偏导数与全微分习题

合集下载

高等数学偏导数部分的知识点及习题

高等数学偏导数部分的知识点及习题

= 。

例1、设 = ⅇ , sin

,具有连续导数,求 。





例2、设 = 2 − 2 , sin ,求 , 。
例3、设 =
例4、设 =
, ⅇ− , 2


+ 3

,f具有连续导数,求 , 。

方向导数的计算



= cos + cos ,,分别为与x轴y轴的正向相交的夹角。



例1、求 = ⅇ2 在点 1,0 处从点 1,0 到 2, −1 的方向导数。

推广:在(, , )中,

=
例2、已知两点 1,1,1 , 5,7,3 ,求 =
量方向的方向导数。

cos 2

1

+

cos

1
2
+

cos

6 2 + 8 2 在P点沿向
五、梯度


定义函数 = , 在点 , 的梯度,记为graⅆ , = ∇ , = Ԧ + Ԧ。

性质:
1、梯度是一个向量。
2、沿梯度方向的导数达到最大。
2、 = , ,其中 = , , , = , , 。

=
+



=
+


=
+


3、 = f , ,其中 = , = 。
=

+

第三节偏导数与全微分

第三节偏导数与全微分
z ′x = 2(sin xy )(cos xy ) y + y 2 z ′y = 2(sin xy )(cos xy ) x + 2 yx
dz = z′ dx + z′ dy x y
= [2(sin xy )(cos xy ) y + y ]dx
2
+ [2(sin xy )(cos xy ) x + 2 yx ]dy .
2.偏导数 设有函数 z = f ( x , y ), 如果极限 偏导数
f ( x 0 , y 0 + ∆y ) − f ( x 0 , y0 ) lim = lim0 ∆y → ∆y → 0 ∆ y ∆y
∆ yz
存在, 存在 则称此极限为 f ( x , y )在点
( x0 , y0 ) 处对 y 的偏导数 的偏导数.
第三节 偏导数与全微分
一.二元函数的偏导数 二元函数的偏导数 1.改变量 改变量
全改 变量 偏改 变量 偏改 变量
x : x 0 → x 0 + ∆x
y : y 0 → y 0 + ∆y
∆ z = f ( x 0 + ∆x , y 0 + ∆y ) − f ( x 0 , y 0 )
∆ x z = f ( x 0 + ∆x , y 0 ) − f ( x 0 , y 0 )
+ x ln x
y
f x′ (1,2) = 2e 2 + 2 f y′ (1,2) = e 2 .
y ∂z ∂z 例3 设 z = arctan x , 求证 x + y = 0. ∂x ∂y

∂z = ∂x
y y (− 2 ) = − 2 2 y 2 x +y x 1+ ( ) x ∂z 1 x 1 = ( ) = 2 y 2 x ∂y x + y2 1+ ( ) x y x ∂z ∂z x ) + y( 2 ) = 0. +y = x(− 2 2 2 x +y x +y ∂x ∂y

多元函数微积分学 6.3偏导数与全微分

多元函数微积分学 6.3偏导数与全微分

=1+ 2×0.04 + 0×0.02 =1.08.
24
2. 全微分的运算公式 设二元函数 u(x,y) , v(x,y) 均可微 , 则 ((v(x,y) ≠0)), 也可微 且 也可微,
d( ku)
(k为常数 为常数), 为常数
(k为常数), (k为常数), 为常数
= du ± dv, = vdu + udv,
26
f (x, y),
处连续. 即 z = f (x, y) 在点 (x, y) 处连续
17
定理4 (充分条件) 若函数
∂z ∂z 的偏导数 , ∂x ∂y 在 (x, y) 连 , 则函数在该点可微分 点 续 则函数在该点可微分. 证 ∆z = f (x + ∆x, y + ∆y) − f (x, y)
∂u =− sin( x2 − y2 − ez ) ⋅ (−2 y) = 2 y sin( x2 − y2 − ez ) ∂y
∂z 2 2 z z z 2 2 z u = −sin( x − y − e ) ⋅ (−e ) = e sin( x − y − e ) ∂z
10
2. 二元函数偏导数的几何意义
∂f ; z′ x ∂ x (x0 , y0 )
( x0 , y0 )
;
f1′(x0, y0 ) .
2
同样可定义对 y 的偏导数
f (x0, y0 + ∆y ) − f (x0, y0 ) f y′(x0, y0 ) = lim ∆ y→0 ∆y
若函数 z = f ( x , y ) 在域 D 内每一点 ( x , y ) 处对 x 或 y 偏导数存在 , 则该偏导数称为偏导函数 也简称为 则该偏导数称为偏导函数 偏导函数, 偏导数 , 记为

