信息论及编码第5章

合集下载

信息论:第5章 无失真信源编码定理

信息论:第5章 无失真信源编码定理
23
(7)码的N次扩展码
假定某码C,它把信源 S {s1 , s2 ,, sq }中的符号
s i 一一变换成码C中的码字 Wi ,则码C的N次扩展 码是所有N个码字组成的码字序列的集合。
24
例如:若码 C {W1 ,W2 ,,Wq } 满足:si Wi ( xi1 , xi 2 ,, xil ), si S , xil X 则码C的N次扩展码集合 B {B1 , B2 , , Bq } ,其中:
为了解决这两个问题,就要引入信源编码和信 道编码。
2
一般来说,抗干扰能力与信息传输率二者相互矛盾。 然而编码定理已从理论上证明,至少存在某种最佳 的编码能够解决上述矛盾,做到既可靠又有效地传 输信息。 信源虽然多种多样,但无论是哪种类型的信源, 信源符号之间总存在相关性和分布的不均匀性,使 得信源存在冗余度。
q r
N
l
(5.2)
36
25
(8)惟一可译码
若任意一串有限长的码符号序列只能被惟一地 译成所对应的信源符号序列,则此码称为惟一可译 码(或称单义可译码)。否则就称为非惟一可译码 或非单义可译码。
若要使某一码为惟一可译码,则对于任意给定 的有限长的码符号序列,只能被惟一地分割成一个 个的码字。
26
例如:对于二元码 C1 {1, 01, 00},当任意给定一串 码字序列,例如“10001101”,只可唯一地划分为 1,00,01,1,01,因此是惟一可译码; 而对另一个二元码 C 2 {0,10, 01},当码字序列 为“01001”时,可划分为0,10,01或01,0,01,所以是 非惟一可译的。
i
N
Bi {Wi1 ,Wi2 ,,WiN }; i1 ,, i N 1,, q; i 1,, q N

信息论与编码(第二版)陈运主编课件第五章 (1)

信息论与编码(第二版)陈运主编课件第五章 (1)
i 1
6
H ( x) 89.63% R
作业

5.1
2
3 4
令p(a0 ) 0, 用pa (a j )( j i 1)表示第i个码字的 累加概率pa (a j ) p(ai )
j 1 i 0
log 2 p(ai ) ki 1 log 2 p(ai ) ki 为第i个码字的长度
把pa (a j )用二进制表示,并取小数点后的ki 位 作为ai的码字
码序列:C W1W2 ...WK Wk {b1 , b2 ...bm }
定长 消息序列
码序列
变长
定理说明
m-码序列中每个符号的可能取值,单个符号的 信息量为 log m K-定长编码的长度,总信息量 K log m L-信源符号的长度,平均每个符号的信息量为 K log m
K log m H(X ) 信息率: R L H(X ) 编码效率字是否可分离?
消息 概率 a1 0.5 a2 0.25 a3 0.125 0.125 a4
码A 0 0 1 10
不可 分离
码B 0 1 00 11
不可 分离
可分离 可分离 即时码 有延时 异前置码
码C 0 01 011 0111
码D 0 10 110 1110
克拉夫特不等式
L
信息率略大于信源熵,可做到无失真译码
例题

P66 例2.4.1
结论:定长编码简单,但要达到一定的差错 率不易实现,且编码效率低。
2
变长编码定理:
对离散无记忆信源,消息长度为L,符号熵为H(X), 对信源进行m元变长编码,一定存在无失真的信源编 码方法
其码字平均长度
K 满足:

