人教版数学八年级上册第十四章 本章小结与复习
最新八年级上册数学第14章复习知识点:因式分解

最新八年级上册数学第14章复习知识点:因式分解学好知识就需求往常的积聚。
知识积聚越多,掌握越熟练,查字典数学网编辑了2021最新八年级上册数学第14章温习知识点:因式分解,欢迎参考!
因式分解
定义:把一个多项式化为几个最简整式的乘积的方式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。
分解因式与整式乘法为相反变形。
同时也是解一元二次方程中公式法的重要步骤
1、因式分解与解高次方程有亲密的关系。
关于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。
在数学上可以证明,关于一元三次和一元四次方程,也有固定的公式可以求解。
只是由于公式过于复杂,在非专业范围没有引见。
关于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比拟复杂。
关于五次以上的普通多项式,曾经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。
2 、一切的三次和三次以上多项式都可以因式分解。
这看起来或许有点不可思议。
比如X^4+1,这是一个一元四次多项式,看起来似乎不能因式分解。
但是它的次数高于3,所以一定可以因式分解。
假设有兴味,你也可以用待定系数法将其分解,只是分解出来的式子并不整洁。
3 、因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。
因式分解很多时分就是用来提公因式的。
寻觅公因式可以用辗转相除法来求得。
规范的辗转相除技艺关于中先生来说难度颇高,但是中学有时分要处置的多项式次数并不太高,所以重复应用多项式的除法也可以比拟笨,但是有效地处置找公因式的效果。
人教版八年级上册数学《同底数幂的乘法》整式的乘法与因式分解教学说课复习课件

一性质呢?用字母表示
am ·an ·ap
等于什么?
am·an·ap = am+n+p (m,n,p都是正整数)
例2
计算:(1)23×24×25 ;(2)y ·y20 ·y30 .
解:(1)23×24×25=23+4+5=212
(2)y ·y20 ·y30 = y1+20+30=y51
同底数幂相乘,
注意 条件:①乘法
底数不变,指数 相 加 .
结果:①底数不变
练一练
计算:
1011
(1) 105×106=_____________;
(2)
a7
10
3
a
·a =_____________;
(3) x5 ·x7=_____________;
x12
(4) (-b)3 ·(-b)2=_____________.
am ·
an·
ap=am+n+p(m,n,p都是正整数)
同底数幂相乘,底数不变,指数相加.
第十四章 整式的乘法与因式分解
14.1整式的乘法
同底数幂的乘法
学习目标
1.理解并掌握同底数幂的乘法法则.(重点)
2.能够运用同底数幂的乘法法则进行相关计算.(难点)
3.通过对同底数幂的乘法运算法则的推导与总结,提升
(1)(2a+b)2n+1·(2a+b)3;
(2)(a-b)3·(b-a)4;
(3) (-3)×(-3)2 ×(-3)3;
(4)-a3·(-a)2·(-a)3.
解:(1)(2a+b)2n+1·(2a+b)3=(2a+b)2n+4.
最新人教版初中八年级上册数学第十四章《整式的乘法与因式分解》精品教案(小结复习课)

4
3
3
3 a3b5 1 a2b4 8 a6b3
4
9
27
27 ab 8 a6b3 4 27
2a7b4.
本题源自《教材帮》
深化练习 1
整式的混合运算:
(1) 3 a3b5 (1 ab2 )2 ( 2 a2b)3;
4
3
3
(2) [(-2xy)3(2x2y)2-xy2(-4xy2)2]÷(-16x2y3) ;
本题源自《教材帮》
深化练习 1
整式的混合运算:
(1) 3 a3b5 (1 ab2 )2 ( 2 a2b)3;
4
3
3
(2) [(-2xy)3(2x2y)2-xy2(-4xy2)2]÷(-16x2y3) ;
(3) x(2x+1)-(x-3)(2x-1) .
解:(3) x(2x+1)-(x-3)(2x-1) = 2x2+x-(2x2-x-6x+3) = 2x2+x-(2x2-7x+3) = 2x2+x-2x2+7x-3 = 8x-3.
符号表示:aman=am+n (m,n都是正整数).
同底数幂的乘法的性质也适用于三个及三个以上的同底数幂相乘
amanap=am+n+p (m,n,p都为正整数).
知识梳理
幂的乘方的性质:幂的乘方,底数不变,指数相乘.
符号表示:(am)n=amn(m,n都是正整数).
同底数幂的乘法的性质也适用于三个及三个以上的同底数幂相乘
本题源自《教材帮》
1.老师引导学生归纳本课知识点。 2.师生共同反思学习心得。
教科书本课课后习题第一题。完成后同桌之 间相互订正
数学人教版八年级上册第14章整式的乘法与因式分解小结与(教案)