D8.2偏导数与全微分

D8.2偏导数与全微分
x0 y0
即 函数zz = ff(x(,xy) 在点x, y(x, y)y可) 微f (函x,数y)在该点连续
下面两个定理给出了可微与偏导数的关系:
(1) 函数可微 (2) 偏导数连续
偏导数存在 函数可微
高等数学
目录 上页 下页 返回 结束
21
定理 (必要条件) 若函数 z = f (x, y) 在点(x, y) 可微 ,
求 fxy (0,0) , f yx (0,0) .
解:
fx (x, y)
f y (x, y)
y
x4
4x2 (x2
y2 y2 )2
y4
,
0,
x
x4
4x2y2 (x2 y2)2
y4
,
0,
x2 y2 0 x2 y2 0 x2 y2 0 x2 y2 0
高等数学
目录 上页 下页 返回 结束
分子与分母的商 !
? z
x
xy y z
y (
z y2
)
1 x
z 1 xy
高等数学
目录 上页 下页 返回 结束
8
二、二元函数偏导数的几何意义
z
f x
x x0 yy0
d dx
f (x, y0 )
x x0
M0
Tx
Ty
是曲线
z
y
f (x, y0
y)在点
M0
处的切线
M 0Tx 对 x 轴的斜率.
24
z
fx (x, y)x f y (x, y)y x y
lim
x0
y 0
0,
lim
x0
y 0
0
注意到

偏导数与全微分

偏导数与全微分

偏改 变量
y z f ( x0 , y0 y) f ( x0 , y0 )
2.偏导数 设有函数 z f (x, y), 如果极限
lim x z lim f ( x0 x, y0 ) f ( x0 , y0 )
x x0
x0
x
存在,则称此极限值为f (x, y)在点
z x (1, 2)
z x1 1 3y y2
z y (1, 2)
例2 已知 f ( x, y) e xy x y , 求 f x( x, y), f y( x, y), f x(1,2), f y(1,2).
解 f x( x, y) ye xy yx y1 f y( x, y) xe xy x y ln x
zy

xe x y ( x 1) 1 1 y
zy (1.0) e 2
dz 2edx (e 2)dy. (1,0)
定理8.2 如果函数 f (x, y) 在点P(x, y)及其邻域 内有连续的偏导数 f x( x, y)和 f y( x, y), 则该函数在点 P(x, y) 处可微.
(3)关系 函数 f (x, y)在 ( x0 , y0 )处的偏导数等于
偏导函数在( x0 , y0 ) 处的函数值.
(4)偏导函数求法 对 x 求偏导把 y 看作常数,
对 y 求偏导把 x 看作常数,

按一元函数求导法则求.

法 则
重要注意事项
二元函数偏导数的几何意义:
z
f x
x x0 yy0
z z f (x, y)
.P
.O
y0
x0
T2
y

7.3偏导数与全微分

7.3偏导数与全微分
函数可微 偏导数存在 函数连续
1. 偏导数连续
2.全微分的定义可推广到三元及三元以上函数. 全微分的定义可推广到三元及三元以上函数. 全微分的定义可推广到三元及三元以上函数 ∂u ∂u ∂u du = dx + dy + dz . ∂y ∂x ∂z
y 例 求 u = x + sin + e yz 的全微分. 2 1 y yz yz key : d u = dx + ( cos + ze )dy + ye dz. 2 2
§7.3 偏导数与全微分
1.定义 设函数 z = f ( x, y)在点( x0 , y0 ) 的某邻域内的极限
∆x 的偏导数, 存在, 存在 则称此极限为 z = f ( x, y) 在点( x0 , y0 ) 对 x的偏导数, ∂f ′ 记为 f x ( x0 , y0 ) ; ; f1′( x0 , y0 ). ∂ x ( x0 , y0 )
x0 + ∆x x0
类似可定义对 y 的偏导数
f ( x0 , y0 + ∆y) − f ( x0 , y0 ) ′ f y ( x0 , y0 )= lim ∆ y→0 ∆y
∂f ; f2′( x0 , y0 ). ∂ y ( x0 , y0 )
′ 记为 f y ( x0 , y0 ) ;
注: 函数 z = f ( x , y ) 在区域 D 内每一点 ( x , y ) 处对 x 若 则该偏导数称为偏导函数 偏导函数. 或 y 偏导数存在 , 则该偏导数称为偏导函数 记为
Tx
y0
Ty
o
x
y
x0
d = f ( x0 , y) dy y = y0
z = f ( x, y) 在点M 在点 0 处的切线 M0Ty 对 y 的 是曲线 x = x0 斜率. 斜率