信息论与编码第5章限失真信源编码

信息论与编码第5章限失真信源编码
4 1 0
第一节 失真测度
• 以上所举的三个例子说明了具体失真度的定义. 一般情况下根据实际信源的失真, 可以定义不同 的失真和误差的度量.
• 另外还可按照其他标准, 如引起的损失、风险、 主观感受上的差别大小等来定义失真度d(ui,vj).
• 从实用意义上说, 研究符号实际信源主观要求的、 合理的失真函数是很重要的.
第一节 失真测度
设信源变量为U={u1,…,ur}, 接收端变量为 V={v1,…,vs}, 对于每一对(u,v), 指定一个非负 函数
d(ui,vj)≥0 称为单个符号的失真度(或称失真函数). 失真函数用来表征信源发出符号ui, 而接收端再现 成符号vj所引起的误差或失真. d越小表示失真越小, 等于0表示没有失真.
➢ 应该指出, 研究R(D)时, 条件概率p(v|u)并没有 实际信道的含义. 只是为了求互信息的最小值而引 用的、假想的可变试验信道. ➢ 实际上这些信道反映的仅是不同的有失真信源编 码或信源压缩. 所以改变试验信道求平均互信息最 小值, 实质上是选择编码方式使信息传输率为最小.
率失真理论与信息传输理论的对偶关系
– 接收端获得的平均信息量可用平均互信息量I(U;V)表示;
– 这就变成了在满足保真度准则的条件下 D D 找平均互信息量I(U;V)的最小值.
,寻
– 因为BD是所有满足保真度准则的试验信道集合, 即可以 在D失真许可的试验信道集合BD中寻找某一个信道 p(vj|ui), 使I(U;V)取最小值.
本章所讨论的内容是量化、数模转换、频带 压缩和数据压缩的理论基础.
前言
本章主要介绍信息率失真理论的基本内容, 侧 重讨论离散无记忆信源.
首先给出信源的失真度和信息率失真函数的定 义与性质, 然后讨论离散信源的信息率失真函数计 算. 在这个基础上论述保真度准则下的信源编码定 理.

信息论与编码第5章(2)

信息论与编码第5章(2)

2.48
3
011
a4
0.17
0.57
2.56
3
100
a5
0.15
0.74
2.743101 Nhomakorabeaa6
0.10
0.89
3.34
4
1110
a7
0.01
0.99
6.66
7
1111110
10
香农编码
• 由上表可以看出,一共有5个三位的代码组,各代 码组之间至少有一位数字不相同,故是唯一可译码。 还可以判断出,这7个代码组都属于即时码。
相等。如编二进制码就分成两组,编m进制码就分成 m组。 给每一组分配一位码元。 将每一分组再按同样原则划分,重复步骤2和3,直至概 率不再可分为止。
13
费诺编码
xi
符号概 率
x1
0.32
0
编码 0
码字 00
码长 2
x2
0.22
1
01
2
x3
0.18
0
10
2
x4
0.16
1
0
110
3
x5
0.08
1
0
的码字总是0、00、000、0…0的式样; ✓ 码字集合是唯一的,且为即时码; ✓ 先有码长再有码字; ✓ 对于一些信源,编码效率不高,冗余度稍大,因此
其实用性受到较大限制。
12
费诺编码
费诺编码属于概率匹配编码 。
编码步骤如下: 将概率按从大到小的顺序排列,令
p(x1)≥ p(x2)≥…≥ p(xn) 按编码进制数将概率分组,使每组概率尽可能接近或
15
哈夫曼编码
哈夫曼编码也是用码树来分配各符号的码字。 哈夫曼(Huffman)编码是一种效率比较高的变长无失

信息论与编码第五章习题参考答案

信息论与编码第五章习题参考答案

5.1某离散无记忆信源的概率空间为采用香农码和费诺码对该信源进行二进制变长编码,写出编码输出码字,并且求出平均码长和编码效率。

解:计算相应的自信息量1)()(11=-=a lbp a I 比特 2)()(22=-=a lbp a I 比特 3)()(313=-=a lbp a I 比特 4)()(44=-=a lbp a I 比特 5)()(55=-=a lbp a I 比特 6)()(66=-=a lbp a I 比特 7)()(77=-=a lbp a I 比特 7)()(77=-=a lbp a I 比特根据香农码编码方法确定码长1)()(+<≤i i i a I l a I平均码长984375.164/6317128/17128/1664/1532/1416/138/124/112/1L 1=+=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=由于每个符号的码长等于自信息量,所以编码效率为1。