此外,在新课讲授过程中,我尽量以生动的语言和实际案例来讲解,让学生能够更好地理解和接受。但从学生的反馈来看,我觉得还可以尝试更多有趣的授课方式,比如运用多媒体教学、实物演示等,以提高学生的学习兴趣。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式的乘法与因式分解的基本概念。整式的乘法是指将两个或多个整式相乘,它是代数运算的基达式中有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将一个复杂的整式通过因式分解简化,以及它在实际中的应用。
在实践活动和小组讨论环节,学生们表现得相当积极,能够主动参与到讨论和实验操作中。但我也注意到,有些学生在小组讨论中发言不够积极,可能是因为他们对问题不够了解或者缺乏自信。针对这个问题,我打算在今后的教学中多关注这些学生,鼓励他们大胆发言,增强他们的自信心。
最后,通过这节课的教学,我意识到教学反思的重要性。在今后的教学中,我会更加关注学生的学习情况,及时发现并解决他们在学习中遇到的问题。同时,我也会不断调整和改进教学方法,努力提高教学质量,让每个学生都能在数学课堂上有所收获。
6.简单的分组分解法及应用;
二、核心素养目标
本节课旨在培养学生的以下核心素养:
1.掌握整式乘法与因式分解的基本法则,提高学生的数学运算能力;
2.通过运用完全平方公式、平方差公式等,培养学生的逻辑思维能力和数学建模素养;
3.能够灵活运用提公因式法、十字相乘法等分解因式,提升学生的问题解决能力和创新意识;
人教版八年级数学上册 第十四章 章末复习与小结

=(xm)3÷(xn )2
而xm=2,xn=3,故原式=
8 9
专题选讲—— 整式的化简与求值
类型一 幂的运算
练一练:已知ax=5,ay=-4,求: (1)ax-y的值; (2)a3y的值; (3)a2x+y的值.
解:(1)ax+y=ax÷ay=5÷(-4)=-1.25. (2)a3y=(ay)3=(-4)3=-64. (3)a2x+y=a2x·ay=(ax)2·ay=52×(-4)3=-100.
专题选讲—— 乘法公式的运用技巧
类型二 连续应用
例 计算: (a-b)(a+b)(a2+b2)(a4+b4)(a8+b8);
解:(a-b)(a+b)(a2+b2)(a4+b4)(a8+b8) =(a2-b2)(a2+b2)(a4+b4)(a8+b8) =(a4-b4)(a4+b4)(a8+b8) =(a8-b8)(a8+b8) =a16-b16.
专题选讲—— 乘法公式的运用技巧
类型一 整体应用
例 若a+b=3,a2+b2=7,则ab等于( B )
A.2 B.1 C.-2 D.-1
专题选讲—— 乘法公式的运用技巧
类型一 整体应用 练一练: (1)已知m+n=12,m-n=2,则m2-n2=___2_4___; (2)若(a+b+1)(a+b-1)=899,则a+b的值为_3_0_或__-3_0_.
=-m(m-5)+2(m-5) =(2-m)(m-5)
专题选讲—— 因式分解方法大全
类型二 运用公式法因式分解
人教版八年级数学上册第十四章小结与复习

第十四章 整式的乘法与因式分解 (时间:60分钟 满分:100分)一、选择题(本大题共有10小题,每小题3分,共30分) 1.下列各式运算正确的是( )A.532a a a =+B.532a a a =⋅C.632)(ab ab =D.5210a a a =÷ 2. 计算232(3)x x ⋅-的结果是( )A. 56xB. 62xC.62x -D. 56x - 3.计算32)21(b a -的结果正确的是( )A. 2441b a B.3681b a C. 3681b a - D.5318a b - 4. 44221625)(______)45(b a b a -=+-括号内应填( )A 、2245b a +B 、2245b a +C 、2245b a +-D 、2245b a -- 5.如图,阴影部分的面积是( )A .xy 27B .xy 29C .xy 4D .xy 2 6.()()22x a x ax a -++的计算结果是( ) A. 3232x ax a +- B. 33x a -C.3232x a x a +-D.222322x ax a a ++- 7.下面是某同学在一次测验中的计算摘录①325a b ab +=; ②33345m n mn m n -=-;③5236)2(3x x x -=-⋅; ④324(2)2a b a b a ÷-=-; ⑤()235a a =;⑥()()32a a a -÷-=-.其中正确的个数有( )A.1个B.2个C.3个D. 4个 8.下列分解因式正确的是( )A.32(1)x x x x -=-.B.2(3)(3)9a a a +-=-C. 29(3)(3)a a a -=+-.D.22()()x y x y x y +=+-.9. 如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ).A .0B .3C .-3D .110. 若3x =15, 3y =5,则3x y -= ( ).A .5B .3C .15D .10二、填空题(本大题共有7小题,每空2分,共16分) 11.计算(-3x 2y )·(213xy )=__________. 12.计算22()()33m n m n -+--=__________. 13.201()3π+=________14.当x __________时,(x -3)0=1. 15. 若22210a b b -+-+=,则a = ,b =校名 班级 姓名 学号密 封 线装 订 线 内 不 要 答 题16.已知4x 2+mx +9是完全平方式,则m =_________. 17. 已知5=+b a ,3ab =则22a b +=__________. 18. 定义2a b a b *=-,则(12)3**= . 三、解答题(本大题共有7小题,共54分) 19.(9分)计算:(1)34223()()a b ab ÷ (2)))(()(2y x y x y x -+-+.(3)xy xy y x y x 2)232(2223÷+--20.(12分)分解因式:(1) 12abc -2bc 2; (2) 2a 3-12a 2+18a ;(3) 9a(x -y)+3b(x -y); (4) (x +y )2+2(x +y )+1.21.(5分)先化简,再求值:()()()22x y x y x y x ⎡⎤-++-÷⎣⎦,其中x=3,y=122. (5分) 请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.2224()19a x y b +, , ,23.(8分)解下列方程与不等式(1) 3(7)18(315)x x x x-=--;(2)(3)(7)8(5)(1)x x x x+-+>+-.24. (7分)数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300-4)2=3002-2×300×(-4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.25.(8分) 下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4 (第一步)= y2+8y+16 (第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式 B.平方差公式C.两数和的完全平方公式 D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.参考答案1. B;2.D;3. C;4 .D;5.A6.B;7.B;8.C.9.C10.B11.-x3y3;12.2249m n-;13.10914. ≠315.2, 116.12±;17. 1918.-219.(1)32a b;(2)222y xy+(3)2312x y xy--+20.(1)2bc(6a-c);(2)2a(a-3)2;(3) 3(x-y)(3a+b);(4) (x+y+1)2.21.x-y 222.解:答案不惟一,如291(31)(31)b b b -=+-23.(1) 3x = (2) 1x <- 24.错在“-2×300×(-4)”,应为“-2×300×4”,公式用错. ∴2962=(300-4)2=3002-2×300×4 +42=90000-2400+16 =87616.25.(1)C ;(2)分解不彻底;4(2)x -(3)4(1)x -。
人教八年级数学上册《第十四章 小结与复习》课件