第一节 偏导数与全微分

第一节 偏导数与全微分

第一节偏导数与全微分一、单项选择题()()()()()00001.lim 11.0 . . .222.,,. . . .3.,x y A B C D z z z f x y x y x y A B C D f x y →→=-+∞∂∂=∂∂函数在点处的两个偏导数和存在是它在该点处可微的充分条件必要条件充要条件无关条件关于函数()()()()()()()()()222222, 00, 0.,0,0 .0,00.0,00 .,0,04.,1tan x y xy x y x y x y A f x y B f C f D f x y f x y xy x ⎧⎫+≠⎪⎪+=⎨⎬⎪⎪+=⎩⎭===+-下列表述错误的是在点处连续在点处不可微设函数则()()()()22221,0.0 .1 .2 .5.3,.6 .6 .3 .36.sin ,.2sin .cos y f A B C D z z x y y A y B xy C x D x z z x y x y xA xy yB x x y =∂==∂∂=+=∂++不存在设函数则设二元函数则()2222222.2sin .sin 7.1.1 .2 . .C xy x y D x y yz z z x y A B C x y D x y ++⎛⎫∂∂⎛⎫=+= ⎪ ⎪∂∂⎝⎭⎝⎭++设二元函数则()()()()()20,1228.,|.0 .1 .2 .1,9.,,.2 .2 .2 .221x yz z xy e x A B C D f x y f xy x y x y x A B x C y D x y ∂=+=∂-∂-=+=∂+设函数则已知则()()()()()()()()331,12222220.ln ,|1. .33. .22 0,11.,0, z x y dz A dx dy B dx dy C dx dy D dx dy x y x y z f x y x y =+=++++++≠==+设则设()()()()()()()()()()0,(,)0,0;0,00,0,,,0,0 ,0,0.1 .2 .3 .412.,,lim x y x y f x y f f f x y f x y f x y A B C D f x y a b ⎧⎫⎪⎪⎨⎬⎪⎪=⎩⎭''''则下列四个结论中,①在处连续②,存在;③在处连续;④在处可微.正确结论的个数为设在点处有偏导数,则()()()()()()()()()02222,,.0 .2, ., .,13.=ln ,32,232.ln 32+ .ln 332h x x y f a h b f a h b hA B f a b C f a b D f a b x z z u v u v x y y x x x x A x y B x y x y y y →+--=∂==-=∂--设函数而则()()()()()()2222222232+ 322.ln 32+ .ln 32+3232x y x y yx x x x C x y D x y y x y y y x y y ------二、填空题()()()()()()()2221021.,ln ,1,1 .22.,4,, .23.,lim , .ln 34., .5.3, y x y x y x y y x f x y y f y f x y e xye f x y x y f x y f x y x y z x dz z x y dz --→→⎛⎫=+= ⎪⎝⎭+==+==--===+=设则已知函数则函数设则设则设函数则()()()()()()()()2221,1320 .6.,sin ,, .7., .8.1,| .9.2,sin ,,| .110.x y y t t f x y xy df x y z z f x y e y z z xy y du u x y xy x t y e dt f x z f xy yf x y x ===⎛⎫∂=+= ⎪ ⎪∂⎝⎭∂=+=∂=++===''=++设则设可微,则已知则设则设连续,2, .z x y∂=∂∂则2211., .12.ln = .x yz z e x yz z x y ∂==∂∂∂=∂∂设则设则二、计算题()()()2222220022222ln 1.,0,,2.arcsin .413.lim sin 4.sin ,,,.5.ln 6.,x y xxy y f x y x y x f x y x x y z x y x y z z z z x y ye x x x y z z z x y x yz z y x y→→⎛⎫+=-≠ ⎪⎝⎭+=+++∂∂∂=+∂∂∂∂∂∂=+∂∂∂=∂∂设求求函数计算极限设函数求设求已知求()()()()()()()2222327.,.8.2sin 2323,,,.9.,,sin ,10.,,,00.11.,,,,.12.x x y x xy z z e dz z z x y z x y x z f x y x ydz z f x e x dxu f x y z y y x z z x e y e xz du dxy z z z z x f xy f x y y x y +=∂∂+-=+-=+∂∂====-=-=∂∂∂⎛⎫= ⎪∂∂∂∂⎝⎭设求设确定了函数求求设有连续偏导数和分别由方程和所确定,求设具有连续的二阶偏导数,求设()()()()()()()()()222222,cos ,sin ,,,.13.0+0.10;210,11,z z z u v uv u x y v x y x yz z f u z f x y f u f u uf f f u ∂∂=-==∂∂∂∂=+=∂∂'''+='==而求设函数在,∞内具有二阶导数,且满足等式验证若求函数的表达式.四、证明题()()()()()()()()()2221.,,.2.,,,0,.3.,,0.4.1ln ,x f f f x y x y x y x y x yz z z x y xy xf z y z xf z y z x z y f z x y z z z z z x y F x y x y z xy y x x yy z z xf x y x f x x x ϕϕϕ∂∂-+=-+=+∂∂∂∂''=++≠-=-⎡⎤⎡⎤⎣⎦⎣⎦∂∂⎛⎫∂∂++=+=- ⎪∂∂⎝⎭∂⎛⎫=+- ⎪∂⎝⎭证明设是的函数且证明:设函数由方程所确定,证明:设其中是任意的二次可微函数,求证:()22221.z y x y y ∂-=+∂。