费罗马编码过程5.2某离散无记忆信源的概率空间为使用费罗码对该信源的扩展信源进行二进制变长编码,(1) 扩展信源长度,写出编码码字,计算平均码长和编码效率。

(2) 扩展信源长度,写出编码码字,计算平均码长和编码效率。

(3) 扩展信源长度,写出编码码字,计算平均码长和编码效率,并且与(1)的结果进行比较。

解:信息熵811.025.025.075.075.0)(=--=lb lb X H 比特/符号 (1)平均码长11=L 比特/符号编码效率为%1.81X)(H 11==L η(2)平均码长为84375.0)3161316321631169(212=⨯+⨯+⨯+⨯=L 比特/符号 编码效率%9684375.0811.0X)(H 22===L η(3)当N=4时,序列码长309.3725617256362563352569442569242562732562732256814=⨯+⨯+⨯⨯+⨯⨯+⨯⨯+⨯+⨯⨯+⨯=L平均码长827.04309.34==L %1.98827.0811.0X)(H 43===L η可见,随着信源扩展长度的增加,平均码长逐渐逼近熵,编码效率也逐渐提高。

信息论与编码第5章

信息论与编码第5章

信息论与编码第5章第五章信源编码(第⼗讲)(2课时)主要内容:(1)编码的定义(2)⽆失真信源编码重点:定长编码定理、变长编码定理、最佳变长编码。

难点:定长编码定理、哈夫曼编码⽅法。

作业:5。

2,5。

4,5。

6;说明:本堂课推导内容较多,枯燥平淡,不易激发学⽣兴趣,要注意多讨论⽤途。

另外,注意,解题⽅法。

多加⼀些内容丰富知识和理解。

通信的实质是信息的传输。

⽽⾼速度、⾼质量地传送信息是信息传输的基本问题。

将信源信息通过信道传送给信宿,怎样才能做到尽可能不失真⽽⼜快速呢?这就需要解决两个问题:第⼀,在不失真或允许⼀定失真的条件下,如何⽤尽可能少的符号来传送信源信息;第⼆,在信道受⼲扰的情况下,如何增加信号的抗⼲扰能⼒,同时⼜使得信息传输率最⼤。

为了解决这两个问题,就要引⼊信源编码和信道编码。

⼀般来说,提⾼抗⼲扰能⼒(降低失真或错误概率)往往是以降低信息传输率为代价的;反之,要提⾼信息传输率常常⼜会使抗⼲扰能⼒减弱。

⼆者是有⽭盾的。

然⽽在信息论的编码定理中,已从理论上证明,⾄少存在某种最佳的编码或信息处理⽅法,能够解决上述⽭盾,做到既可靠⼜有效地传输信息。

这些结论对各种通信系统的设计和估价具有重⼤的理论指导意义。

§3.1 编码的定义编码实质上是对信源的原始符号按⼀定的数学规则进⾏的⼀种变换。

讨论⽆失真信源编码,可以不考虑⼲扰问题,所以它的数学描述⽐较简单。

图 3.1是⼀个信源编码器,它的输⼊是信源符号},,, {21q s s s S =,同时存在另⼀符号},,,{21r x x x X =,⼀般来说,元素xj 是适合信道传输的,称为码符号(或者码元)。

