位移法例题
用位移法计算对称结构的例题

用位移法计算对称结构的例题位移法是一种常用的计算方法,用于求解结构在受到外力作用时的位移和应力分布。
它适用于对称结构的分析,因为对称结构具有一定的几何和物理特征,可以简化计算过程。
我们以一根悬臂梁为例来说明位移法的应用。
悬臂梁是一种常见的结构,它只有一端支撑,另一端悬空。
我们假设悬臂梁的截面为矩形,长度为L,宽度为b,高度为h。
悬臂梁在其自由端受到沿着梁轴方向的力F。
首先,我们需要将悬臂梁的截面划分为若干个小单元,每个小单元的长度为Δx。
我们假设每个小单元的变形与相邻单元的变形相同,且每个小单元的位移为u(x),其中x表示小单元的位置。
根据位移法的基本原理,我们可以得到悬臂梁的位移方程:du/dx = M(x)/(E*I)其中,du/dx表示位移的二阶导数,M(x)表示在x位置的弯矩,E表示悬臂梁的弹性模量,I表示悬臂梁的截面惯性矩。
根据悬臂梁的几何关系,我们可以得到弯矩M(x)与力F之间的关系:M(x) = F*(L-x)将上述方程代入位移方程,我们可以得到悬臂梁的位移方程:du/dx = F*(L-x)/(E*I)对上述方程进行两次积分,并考虑边界条件u(0) = 0和du/dx(0) = 0,我们可以解得悬臂梁在任意位置x的位移u(x):u(x) = (F*x*(3L - x))/(6*E*I)通过上述位移方程,我们可以计算出悬臂梁在不同位置的位移。
这对于分析和设计悬臂梁结构的性能和稳定性非常有帮助。
除了计算位移,位移法还可以用于计算对称结构的应力分布。
通过位移方程,我们可以得到应力与位移之间的关系,从而求解出结构中各点的应力值。
综上所述,位移法是一种常用的计算方法,适用于对称结构的分析。
通过解析和计算位移方程,我们可以得到结构在受力作用下的位移和应力分布,为结构的设计和分析提供了重要的理论支持。
位移法例题

精品文档第 7章位移法习题7-1:用位移法计算图示超静定梁,画出弯矩图,杆件EI 为常数。
qF PEI B EIA CL L/2L/2题7-1图7-2:用位移法计算图示刚架,画出弯矩图,杆件EI 为常数。
A3m4kN/m2kN.mBD3mC3m题7-2图7-3:用位移法计算图示刚架,画出弯矩图,杆件EI 为常数。
B DEIq EI EIH2A C2 L2题7-3图7-4:用位移法计算图示超静定梁,画出弯矩图。
M2EI B EIA CL L.题7-4图7-5:用位移法计算图示刚架,画出弯矩图,杆件EI 为常数。
10kN/m2kNC ED4mA B4m2m题7-5图7-6:用位移法计算图示排架,画出弯矩图。
A B C 10kNEA=∞EA =∞3.5m EI EI EID E F4m4m题7-6图7-7:用典型方程法计算7-2 题,画出弯矩图。
7-8:用典型方程法计算7-3 题,画出弯矩图。
7-9:用典型方程法计算7-5 题,画出弯矩图。
7-10:用典型方程法计算图示桁架,求出方程中的系数和自由项。
B10kN4mEA EAA CEA4m题 7-10 图7-11:用典型方程法计算图示刚架,求出方程中的系数和自由项。
.10kNA BEI EICEI4mD E FEI4m4m题 7-11 图7-12:用位移法计算图示结构,杆件EI 为常数(只需做到建立好位移法方程即可)。
A4m10kN/mB FD4mC E4m2m题 7-12 图7-13:用位移法计算图示结构,并画出弯矩图。
A EA=∞BLEI qF2EI EEIEI LC DL题 7-13 图7-14:用位移法计算图示结构,并画出弯矩图。
.EEILMC DF PEI EI LA BL/2L题 7-14 图7-15:用位移法计算图示刚架, 画出弯矩图。
AEI LMBEIEI LCL题 7-15 图7-16:用位移法计算图示结构,并画出弯矩图。
EIEI EIaqEIqEI E A EI aa a题 7-16 图7-17:用位移法计算图示结构,并绘弯矩图,所有杆件的EI 均相同。
用位移法计算对称结构的例题