全微分

全微分
《高等数学》 返回 下页 结束
例3.计算
的近似值.
y f ( x , y ) x ,则 解: 设
f x ( x, y ) y x
y 1
y x ln x f ( x , y ) , y
取 x 1, y 2, x 0.04, y 0.02 则 1.042.02 f (1.04, 2.02 ) f (1 0.04, 2 0.02 )
令 y 0,
Ax o ( x )
x x
x
z xz lim A x x 0 x z B. 同理可证 y
《高等数学》 返回 下页 结束
注意: 定理1 的逆定理不成立 . 即:
偏导数存在函数 不一定可微 ! 反例: 函数 f ( x, y ) 易知 fx(0,0)= fy(0,0)=0 我们已知道函数f(x,y)在(0,0)处不连续,则当然不可微.
§9.2内容回顾
1. 偏导数的概念及有关结论
• 定义; 记号; 几何意义
• 函数在一点偏导数存在 • 混合偏导数连续 2. 偏导数的计算方法 • 求一点处偏导数的方法 • 求高阶偏导数的方法 函数在此点连续 与求导顺序无关 先代后求再代,如P69 4 先求后代 利用定义 公式法 逐次求导法、
(与求导顺序无关时, 应选择方便的求导顺序)
d z f x ( x, y )d x f y ( x, y )d y
2. 重要关系:
函数连续
z | x | | y |
z f ( x, y ) z | x | | y | z f ( x, y )
函数可导
函数可微 (反例略) 偏导数连续 3. 微分在近似计算中的应用(略)
《高等数学》 返回 下页 结束
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

偏导数与全微分习题
1. 设y
x
y x y x f arcsin )1(),(-+=,求)1,(x f x
'。

2. 习题8 17题。

3. 设⎪⎩
⎪⎨⎧
=+≠++=0
001sin ),(22222
2
y x y x y x y y x f ,考察f (x ,
y )在点(0,0)的偏导数。

4. 考察⎪⎩
⎪⎨⎧
=+≠++=0
001sin ),(22222
2
y x y x y x xy y x f 在点
(0,0)处的可微性。

5. 证



⎪⎩
⎪⎨⎧=+≠+++=0
001sin
)(),(222
22
22
2y x y x y x y x y x f 在
点(0,0)连续且偏导数存在,但偏导数在(0,0)不连续,而f (x , y )在点(0,0)可微。