编码器的功能就是将信源符号集中的符号s i (或者长为N 的信源符号序列)变换成由x j (j=1,2,3,…r)组成的长度为l i 的⼀⼀对应的序列。

输出的码符号序列称为码字,长度l i 称为码字长度或简称码长。

可见,编码就是从信源符号到码符号的⼀种映射。

信息论基础第5章无失真信源编码

信息论基础第5章无失真信源编码
进行霍夫曼编码时,应把合并后的概率总是放在 其他相同概率的信源符号之上,以得到码长方差最小 的码。
r 元霍夫曼编码步骤:
1) 验证所给 q 是否满足 q (r 1) r ,若不满足该式,
可以人为地增加 t 个概率为零的符号,满足式
n (r 1) r ,以使最后一步有 r 个信源符号;
2) 取概率最小的 r 个符号合并成一个新符号,并分别用 0, 1,…,(r 1) 给各分支赋值,把这些符号的概率相加作为该新 符号的概率;
上述不等式只是即时码存在的充要条件,而不能作为判别的依据。
需要注意的是,克拉夫特不等式是即时码存在的充要条件,而 不能作为判别的依据。后来麦克米伦(B. McMillan)证明唯一可译 码也满足克拉夫特不等式。这说明在码长选择的条件上,即时码与 唯一可译码是一致的。
【例】 对于二元码,即 r 2 ,如果 q 4 , L1 2 , L2 2 ,
原始信源普遍存在剩余度,香农信息论认为信源的剩余度主 要来自两个方面:一是信源符号间的相关性,二是信源符号概率 分布的不均匀性。为了去除信源剩余度,提高信源的信息传输率, 必须对信源进行压缩编码。
目前去除信源符号间相关性的主要方法是预测编码和变换编 码,而去除信源符号概率分布不均匀性的主要方法是统计编码。
《信息论基础》
第5章 无失真信源编码
第 2 章已经讨论了离散信源的信息度量—信源熵, 本章将讨论信源的另一个重要问题:如何对信源的输出 进行适当的编码,才能用尽可能少的码元来表示信源信 息,做到以最大的信息传输率无差错地传输信息呢?即 无失真信源编码,它解决的是通信的有效性问题。
本章将首先介绍信源编码器;然后从理论上阐述无 失真信源编码定理,得出“平均码长的理论极限值就是

信息论与编码第5章 信源编码技术

信息论与编码第5章 信源编码技术

哈夫曼码的主要特点 1、哈夫曼码的编码方法保证了概率大的符号对 应于短码,概率小的符号对应于长码,充分 利用了短码; 2、缩减信源的两个码字的最后一位总是不同, 可以保证构造的码字为即时码。 3、哈夫曼码的效率是相当高的,既可以使用单 个信源符号编码,也可以对信源序列编码。 4、要得到更高的编码效率,可以使用较长的序 列进行编码。
5.1.2费诺码
费诺码的基本思想: 1、按照累加概率尽可能相等的原则对信源符号 进行分组: 对于二元码,则每次分为两组; 对于d元码,则每次分为d个组。 并且给不同的组分配一个不同的码元符号。 2、对其中的每组按照累计概率尽可能相等的原 则再次进行分组,并指定码元符号,直到不能 再分类为止。 3、然后将每个符号指定的码元符号排列起来就 得到相应的码字。
算术编码
适用于JPEG2000,H.263等图像压缩标准。 特点: 1、随着序列的输入,就可对序列进行编码 2、平均符号码长 L 满足
1 H (X ) L H (X ) N
(最佳编码)
3、需要知道信源符号的概率 是对shanno-Fanno-Elias编码的改进。
累计分布函数的定义
H(X ) H(X ) L 1 log d log d
费诺码的最佳性
1、保证每个集合概率和近似相等,保证d个码元近 似等概率,每个码字承载的信息量最大,码长近似 最短。 2、是次最佳的编码方法,只在当信源符号概率满足:
p(ai ) d
时达最佳。
li
信源符号
a1 a2 a3 a4 a5 a6 a7 a8 a9
费诺二元码的编码步骤
1、将源消息符号按概率大小排序:
p1 p2 p3 pn
2、将依次排列的信源符号分为两大组,使每组的概 率和尽可能相等,且每组赋与二进制码元“0”和 “1”。 3、将每一大组的信源符号再分为两组,使每组的概 率和尽可能相等,且每组赋与二进制码元“0”和 “1”。 4、如此重复,直至每组只剩下一个符号。 信源符号所对应的码字即费诺码。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 信源编码(第十讲)(2课时)主要内容:(1)编码的定义(2)无失真信源编码 重点:定长编码定理、变长编码定理、最佳变长编码。

