蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用
蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用

摘要

蚁群算法(Ant Colony Optimization, ACO)是意大利学者M.Dorigo等人通过模拟蚁群觅食行为提出的一种基于种群的模拟进化算法。通过介绍蚁群觅食过程中基于信息素(pheromone)的最短路径的搜索策略,给出了基于MATLAB 的蚁群算法在车辆路径问题(Vehicle Routing Problem, VRP)中的应用。蚁群算法采用分布式并行计算机制,易于其他方法结合,而且具有较强的鲁棒性,但搜索时间长,容易陷入局部最优解。针对蚁群算法存在的过早收敛问题,加入2—opt方法对问题求解进行了局部优化,计算机仿真结果表明,这种混合型蚁群算法对求解车辆路径问题有较好的改进效果。

关键词:蚁群算法、组合优化、车辆路径问题、2-opt方法

1.车辆路径问题

车辆路径问题(VRP)来源于交通运输,1959年由Dantzig 提出,它是组合优化问题中一个典型的NP-hard问题。最初用于研究亚特兰大炼油厂向各个加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点。

车路优化问题如下:

已知有一批客户,各客户点的位置坐标和货物需求已知,供应商具有若干可供派送的车辆,运载能力给定,每辆车都是从起点出发,完成若干客户点的运送任务后再回到起点。现要求以最少的车辆数和最少的车辆总行程来完成货物的派送任务。

2、蚁群系统基本原理

在蚂蚁群找到食物时,它们总能找到一条从食物到蚁穴之间的最短路径。因为蚂蚁在寻找食物时会在路途上释放一种特殊的信息素。当它们碰到一个还没有走过的路口时,会随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后面的蚂蚁再次碰到这个路口时,会选择激素浓度较高的路径走。这样形成了一个正反馈,最优路径上的激素浓度越来越高,而其他的路径上激素浓度却会随时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻找过程中,整个蚁群通过相互留下的信息素作用交换着路径信息,最终找到最优路径。

3、基本蚁群算法求解车辆路径问题

求解VRP问题的蚂蚁算法中,每只蚂蚁是一个独立的用

于构造路线的过程,若干蚂蚁过程之间通过信息素值来交换信

息,合作求解,并不断优化。这里的信息素值分布式存储在图 中,与各弧相关联。蚂蚁算法求解VRP 问题的过程如下:

(1) 参数初始化。

令t=0和循环次数也NC=0,设置最大循环次数NCmax 。,将m 只蚂蚁随机地放到n 个城市,将每条边(i,j)上的信息素设为一个常数,且?ij τ=0(?ij τ表示循环中路径(i,j)上

的信息素增量),将出发点城市设置到禁忌表中;

(2) 选择城市。

每个蚂蚁按照状态变化规则逐步地构造一个解,即生成一条路。蚂蚁任务是在约束条件下,访问客户后回到仓库,生成一条回路。设蚂蚁k 当前所在的顶点为i ,则蚂蚁k 由点i 向点j 移动要遵循一下公式(1)的状态变化规则而不断迁徙,按不同概率来选择下一个。

()()arg max ij ij v αβτη??=????

(0q q ≤,k k allowed ∈) Exploitation v V = (0q q >) Exploration (1)

(其中{}0,1,,1k k allowed n tabu =-- 表示蚂蚁k 当前选择的城市集

合,k tabu 为禁忌表,它记录蚂蚁k 已经路过的城市,用来说明

人工蚂蚁的记忆性。ij η用于评价蚂蚁由点i 向点j 移动的启发函

数,其值通常用距离的倒数求得,即()1

,ij i j d c c η-=。,αβ体现了信息素和启发信息对蚂蚁决策的影响。α取值为1;参数0β>描述启发函数的重要性;参数0q (001q ≤≤)决定利用和开发的相对重要性,利用(Exploitation )指走最好的路,开发

(Exploration )指按信息素浓度高概率高的原则选择V, q 是在

[0,1]上任取的随机数)

当0q q >时,按公式(2)的概率进行选择:

()()()0{ij ij k

ij ij k allowed k t j allowed t k ij p t αβ

αβ

τητη∈????????∈????????∑=

(3)修改禁忌表,即选择好之后将蚂蚁移动到下一个城市,并把该城市移动到蚂蚁个体的禁忌表中;

(4)循环执行第2步和第3步,直到每只蚂蚁都生成一条路径;

(5)计算第k 只蚂蚁所走路径的总长度k L ;

(6)根据公式(3)(4)更新所有路径上的信息量;

()()1(t)ij ij ij

t n p τττ+=-+?

