改变AB两点之间的距离的情况下,移
动到适当位置。首先在河塘岸边适当的位置取一点C
(如下图),连接AC、BC(使保持AC、BC不经过河 塘),分别将
AC、BC延长到点A’、B’,使A’CAC, B’CBC;这样即是作线段AB
关于点C的中心对
称图形A’B’,根据中心对称的特征有
A’B’AB,所以测出A’、B’两点间的距
人教版九年级数 学上册2321 中 心对称新课课件 (共24张PPT)
学习目标
1.掌握中心对称的定义,理解中心对称 的性质. 2.能够依据中心对称的性质解决相关作 图问题. 学习重点: 中心对称的定义与性质 学习难点: 图以及利用性质解决问题
你知道轴对称吗?
轴对 称
有一条对称轴——直线 图形沿对称轴对折(翻折180°)后重合
人教版九级数学上册2321中心对称共59张PPT[可修改版ppt]
![人教版九级数学上册2321中心对称共59张PPT[可修改版ppt]](https://img.taocdn.com/s3/m/0b0e0d1d360cba1aa911da4d.png)
3 翻转后和另一个图形重合 旋转后和另一个图形重合
探究 旋转三角板,画关于点O对称的两个三角形:
第一步,画出△ABC;
第二步,以三角板的一个顶点O为中心,把三角板旋 转180°,画出△A′B′C′;
第三步,移开三角板.
画出的△ABC与△A′B′C′ 关于点O对称.分别连接对称点 AA′、BB′、CC′。点O 在线段AA′上吗?如果在, 在什么位置? △ABC与△A′B′C′有 什么关系?
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
B’
A’
O
C’
C
B A
有什么发现?
新课讲解
点把A一绕个着图点形O绕旋着转某18个0 点°后与
B`
关的于对点应O点对叫称做,关点于O是中对心称的中对心称。点。
(先看动画)
C
180°
)12600°°
O
B
中心如对图称:与对轴应对点A称和的A`区、B别和:B`、 C`
A
C和C`是关于中心O的对称点。
A
C1
B1
B
轴对称
O
九年级数学上册2321-中心对称新人教版精品PPT课件

(1)OA=OA′、OB=OB′、 OC=OC′ (2)△ABC≌△A′B′C′
2.归纳:中心对称的性质
(1)关于中心对称的两个图形,对称 点所连线段都经过对称中心,并且被对 称中心所平分.
(2)关于中心对称的两个图形是全等 形。
想一3想.中心对称与轴对称有什么区
别?又有什么联系?
类比你能得到 什么结论?
求出它们的对称中心O。
C
B A
A’ B’
C’
解法一:根据观察,B、B’应 是对应点,连结BB’,用刻 度尺找出BB’的中点O,则
点O即为所求(如图)
C
O B’
解法二:根据观察,B、B’及C、 C’应是两组对应点,连结BB’、 CC’,BB’、CC’相交于点O,
则点O即为所求(如图)。
A’
B A
C’ C
OB’
A’
B
A
C’
找对称中心方法: 1、连接一对对应点,取对应点连线的中点 2、连接两对对应点,则两条对应点连线的交点
17
练习P70. 1. 2
深入理解
你用什么方法识别两个图形是否关于
某点中心对称?
方法1:将其中一个图形绕某一
A
点旋转180度,如果能够与另一
B
C' 个完全重合,那么它们关于这一
点中心对称。
C
B' A'
方法2:如果两个图形的对应点 连成的线段都经过某一点,并且 都被该点平分,那么这两个图形 一定关于这一点成中心对称.
20
(1)这些图形有什么共同的特征?旋转一定的角度可以和自身重合
(2)这些图形的不同点在哪?分别绕旋转中心旋转 多少度可以和原图形重合?
第一个图形的旋转角度为120°或240 °,第二个图形 的旋转角度为72°或144°或216°或288°。后三个图形 的旋转角度都为180°,第二,三个是轴对称图形。
人教版九级上册数学 2321 中心对称教学课件(共35张PPT)[可修改版ppt]
![人教版九级上册数学 2321 中心对称教学课件(共35张PPT)[可修改版ppt]](https://img.taocdn.com/s3/m/7188789cfab069dc51220149.png)
则得A的对称点A'
A O
连结BO,在BO的延长线上截取O B' =OB,
则得B的对称点B'
A'
连结 A' B' ,则线段A' B'是所求的线
B
段
例1 (3).如图.选择点O为对称中心,画出与
△ABC关于点O对称的△A′B′C′.
怎么办?可以帮 帮我吗? B′
A′
C′
△A′B′C′即为所求的三角形。
AAʹ
CCʹ
BBʹ
O
B
C
A
合作探究:
旋转三角板,画关于点O对称的两个三角形:
第一步,画出△ABC;
第二步,以三角板的一个顶点O为中心,把三角板旋
转180°,画出△A′B′C′;
第三步,移开三角板.
很显然画出的△ABC与
△AʹBʹCʹ关于点O对称. 分别连接AAʹ,BBʹ,CCʹ。 Aʹ
点O在线段AA′上吗?
二、创设情境,导入新课
问题1 (1)如图,把其中一个图案绕点 O 旋转 180°,你有什么发现?
两个图案能够完全重合在一起.
O
问题1 (2)如图,线段 AC,BD 相交于点 O,OA =OC,OB=OD.把 △OCD 绕点 O 旋转 180°,你有什 么发现?
两个图案能够完全重合在一起.
A
D
O
B
一、回顾旧知
旋转的定义
在平面内,把一个图形绕一个 定点,沿某个方向转动一个角度, 像这样的图形变换称作旋转 这个定点称为旋转中心 所转动的角称为旋转角
旋转三要素
旋转中心、旋转方向、
旋转角度
旋转的基本性质
1、旋转前后的图形全等 2、对应点到旋转中心的距离相等 3、对应点与旋转中心连线的夹角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:23. 2. 1中心对称导学案
年级:九学科:数学时间:2015 年10月执笔人:熊霜授课人:熊霜学情分析:
导学目标:
1. 了解中心对称、对称中心、关于中心的对称点等概念.
2. 掌握中心对称的基本性质.
导学重点:中心对称的性质及初步应用
导学难点:中心对称与旋转之间的关系
导学过程
教学
环节
学生活动教师活动情景
导入
自主学习
一、自学指导.(10分钟)
自学1:中心对称,对称中心,对称点等概念:把一个图形绕某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry);这个点叫做对称中心;这两个图形中的对应点叫做关于对称中心的对称点.自学2:中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;
(2)关于中心对称的两个图形是全等图形.
小组合作
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)
如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称.(只保留作图痕迹,不要求写出作法)
启发
引导
点拨精讲:
(1)画法总结;
(2)性质归纳
反馈
评价
一、自学检测:.(8分钟)
1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图
案,写出作法并回答.
(1)这两个图形是中心对称图形吗?如果是,对称中心是哪一
点?如果不是,请说明理由.
(2)如果是中心对称,那么A,B,C,D关于中心对称的对称点
是哪些点.
2.如图,已知AD是△ABC的中线,作出以点D为对称中心,与
△ABD成中心对称的三角形.
二、跟踪练习:.(10分钟)
1.如图,等边△ABC内有一点O,试说明:OA+OB>OC.
学生自主完
成,小组内
展示,点评,
教师巡视
学生独立确
定解题思
路,小组内
交流,上台
展示并讲解
思路
课堂
小结
学生总结本堂课的收获与困惑.(2分钟)
1.中心对称及对称中心的概念;
2.关于中心对称的两个图形的性质.
教学
反思。