难点:定长编码定理、哈夫曼编码方法。

作业:5。

2,5。

4,5。

6;说明:本堂课推导内容较多,枯燥平淡,不易激发学生兴趣,要注意多讨论用途。

另外,注意,解题方法。

多加一些内容丰富知识和理解。

通信的实质是信息的传输。

而高速度、高质量地传送信息是信息传输的基本问题。

将信源信息通过信道传送给信宿,怎样才能做到尽可能不失真而又快速呢?这就需要解决两个问题:第一,在不失真或允许一定失真的条件下,如何用尽可能少的符号来传送信源信息;第二,在信道受干扰的情况下,如何增加信号的抗干扰能力,同时又使得信息传输率最大。

为了解决这两个问题,就要引入信源编码和信道编码。

一般来说,提高抗干扰能力(降低失真或错误概率)往往是以降低信息传输率为代价的;反之,要提高信息传输率常常又会使抗干扰能力减弱。

二者是有矛盾的。

然而在信息论的编码定理中,已从理论上证明,至少存在某种最佳的编码或信息处理方法,能够解决上述矛盾,做到既可靠又有效地传输信息。

这些结论对各种通信系统的设计和估价具有重大的理论指导意义。

§3.1 编码的定义编码实质上是对信源的原始符号按一定的数学规则进行的一种变换。

讨论无失真信源编码,可以不考虑干扰问题,所以它的数学描述比较简单。

图 3.1是一个信源编码器,它的输入是信源符号},,,{21q s s s S ,同时存在另一符号},,,{21r x x x X ,一般来说,元素xj 是适合信道传输的,称为码符号(或者码元)。

编码器的功能就是将信源符号集中的符号s i (或者长为N 的信源符号序列)变换成由x j (j=1,2,3,…r)组成的长度为l i 的一一对应的序列。

输出的码符号序列称为码字,长度l i 称为码字长度或简称码长。

可见,编码就是从信源符号到码符号的一种映射。

若要实现无失真编码,则这种映射必须是一一对应的,并且是可逆的。

码符号的分类: 下图是一个码分类图下面,我们给出这些码的定义。

1. 二元码若码符号集为X={0;1},所有码字都是一些二元序列,则称为二元码。

二元码是数字通信和计算机系统中最常用的一种码。

2. 等长码:若一组码中所有码字的码长都相同,即l i=l(i=1,2,…q),则称为等长码。

3. 变长码:若一组码组中所有码字的码长各不相同,则称为变长码。

4. 非奇异码:若一组码中所有码字都不相同,则称为非奇异码。

5. 奇异码:若一组码中有相同的码字,则称为奇异码。

6. 唯一可译码:若码的任意一串有限长的码符号序列只能唯一地被译成所对应的信源符号序列,则此码称为唯一可译码,否则就称为非唯一可译码。

7. 非即时码和即时码:如果接收端收到一个完整的码字后,不能立即译码,还要等下一个码字开始接收后才能判断是否可以译码,这样的码叫做非即时码。

如果收到一个完整的码字以后,就可以立即译码,则叫做即时码。

即时码要求任何一个码字都不是其他码字的前缀部分,也叫做异前缀码。

码树:即时码的一种简单构造方法是树图法。

对给定码字的全体集合C={W1,W2,…W q}来说,可以用码树来描述它。

所谓树,就是既有根、枝,又有节点,如图 5.2(80业)所示,图中,最上端A为根节点,A、B、C、D、E皆为节点,E为终端节点。

A、B、C、D为中间节点,中间节点不安排码字,而只在终端节点安排码字,每个终端节点所对应的码字就是从根节点出发到终端节点走过的路径上所对应的符号组成,如图5.2中的终端节点E,走过的路径为ABCDE,所对应的码符号分别为0、0、0、1,则E对应的码字为0001。