用位移法计算对称结构的例题位移法是结构力学中常用的一种计算方法,用于求解对称结构中的内力、位移等参数。
对称结构是指结构中存在对称平面或轴的结构形式,可以简化计算过程,降低计算难度。
以下是位移法计算对称结构的例题及参考内容。
例题:考虑一简支梁,长度为L,截面为矩形,宽度为b,高度为h,质量密度为ρ。
梁位于坐标系的x轴上,原点位于梁的左端。
假设载荷为均匀分布的集中载荷P,作用在梁的中点上。
使用位移法计算该梁的挠度和应力分布。
参考内容:一、计算挠度:1. 假设梁的挠度方程为w(x)。
2. 由于该梁为简支梁,在悬臂和简支的连接处有零位移和零弯矩的边界条件可以得到w(0) = 0和w(L) = 0。
3. 通过对称性可以得到梁的中点弯矩为零,即M(L/2) = 0,以及中点剪力为零,即V(L/2) = 0。
4. 根据力平衡条件可以得到剪力方程V(x) = -P/2。
5. 根据弯矩方程可以得到弯矩方程M(x) = -P/2 * x + C1,其中C1为常数。
6. 代入边界条件和悬臂边界条件可以解得C1 = P * L/8。
7. 根据挠度方程可以得到挠度方程w(x) = -(P/24 * x^3 - P * L/8 * x) / (EI) + C2,其中C2为常数。
8. 代入边界条件可以解得C2 = P * L^3 / (192EI)。
9. 最终挠度方程为w(x) = (P/24 * x^3 - P * L/8 * x) / (EI) + P *L^3 / (192EI)。
二、计算应力分布:1. 由于该梁为纯弯曲梁,所以其应力分布为线性的。
2. 根据弯曲应力公式σ = My/I可以得到梁剖面任意点的弯曲应力。
3. 注意由于结构具有对称性,所以对称位置的弯曲应力相等。
4. 在梁的截面上,对称轴的弯矩为零,即My = 0。
5. 根据矩形截面的惯性矩计算公式可以得到梁的惯性矩I = bh^3/12。
6. 代入公式可以得到对称轴上的弯曲应力为σ = 0。
用位移法计算对称结构的例题

用位移法计算对称结构的例题对称结构在工程设计中起着重要的作用,能够有效减少结构的重量和材料使用量,提高结构的稳定性和承载能力。
在对称结构的设计中,计算结构的位移是非常重要的一步,通过位移法可以准确地分析结构在外力作用下的变形和应力分布情况,为工程设计提供科学依据。
以一座简单的对称结构为例,假设有一跨度为L的梁结构,两端支座固定,中间受到均布载荷P的作用。
我们需要用位移法计算这个结构的变形情况。
首先,我们需要对结构进行简化,将其分解为几个简单的部分,如梁和支座。
然后,我们可以根据结构的受力分析,确定结构中的受力情况,包括受力大小和方向。
在这个例题中,梁受到的均布载荷P会引起梁的挠度,我们需要计算梁的最大挠度和最大弯矩。
接着,我们可以建立结构的位移方程,通过位移方程可以得到结构的位移分布情况。
位移方程的建立需要考虑结构的几何特性和受力情况,通常可以通过叠加法或虚位移法来得到结构的位移方程。
在这个例题中,我们可以假设梁的位移为y(x),根据梁的几何形状和受力情况,可以建立梁的位移方程。
通过位移方程的求解,我们可以得到梁的位移分布情况,包括梁的最大挠度和最大弯矩的位置和数值。
最后,我们需要验证计算结果的准确性,可以通过有限元分析或理论计算的方法进行验证。
通过对计算结果的验证,可以确保结构的设计和计算的准确性,为工程的施工和使用提供可靠的保障。
综上所述,位移法是计算对称结构的重要方法,通过位移法可以准确地分析结构的变形和应力分布情况,为工程设计提供科学依据。
在实际工程设计中,需要结合结构的几何形状和受力情况,建立结构的位移方程,通过位移方程的求解可以得到结构的位移分布情况,最终验证计算结果的准确性,确保结构的设计和计算的可靠性。
通过位移法的应用,可以提高结构的稳定性和承载能力,为工程的设计和施工提供科学的依据。
矩阵位移法例题

0
2 1 2
0
0
4 1 3
00 2 00 3
0
0
K③
41
3
0
0
0
00 3 000
5 集成总刚度矩阵
第8章矩阵位移法
4 2 2 2
0 1 8 4 0
K 2 2 4 2 4 1
21
2
4
12
2
0
2 1 4 1 4 1 3 0 2 8
1
2
3
6 形成荷载向量
P 60 190 62.5T
2 结点位移编号矩阵 3 各单元旳定位向量
0 0 0 C 0 0 1
0 0 2 0 0 0
2 3T
U1 0 0 0 0 0 1 U2 0 0 1 0 0 2 U3 0 0 2 0 0 0
-90 250
-250 187.5 -112.5
1
2
3
4
第8章矩阵位移法
4 各单元旳刚度矩阵
单元旳刚度矩阵与解法一相同
2 12i 2 BCx l2 Cy
12i (B l2 )CxC y
2 12i 2
BC Y
2 l
Cx
6i l Cy 6i l Cx
2 12i 2 BCx 2 C y
l 12i (B 2 )CxC y l
12i (B 2 )CxC y
l 2 12i 2 BCy 2 Cx
l
6i l Cy 6i l Cx
(e)
K
6i
4i
l Cy
6i l Cx
2i
2 12i 2 BCx 2 C y
l
12i (B 2 )CxC y
l
6i
位移法习题