(3) 1m k

ij ij k ττ=?=?∑ (4)

(7)若循环次数NC ≥NCmax,则循环结束并输出计算结果,否则清空禁忌表并转到第2步。

相应的MATLAB 程序如下:

%%第一步:变量初始化

[L_nn,P_nn]=NearestNeighborTSP(d);%nn L 是最近邻域启发算法产

生的路线长度

L_best=inf;

T_best=0;

tau0=1/(n* L_nn);%n 为客户以及仓库数

tau=ones(n,n)*tan0;

ant_path=zeros(m,n+1);

%%第二步:将将m 个蚂蚁置于仓库中

ant_path(:,1)=randint(m,1,[1,1]);

%%第三步:选择城市

current_node=ant_path(k,s-1);%k 为蚂蚁数目,取值1…m, s 为问题规模,取2…n

visited=ant_path(k,:);

to_visit=setdiff([1:n],visited);

c_temp=length(to_visit);

if c_temp~=0

p=zeros(1,c_temp);

for i=1:c_temp

p(i)=(tau(current_node,to_visit(i)))^alpha*(1/d(current_node, to_visit(i)))^beta:%计算()()ij ij αβ

τη end

sun_p=sum(p);

q0=rand;

select=to_visit(c_temp);

if q0<=0.9

[y i]=max(p(i));

select=to_visit(i);

else p=p/sum_p;

[y i]=max(p(i));

select=to_visit(i);

end

if c_temp==1 %处理最后一个客户

select=to_visit(c_temp);

end

ordinal_of_vehicle=find(ant_path(k,:)==1);

last_vehicle= ordinal_of_vehicle(length(ordinal_of_vehicle));

for l=last_vehicle:n+20

if (ant_path(k,l)~=1)&( ant_path(k,l)~=0)

total_load=total_load+load(ant_path(k,l));

end

if (total_load+load(select))>capacity_limit %不满足约束条件则回到仓库

select=1;

end

total_load=0;

city_to_visit=select;

ant_path(k,s)=city_to_visit;

end

%%第四步:更新信息素值

tau(current_node,city_to_visit)=(1-rho)*tau(current_node,

city_to_visit)+tan0;

tau(Tour_min(i),Tour_min(i+1))=(1-rho)*tau(Tour_min(i),

Tour_min(i+1))+rho/L_gb;

%%第五步:禁忌表清零

ant_path=zeros(m,n+1);

end

%%第六步:输出结果

Pos=find(L_best==min(L_best));

Shortest_Route=T_best(Pos(1),:)

Shortest_Length=L_best(Pos(1))