可以看出,按树图法构成的码一定满足即时码的定义(一一对应,非前缀码)。

从码树上可以得知,当第i阶的节点作为终端节点,且分配码字,则码字的码长为i。

任一即时码都可以用树图法来表示。

当码字长度给定后,用树图法安排的即时码不是唯一的。

如图3.2中,如果把左树枝安排为1,右树枝安排为0,则得到不同的结果。

对一个给定的码,画出其对应的树,如果有中间节点安排了码字,则该码一定不是即时码。

每个节点上都有r个分支的树称为满树,否则为非满树。

即时码的码树图还可以用来译码。

当收到一串码符号序列后,首先从根节点出发,根据接收到的第一个码符号来选择应走的第一条路径,再根据收到的第二个符号来选择应走的第二条路径,直到走到终端节点为止,就可以根据终端节点,立即判断出所接收的码字。

然后从树根继续下一个码字的判断。

这样,就可以将接收到的一串码符号序列译成对应的信源符号序列。

⏹克拉夫特(Kraft)不等式定理3.1 对于码符号为X={x1,x2,…x r}的任意唯一可译码,其码字为W1,W2,…W q,所对应的码长为l1,l2…l q,则必定满足克拉夫特不等式反之,若码长满足上面的不等式,则一定存在具有这样码长的即时码。

注意:克拉夫特不等式只是说明唯一可译码是否存在,并不能作为唯一可译码的判据(可以排除,不能肯定)。

如{0,10,010,111}满足克拉夫特不等式,但却不是唯一可译码。

例题:设二进制码树中X={x1,x2,x3,x4},对应的l1=1,l2=2,l3=2,l4=3,由上述定理,可得因此不存在满足这种码长的唯一可译码。

可以用树码进行检查。

⏹唯一可译码的判断法(变长):将码C中所有可能的尾随后缀组成一个集合F,当且仅当集合F中没有包含任一码字,则可判断此码C为唯一可译码。

集合F的构成方法:首先,观察码C中最短的码字是否是其它码字的前缀,若是,将其所有可能的尾随后缀排列出。

而这些尾随后缀又有可能是某些码字的前缀,再将这些尾随后缀产生的新的尾随后缀列出,然后再观察这些新的尾随后缀是否是某些码字的前缀,再将产生的尾随后缀列出,依此下去,直到没有一个尾随后缀是码字的前缀为止。

这样,首先获得了由最短的码字能引起的所有尾随后缀,接着,按照上述步骤将次短码字、…等等所有码字可能产生的尾随后缀全部列出。

由此得到由码C的所有可能的尾随后缀的集合F。

例题:设码C={0,10,1100,1110,1011,1101},根据上述测试方法,判断是否是唯一可译码。

解:1. 先看最短的码字:“0”,它不是其他码字前缀,所以没有尾随后缀。

2. 再观察码字“10”,它是码字“1011”的前缀,因此有尾随后缀。

所以,集合F={11,00,10,01},其中“10”为码字,故码C不是唯一可译码。

§3.2 定长编码定理前面已经说过,所谓信源编码,就是将信源符号序列变换成另一个序列(码字)。

设信源输出符号序列长度为L,码字的长度为K L,编码的目的,就是要是信源的信息率最小,也就是说,要用最少的符号来代表信源。

在定长编码中,对每一个信源序列,K L都是定值,设等于K,我们的目的是寻找最小K值。

要实现无失真的信源编码,要求信源符号X i(i=1,2,…q)与码字是一一对应的,并求由码字组成的符号序列的逆变换也是唯一的(唯一可译码)。

定长编码定理:由L 个符号组成的、每个符号熵为H L (X)的无记忆平稳信源符号序列X 1X 2X 3…X L 用K L 个符号Y 1Y 2…Y KL (每个符号有m 种可能值)进行定长变码。