习题8-1 图示梁杆端弯矩=ABM, 侧受拉;杆端剪力Q AB F = 。
题8-1图 题8-2图8-2图示梁杆端弯矩BA M = , 侧受拉;杆端剪力Q B A F = 。
8-3图示梁杆端弯矩ABM= ,侧受拉;杆端剪力Q B A F = 。
设i =EI /l 。
2EI AB题8-3图 题8-4图 8-4图示梁杆端弯矩ABM= , 侧受拉;杆端剪力Q B A F = 。
设i =EI /l 。
8-5图示梁杆端弯矩BA M = , 侧受拉;杆端剪力Q AB F = 。
Q B A F = 。
题8-5图 题8-6图8-6 图示梁杆端弯矩BA M = , 侧受拉;杆端剪力Q B A F = 。
Q AB F = 。
8-7图示梁杆端弯矩BA M = , 侧受拉;杆端剪力Q B A F = 。
设i =EI /l 。
题8-7图 题8-8图 8-8 图示梁杆端弯矩ABM= , 侧受拉;杆端剪力Q B A F = 。
设i =EI /l 。
8-9 图示梁杆端弯矩BA M = , 侧受拉;杆端剪力Q B A F = 。
题8-9图 题8-10图8-10 图示梁杆端弯矩BA M = , 侧受拉;杆端剪力Q B A F = 。
8-11 图示梁杆端弯矩ABM = , 侧受拉;杆端剪力Q B A F = 。
设i =EI /l 。
6EI AB1题8-11图 题8-12图 8-12 试作图示梁弯矩图,并求B 支座的反力。
8-13 图示梁的跨度为l ,若使A 端截面的转角为零,在A 端施加的弯矩=ABM。
1M1Δ题8-13图 题8-14图8-14 已知图示结构的柱端水平位移为EIlF Δ93P 1=,试作弯矩图。
8-15 试用位移法计算图示结构,作弯矩图。
(a ) (b)题8-15图8-16 试用位移法计算图示结构,作弯矩图。
(a) (b) (c)题8-16图8-17 用位移法解图示结构,基本未知量最少为2个的结构是( )。
A.(a)、(b)B.(b)、(c)C.(c)、(a)D.(a)、(b)、(c)(a)(b) (c)题8-17图8-18 用位移法解图示结构,基本未知量最少为3个的结构是()。
位移法习题答案

位移法习题答案位移法的基本步骤包括:1. 选择位移函数:根据结构的边界条件和对称性,选择合适的位移函数。
2. 建立位移矩阵:将位移函数表示为位移矩阵的形式。
3. 应用位移边界条件:根据结构的固定边界条件,确定位移矩阵中的未知数。
4. 计算内力:利用位移矩阵和结构的几何关系,计算出结构的内力。
5. 验证位移法结果:通过比较位移法的结果与其他方法(如力法)的结果,验证位移法的准确性。
例题:考虑一个简支梁,长度为L,受集中力P作用于中点。
使用位移法求解梁的弯矩和剪力分布。
解答:首先,我们假设梁的位移函数为:\[ w(x) = \frac{Px(L-x)}{2EI} \]其中,\( w(x) \) 是梁在x位置的位移,\( E \) 是材料的弹性模量,\( I \) 是截面惯性矩。
接下来,根据位移函数,我们可以计算梁的弯矩和剪力:\[ M(x) = -EI \frac{d^2w}{dx^2} \]\[ V(x) = -EI \frac{dw}{dx} \]应用位移边界条件,我们可以确定位移函数中的未知数。
对于简支梁,位移在支点处为零,即:\[ w(0) = w(L) = 0 \]将位移函数代入上述条件,我们可以验证假设的位移函数满足边界条件。
最后,代入位移函数到弯矩和剪力的表达式中,我们可以得到:\[ M(x) = -\frac{P}{2} \left( \frac{L^2}{4} - x^2 \right) \]\[ V(x) = -\frac{P}{2} \left( L - 2x \right) \]通过上述计算,我们得到了梁在任意位置的弯矩和剪力分布。
结论:位移法是一种有效的结构分析方法,它通过位移函数来求解结构的内力和位移。
通过本题的解答,我们可以看到位移法在求解简支梁问题中的应用。
请注意,上述内容是一个示例答案,具体的习题答案会根据具体的题目而有所不同。
在实际应用中,需要根据具体的结构和受力情况来选择合适的位移函数和计算方法。
位移法典型方程计算举例