4、基本蚁群算法的优缺点

基本蚁群算法具有很强的发现解的能力,这是因为该算法不仅利用了正反馈原理,在一定程度上可以加快进化过程,而且是一种本质上并行的算法,不同个体之间不断进行信息交流

物流配送管理中路径优化问题分析

摘要:经典的优化理论大多是在已知条件不变的基础上给出最优方案(即最优解),其最优性在条件发生变化时就会失去其最优性。本文提出的局内最短路问题,就是在已知条件不断变化的条件下,如何来快速的计算出此时的最优路径,文章设计了解决该问题的一个逆向标号算法,将它与传统算法进行了比较和分析,并针对实际中的物流配送管理中路径优化问题,按照不同的算法分别进行了详细的阐述与分析。 一、引言 现实生活中的许多论文发表经济现象通常都具有非常强的动态特征,人们对于这些现象一般是先进行数学上的抽象,然后用静态或统计的方法来加以研究和处理。从优化的理论和方法上看,经典的优化理论大多是站在旁观者的立场上看问题,即首先确定已知条件,然后在假设这些已知条件不变的基础上给出最优方案(即最优解)。条件一旦发生变化,这种方法所给出的最优方案就会失去其最优性。在变化的不确定因素对所考虑的问题影响很大的时候,经典的优化方法有:一是将可变化的因素随机化,寻求平均意义上的最优方案,二是考虑可变化因素的最坏情形,寻求最坏情形达到最优的方案。这两种处理方法对变化因素的一个特例都可能给出离实际最优解相距甚远的解,这显然是难以满足实际的要求的。那么是否存在一种方法,它在变化因素的每一个特例中都能给出一个方案,使得这一方案所得到的解离最优方案给出的解总在一定的比例之内呢? 近年来兴起的局内问题与竞争算法的研究结果在一定意义上给如上问题一个肯定的答案。其实本文所提出的逆向标号算法就是对应局内最短路问题的一个竞争算法,从本质上来说它是一种贪婪算法,在不知将来情况的条件下,求出当前状态下的最优解。[1]本文所考虑问题的实际背景是一个物流配送公司对其运输车辆的调度。假设物流公司需要用货车把货物从初始点O(Origin)运送到目的点D(Destination)。从日常来看,物流公司完全可以通过将整个城市交通网络看成一个平面图来进行运算,找到一条从O到D的最短路径以减少运输费用和节省运输时间。现考虑如下一个问题:如果当运输车辆沿着最短路径行驶到最短路径上的一点A,发现前方路径上的B点由于车辆拥塞而不能通过,车辆必须改道行驶,而此时物流配送公司应如何应对来保证其花费最低。问题推展开去,如果不是单个堵塞点,而是一个堵塞点序列,那物流配送公司又将如何来设计其最短路算法来在最短的时间内求出已知条件发生变化后的最优路径,从而有效的调度其运输车。本文首先建立了物流配送公司动态最短路的数学模型,相比较给出了求本文所提出的动态最短路问题的传统算法和作者提出的逆向标号算法,并分析了各自的算法复杂度。 二、数学模型假设城市交通网络是一个平面图,记为G,各个交通路口对应于图G上的各个顶点,令G=(G,V)为一边加权无向图,其中V为顶点的集合,E为边的集合,|G|=n,对于一般平面图上的三点之间,一定满足三角不等式,即任意三角形的两边之和一定不小于另外一边。对于本文要讨论的城市交通网络来说,即,任意三个结点之间的距离一定满足三角不等式。我们用O来表示运输的起始点,D表示运输的目的点。SP表示在没有路口堵塞情况下的最短路径,W(SP)表示沿着最短路径所要花费的运输费用。以下的讨论都是基于如下的基本假设:第一,去掉堵塞点后图G仍是连通的。第二,只有当运输车走到前一点后,才能发现后面的一点发生堵塞而不能通过。 三、算法分析 对于本文的上述问题,有两种算法一(传统算法)和二(逆向标号算法)可以满足要求,但两种算法在求动态最短路的过程中都将会用到Dijkstra算法[2],通过对Dijkstra算法的分析我们知道,Dijkstra算法采用了两个集合这样的数据结构来安排图的顶点,集合S表示已

Dijkstra最短路径算法

5.3.4 附录E 最短路径算法——Dijkstra算法 在路由选择算法中都要用到求最短路径算法。最出名的求最短路径算法有两个,即Bellman-Ford算法和Dijkstra算法。这两种算法的思路不同,但得出的结果是相同的。我们在下面只介绍Dijkstra算法,它的已知条件是整个网络拓扑和各链路的长度。 应注意到,若将已知的各链路长度改为链路时延或费用,这就相当于求任意两结点之间具有最小时延或最小费用的路径。因此,求最短路径的算法具有普遍的应用价值。 下面以图E-1的网络为例来讨论这种算法,即寻找从源结点到网络中其他各结点的最短路径。为方便起见,设源结点为结点1。然后一步一步地寻找,每次找一个结点到源结点的最短路径,直到把所有 点1, j)为结点i (1) 初始化 令N表示网络结点的集合。先令N = {1}。对所有不在N中的结点v,写出

不直接相连与结点若结点直接相连 与结点若结点 1 1 ),1()(v v v l v D ? ? ?∞= 在用计算机进行求解时,可以用一个比任何路径长度大得多的数值代替∞。对于上述例子,可以使D (v ) = 99。 (2) 寻找一个不在N 中的结点w ,其D (w )值为最小。把w 加入到N 中。然后对所有不在N 中的结点v ,用[D (v ), D (w ) + l (w , v )]中的较小的值去更新原有的D (v )值,即: D (v )←Min[D (v ), D (w ) + l (w , v )] (E-1) (3) 重复步骤(2),直到所有的网络结点都在N 中为止。 表E-1是对图E-1的网络进行求解的详细步骤。可以看出,上述的步骤(2)共执行了5次。表中带圆圈的数字是在每一次执行步骤(2)时所寻找的具有最小值的D (w ) 值。当第5次执行步骤(2)并得出了结果后,所有网络结点都已包含在N 之中,整个算法即告结束。 表E-1 计算图E-1的网络的最短路径

物流配送路径优化论文

山西工商学院 毕业设计 题目浅析物流配送路径优化问题 学生姓名杨美玲 学号200822054247 专业物流管理 班级08物流二班 指导教师李桂娥 二零一一年十月二十八日

目录 摘要 (ⅰ) 一、引言(问题的提出) (1) 二、物流配送路径优化问题的数学模型……………………………X 三、物流配送路径优化问题的遗传算法……………………………X (一)遗传算法的基本要素………………………………………X (二)物流配送路径优化问题的遗传算法的构造……………………X 四、实验计算与结果分析…………………………………………X 五、结论…………………………………………………………X 参考文献…………………………………………………………X 致谢………………………………………………………………X