拓广探究
练习2 某种产品的原料提价,因而厂家决定对产 品进行提价,现有三种方案: 方案1:第一次提价p%,第二次提价q%;
方案2:第一次提价q%;第二次提价p%;
方案3:第一、二次提价均为 p
+ 2
Байду номын сангаас
q
%.
其中,p、q 是不相等的正数.三种方案哪种提价
最多?
课堂小结
(1)本节课复习了哪些主要内容? (2)你有哪些收获?你觉得还有什么需要注意的地
• 学习重点: 复习整式乘法法则和因式分解,建立本章知识结构.
知识梳理
问题1 计算下列各题并思考:下列各题中都运用
到我们学过的哪些运算法则?它们之间有怎样的关系?
(1)(-2x2y3) ( 2 xy) 3;
(2)( 2a+3b) ( 2a-b) ; (3) 5x ( 2x+1 ) ( x-1 ) ;
体系建构
本章知识结构图:
整式乘法 整式除法
乘法公式 因式分解
典型例题
例1 计算:
(1)( - 5 m + 3 m ) ( - 5 m - 3 m ) ;
(2)( a - 2 ) ( 2a + 2 ) ( 2a 2 + 4 ) 2 ;
(3)( 3a+2b) 2-( 3a-3b) 2;
7
7
(4)( 2 x- 3y+ 1 ) ( - 2 x+ 3y+ 1 ) .
八年级 上册
第十四章 小结与复习
课件说明
• 本章小结构建本章的知识结构,形成知识体系;围 绕本节课的重点,通过典型例题,促使学生在理解 乘法公式结构的基础上灵活运用乘法公式进行计算、 因式分解和解决实际问题.
最新人教版初中八年级数学上册第十四章《整式的乘法与因式分解》精品教案(小结复习课)

解:(1) (x-y)2-8(x2-y2)+16(x+y)2 = (x-y)2-8(x-y)(x+y)+[4(x+y)]2 = (x-y)2-2(x-y)∙4(x+y)+[4(x+y)]2 = [(x-y)-4(x+y)]2 = (-3x-5y)2 = (3x+5y)2 ;
解:(2) (x+2)(x-8)+25 =x2-8x+2x-16+25 =x2-6x+9 =x2-2∙x∙3+32 =(x-3)2 .
本题源自《教材帮》深化Fra bibliotek习 3计算:整数x,y满足方程 2xy+x+y=83,则 x+y 的值为多少? 解析:利用因式分解将等式变形为左边是两个整式的乘积,右边是一个整 数的形式,再求出x,y的值,进而求出x+y的值.
本题的难点是如何将2xy+x+y=83进行变形并因式分解.
本题源自《教材帮》
深化练习 3
本题源自《教材帮》
深化练习 1
若:4x2+mxy+9y2是完全平方式,则m的值为多少?
解:完全平方公式是形如 a2+2ab+b2,a2-2ab+b2 的式子, 将条件中的式子进行变形. ∵4x2+mxy+9y2=(2x)2+mxy+(3y)2,且原式是完全平方式, ∴±mxy=2∙2x∙3y. ∴m=±12.
因式分解: (1) a4-16a2 ;
解:(1) a4-16a2 = a2(a2-16) = a2(a+4)(a-4) ;
(2) -2a2b2+a3b+ab3 ;