}
1. 设y
x
y x y x f arcsin
)1(),(-+=,求)1,(x f x
'。

y
y
x y
x y y x f x
1)
(2111
)1(1),(21
⋅⋅-
-+='- ∴ 1)1,(='x f x。


&
2.习题8 17题。

17. 设22)()(ln b y a x z -+-=(a , b 为常数),证明
02
22
2=∂∂+∂∂y z x z 。

先化简函数 ))()ln((2
1
22b y a x z -+-=,

2
222)()()
()()()(221b y a x a x b y a x a x x z -+--=
-+--⋅=∂∂,
2222)
()()
()()()(221b y a x b y b y a x b y y z -+--=-+--⋅=∂∂, 2
22
2
222
2))()(()(2)()(b y a x a x b y a x x
z -+----+-=
∂∂
2
22
22)
)()(()()(b y a x a x b y -+----=

2
222
222
2))()(()(2)()(b y a x b y b y a x y
z -+----+-=
∂∂
2
2222)
)()(()()(b y a x b y a x -+----= , ∴ 02
22
2=∂∂+
∂∂y
z x
z 。

3. $
4.
设⎪⎩
⎪⎨⎧
=+≠++=0
001sin ),(22222
2
y x y x y x y y x f ,考察f (x ,
y )在点(0,0)的偏导数。

由偏导数定义可知
00lim )
0,0()0,(lim )0,0(0
==∆-∆='→∆→∆x x x
x
f x f f ,
2
1sin
lim )
0,0(),0(lim )0,0(y y
f y f f y y y
∆=∆-∆='→∆→∆ 不存在。


$
4.考察⎪⎩
⎪⎨⎧
=+≠++=0
001sin ),(22222
2
y x y x y x xy y x f 在点
(0,0)处的可微性。

由偏导数定义可知
0)
0,0()0,(lim )0,0(0
=∆-∆='→∆x
f x f f x x

0)
0,0(),0(lim )0,0(0
=∆-∆='→∆y
f y f f y y ,
则 d z =0,
2
2
)
()(1sin
)0,0(),(y x y x f y x f dz f ∆+∆∆∆=-∆∆=-∆
{

要讨论在(0,0)点可微性,即讨论极限ρ
ρdz
f -∆→0
lim 是
否趋于0,
0)()()()(1sin lim
lim
2
22
20
→∆+∆∆+∆∆∆=-∆→→y x y x y x dz
f ρρρ

这是因为
222
22
22
2
)()()()(21|)()()
()(1
sin |
y x y x y x y x y x ∆+∆∆+∆≤
∆+∆∆+∆∆∆ ε<∆+∆≤22)()(2
1
y x
∴ f (x , y )在点(0,0)处的可微
?
5. "
6.
证明函数
⎪⎩
⎪⎨⎧=+≠+++=0
001sin
)(),(22222
22
2y x y x y x y x y x f 在
点(0,0)连续且偏导数存在,但偏导数在(0,0)不连续,而f (x , y )在点(0,0)可微。

(1)连续
|1sin )(||)0,0(),(|2
22
2y x y x f y x f ++=-
ε<+≤||22y x , 故f (x , y )在(0,0)点连续; (2)偏导数存在 由偏导数定义
~
|
|1
sin
)(lim )0,0()0,(lim )0,0(2
0=∆∆∆=∆-∆='→∆→∆x x x x f x f f x x x
同理 0)0,0(='x
f ,偏导数存在;
(3)偏导数在(0,0)点不连续
当022≠+y x 时
2
22
22
21cos
1sin 2),(y x y x x y x x y x f x
++-
+=',

220021
cos
||221
sin 2lim ),(lim x x x x x y x f x
y x y x x x -='==→→ 极限不存在,故),(y x f x
'在(0,0)处不连续; 同理,),(y x f y
'在(0,0)处不连续; (4)可微
由(2)可知: d z =0,
)0,0(),(f y x f dz f -=-∆
2
22
2)()(1sin
))()((y x y x ∆+∆∆+∆=,
2
22
22
2
)()()()(1
sin ))()((lim
lim
y x y x y x dz
f ∆+∆∆+∆∆+∆=-∆→→ρρρ
0)()(1sin
])()[(lim 2
221
220
=∆+∆∆+∆=
→y x y x ρ,
∴ f (x , y )在(0,0)点可微。

相关文档
最新文档