中英文摘要 摘要:论文在建立物流配送路径优化问题的数学模型的基础上,构造了求解该问题的遗传算法,并进行了实验计算。计算结果表明,用遗传算法进行物流配送路径优化,可以方便有效地求得问题的最优解或近似最优解。 关键词:物流配送;遗传算法;优化 Study on the Optimizing of Physical Distribution Routing Problem Based on Genetic Algorithm Abstract:On the basis of establishing the optimizing model on physical distribution routing problem, this paper presents a genetic algorithm for solving this problem, and make some experimental calculations. The experimental calculation results demonstrates that the optimal or nearly optimal solutions to the physical distribution routing problem can be easily obtained by using genetic algorithm. Keywords:physical distributio n;genetic algorith m;optimizing

车辆路径问题及遗传算法

车辆路径问题优化算法 美国物流管理学会(Council of Logistics Management,CLM)对物流所作的定义为:“为符合顾客的需要,对原料、制造过程中的存货与制成品以及相关信息,从其起运点至最终消费点之间,做出的追求效率与成本效果的计划、执行与控制过程。” 而有关资料显示,物流配送过程(包含仓储、分拣、运输等)的成本构成中,运输成本占到52%之多。因此,如何在满足客户适当满意度的前提下,将配送的运输成本合理地降低,成为一个紧迫而重要的研究课题,车辆路径问题正是基于这一需求而产生的。 2.1车辆路径问题的定义 车辆路径问题可以描述为:给定一组有容量限制的车辆的集合、一个物流中心(或供货地)、若干有供货需求的客户,组织适当的行车路线,使车辆有序地通过所有的客户,在满足一定的约束条件(如需求量、服务时间限制、车辆容量限制、行驶里程限制等)下,达到一定的目标(如路程最短、费用极小、时间尽量少、使用车辆数尽量少等)。[4] 因此研究车辆的路径问题,就是要研究如何安排运输车辆的行驶路线,使运输车辆依照最短的行驶路径或最短的时间费用,依次服务于每个客户后返回起点,总的运输成本实现最小。车辆路径问题已被证明是NP-Hard问题,因此求解比较困难。然而,由于其在现实生活中应用非常广泛,使得它无论在理论上还是在实践上都有极大的研究价值。 Penousal Machado等人[5]指出车辆路径问题(vehicle routing problem,简称VRP)是一个复杂的组合优化问题,是古老的旅行商问题和背包问题的综合。实际上,车辆路径问题通常可被分解或转化成一个或几个已经研究过的基本问题,再采用相应比较成熟的基本理论和方法,以得到最优解或满意解。 这些与车辆路径问题相关的常用基本问题有;旅行商问题、运输问题、背包问题、最短路问题、最小费用最大流问题、中国邮路问题、指派问题等。 旅行商问题可被描述为:一个推销员欲到n个城市推销商品,每2个城市之间的距离是已知的。如何选择一条路径使推销员依次又不重复地走遍每个城市后,回到起点且所走的路径最短。 运输问题关心的是(确实的或是比喻的)以最低的总配送成本把供应中心(称为出发地,sources)的任何产品运送到每一个接受中心(称为目的地,destinations)。运输问题需要的数据仅仅是供应量、需求量和单位成本。 背包问题是指有一只固定容量的背包和若干体积、重量不等的物品,背包的容量不允许装下这所有的物品,那么如何选择适当的物品装入背包,使得背包的装载量(所装物品的重量之和)最大。 最短路径问题解决的是在一个网络中,如何寻找两点之间的最短路径。这两点之间通常没有直接的通路可达,但可经由若干中间结点相通。 最小费用流问题主要解决如何以最小成本在一个配送网络中运输货物。最小费用流问题又称为网络配送问题。 最大流问题和最小费用流问题一样,也与网络中的流有关。但是它们的目标不同,最大流问题不是使得流的成本最小化,而是寻找一个流的方案,使得通过网络的流量最大。 中国邮路问题是由我国管梅谷同志在1962年首先提出的,它可描述为:一个邮递员负责某一个地区的信件投递。每天要从邮局出发,走遍该地区所有的街道再返回邮局,问应该怎样安排送信路线可以使所走的路程最短。 指派问题解决将n件工作安排给m个人完成的问题。已知不同人完成不同工作的效率(或成本)不同,指派问题要求以最高的效率(或最小的人工成本)完成工作的安排。 2.2车辆路径问题的分类