n
n
rijZj , 为 消 去 该 处 的 约 束 力 , 令 : R iP rijZj=0即 可 。 写 成 方 程 组 的 形 式 为 :
j 1
j 1
r11Z1 r12Z2 r1n Zn R1P 0
r21
Z1
r22Z2
r2n
Zn
R2P
0
rn1Z1 rn2 Z2 rnnZn RnP 0
这就是位移法的典型方程。
R2P +
MP图
r11R1 A
r2R12A
+
rr2111AArr12
2B 2B
R1 R2
r12B r22B
rr2111AArr1222B BR R12PP00 这就是位移法方程,解出θA,θB
5)ri j的求法
2i 4i
r11 8i r212i
2i
M
图
1
4i 4i 2i r12 2i 3ir22 11i
2i
M
图
2
求r11,r12的研究对象
求r21,r22的研究对象
6)弯矩图的作法
qL2/12
q
P R1P
PL/8
R2P
MP图
++
r11R1 A
r2R12A
+
r12B r22B
即 M M P M 1A M 2B
qL2/12
q
P R1P
PL/8
R2P
4i
+ A•
MP图
2i + B•
2i
r11
r21
2i
M
图
1
4i
4i
r12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章位移法
7-1:用位移法计算图示超静定梁,画出弯矩图,杆件El为常数。
FP
Z√2
题7-1图
7-2:用位移法计算图示刚架,画岀弯矩图,杆件El为常数。
7-3:用位移法计算图示刚架,画岀弯矩图,杆件El为常数。
El
El
题7-3图
7-4:用位移法计算图示超静定梁,画出弯矩图。
El
题7-2图
题7-4图
7-5:用位移法计算图示刚架,画岀弯矩图,杆件El为常数。
7-6:用位移法计算图示排架,画出弯矩图。
C ∖MN
4m
题7-6图
7-7:用典型方程法计算7-2题,画出弯矩图。
7-8:用典型方程法计算7-3题,画出弯矩图。
7-9:用典型方程法计算7-5题,画出弯矩图。
7-10:用典型方程法计算图示桁架,求出方程中的系数和自由项。
7-11:用典型方程法计算图示刚架,求出方程中的系数和自山项。
∖ OkNZm 2kN
YD
JB
EA=g EA=OO
3.5m El El El
题7-5图
WkN
题7-11图
7-12:用位移法计算图示结构,杆件El为常数(只需做到建立好位移法方程即可)。
题7-12图
7-13:用位移法计算图示结构,并画出弯矩图。
题7-13图
7-14:用位移法计算图示结构,并画出弯矩图。
Al Ln
I
El
B El
El
题7-15图
7-17:用位移法计算图示结构,并绘弯矩图,所有杆件的El 均相同。
El El El D ~τ~'
L
7-15: 题7-14图
用位移法计算图示刚架,画出弯矩图。
7-16: 用位移法计算图示结构,并画出弯矩图。
题7-16图
题7-17图
7-18:确定图示结构用位移法求解的最少未知量个数,并画出基本体系。
题7-18图
7-19:利用对称性画出图示结构的半刚架,并在图上标出未知量,除GD 杆外, 其它杆件的El 均为常数。
(C)
(e)
C
题7-19图
7-20:请求出图示刚架位移法方程中的系数和自山项。
题7-20图
7-21:利用对称性对图示结构进行简化,画出半刚架,并确定未知量,杆件的El为常数。
题7-21图
7-22:对图示结构请用位移法进行计算,只要做到建立好位移法方程即可。
题7-22图
7-24:图示结构支座A 处发生&转角,C 处水平、竖向均为弹簧支座,弹簧刚度 为k,试用位移法计算图示结构,做到建立好方程即可。
题7-24图
7-25:
用位移法计算图示结构,只需做到建立好方程即可。
7-
23:
L
L
El 题7-25图
7-26:用位移法计算图示结构,画出弯矩图。
7-27:用位移法计算图示剪力静定结构,画出弯矩图。
题7-27图
7-28:结构发生了如图所示的温度变化,请用位移法求解,画出弯矩图,杆件的 日均相同。
30°
Al <6W
EA 30°
20° 10° 10° 20° L
El
El
E
题7-28图
7-29:用位移法计算图示静定结构,画出弯矩图。
题7-29图
7-30:对7-1题取图示基本体系,请求出系数和自山项。
(注:范文素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注。
)。