对任意0,0 ,只要)(log X H m LK L L则当L 足够大时,必可使译码差错小于 ;反之,当 时,译码差错一定是有限值,当L 足够大时,译码几乎必定出错。

式中,左边是输出码字每符号所能载荷的最大信息量所以等长编码定理告诉我们,只要码字传输的信息量大于信源序列携带的信息量,总可以实现几乎无失真的编码。

条件时所取得符号数L 足够大。

设差错概率为 P ,信源序列的自方差为 则有:当)(2X 和2均为定值时,只要L 足够大, P 可以小于任一整数 ,即此时要求:只要 足够小,就可以几乎无差错地译码,当然代价是L 变得更大。

令为码字最大平均符号信息量。

定义编码效率为: 最佳编码效率为无失真信源编码定理从理论上阐明了编码效率接近于1的理想编码器的存在性,它使输出符号的信息率与信源熵之比接近于1,但要在实际中实现,则要求信源符号序列的L 非常大进行统一编码才行,这往往是不现实的。

例如:例题:设离散无记忆信源概率空间为 信源熵为 自信息方差为对信源符号采用定长二元编码,要求编码效率%90 ,无记忆信源有)()(X H X H L ,因此%90)()(X H X H可以得到28.0如果要求译码错误概率610 ,则872210108.9()X L 由此可见,在对编码效率和译码错误概率的要求不是十分苛刻的情况下,就需要810 L 个信源符号一起进行编码,这对存储和处理技术的要求太高,目前还无法实现。

如果用3比特来对上述信源的8个符号进行定长二元编码,L=1,此时可实现译码无差错,但编码效率只有2.55/3=85%。

因此,一般说来,当L 有限时,高传输效率的定长码往往要引入一定的失真和译码错误。

解决的办法是可以采用变长编码。

§3.3 最佳编码最佳码:对于某一信源和某一码符号集来说,若有一唯一可译码,其平均码长K 小于所有其他唯一可译码的平均长度。

为此必须将概率大的信息符号编以短的码字,概率小的符号编以长的码字,使得平均码字长度最短。

能获得最佳码的编码方法: 香农(Shannon ) 费诺(Fano ) 哈夫曼(Huffman ) 1、香农编码方法香农第一定理指出了平均码长与信源之间的关系,同时也指出了可以通过编码使平均码长达到极限值,这是一个很重要的极限定理。

香农第一定理指出,选择每个码字的长度K i 满足下式: K i = [ip 1log]——取整 即: -log 2p i ≤K i ≤1-log 2p i 就可以得到这种码。

这种编码方法称为香农编码。

例:设无记忆信源的概率空间为: 计算各符号的码字长度: K 1= log2=1 K 2= log4=2 K 3= K 4 =log8=3用图示码树,可得各自的码字:u 1:(0),u 2:(10),u 3:(110),u 4:(111) 信息熵H(U): 信源符号的平均码长: 编码效率对于这种信源,香农编码是最佳编码。

码树达到满树。

香农编码法多余度稍大,实用性不大,但有重要的理论意义。

编码方法如下:⑴ 将信源消息符号按其出现的概率大小依次排列 p(u 1)≥p(u 2)≥…≥ p(u n ) ⑵ 确定码长K i (整数) :K i = [ip 1log]——取整 ⑶ 为了编成唯一可译码,计算第i 个消息的累加概率 ⑷ 将累加概率P i 变换成二进制数。

⑸ 取p i 二进制数的小数点后K i 位即为该消息符号的二进制数。

例:05.005.02.03.04.0)(54321u u u u u u p U 以i = 3为例,计算各符号的码字长度:K 3 = [-log0.2] = 3累加概率P 4 = 0.7 —— 0.10110… —— 101由图,这些码字没有占满所有树叶,所以是非最佳码。

相关文档
最新文档