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

时间窗车辆路径问题【带有时间窗约束的车辆路径问题的一种改进遗传算法】

系 统 管理学报 第19卷 不同,文献[6]中100,本文30;③文献[6]中没有给出20次求解中有多少次求得最优解,本文算法在软硬2种时间窗下,求得最优解的概率分别为90%和75%。由此可以看出本文算法具有较快的收敛速度和较高的稳定性。 表2实例l。软时间窗下算法运行结果 第2个实例[6],该问题有8个客户,顾客的装货或卸货的时间为Ti,一般将t作为车辆的行驶时间的一部分计算费用,gf和[n,,6i]的含义同前,具体数据见表4。这些任务由仓库发出的容量为8t的车辆来完成,车辆行驶速度为50,仓库以及各个顾客之间的距离见表5。 6),达到最优解的概率为80%,其最终结果与文献[6]中相同最优解其费用值为910,对应的子路径

为(O一3一l一2—0)、(O一6—4一O)、(O一8—5—7一O)。然而,文献 [6]是在maxgen=50、popsize一20的情况下,达到最优解的概率为67%。这又说明了本文算法的有 效性。 表6实例2的算法运行结果 4 结语 尽管用带有子路径分隔符的自然数编码作为遗传算法解决VRPTW问题的编码方式有其优点,但缺陷也是显而易见的,为了弥补该缺陷,本文去掉了 子路径中的分隔符,并采用Split作为解码方式,就此设计了求解VRPTW的遗传算法,并进行了数值试验的对比分析,试验结果表明,该算法是十分有

效的。参考文献 DantziqG,Ramser J.Thetruckdispatchingproblem [J].Management science,1959,13(6)80一91. 谢秉磊,李军,郭耀煌.有时间窗的非满载车辆调 度问题的遗传算法[J].系统工程学报,2000,15 (3)290一294. 宋伟刚,张宏霞,佟玲.有时间窗约束非满载车辆调度问题的遗传算法[J].系统仿真学报,2005,17 (11)2593—2597. 刘诚,陈治亚,封全喜.带软时间窗物流配送车辆路径问题的并行遗传算法

动态路由最短路径选择方法与设计方案

本技术提供了一种动态路由最短路径选择方法,通过路由动态更新以实时更新路由信息,然后通过执行Dijkstra算法计算pc到各个路由器的最短路径;路由动态更新实现的步骤包括:发现邻居,设置链路成本,构造链路状态包,分发链路状态包,计算新路由关系。本技术用于解决主控电脑及终端(路由器)之间动态组网及数据交互的问题。 权利要求书 1.一种动态路由最短路径选择方法,其特征在于,通过路由动态更新以实时更新路由信息,然后通过执行Dijkstra算法计算pc到各个路由器的最短路径;路由动态更新实现的步骤包括:发现邻居,设置链路成本,构造链路状态包,分发链路状态包,计算新路由关系。 2.根据权利要求1所述的一种动态路由最短路径选择方法,其特征在于,路由器发现邻居是利用自检报文及hello和helloback报文的交互来发现邻居,在每一条点到点线路上发送一个特殊的HELLO数据包,然后线路的另外一个路由器做出一个helloback的回复,这样路由器收集完所有该路由器所有的helloback报文后,就就能够确认该路由器所有的邻居信息,pc收到相邻路由器的hello报文后,返回pc端发送的helloback报文,同时构建路由器节点,并将该路由器信息加入到路由器数据表中,在此过程中,将pc也作为一个路由器来对待。 3.根据权利要求1所述的一种动态路由最短路径选择方法,其特征在于,链路状态包中包括的信息有路由器与相邻路由器相连的端口号,相邻路由器序列号,相邻路由器与路由器相连的端口号。 4.根据权利要求2所述的一种动态路由最短路径选择方法,其特征在于,路由器会进行记录,如果是个新的数据包,那么就转发它,如果是个重复的数据包,就丢弃,当pc收到来自某一路由器的链路报文后,将该路由器的信息加入到路由器数据表中,如果当前路由器数据表中已经存在相同的路由器信息,则将原来的路由器信息删除,更新为最新的路由器信息。 5.根据权利要求4所述的一种动态路由最短路径选择方法,其特征在于,通过执行Dijkstra算法寻找出pc到各个路由器的最短路径 的具体步骤为:对路由器数据表中的各个路由器进行重新标号,pc标号为0,其余路由器标号为从1开始自然数编号,对路由器

物流配送最优路径规划

物流配送最优路径规划

关于交通运输企业物流配送最优路径规划的 研究现状、存在问题及前景展望 摘要:本文综述了在交通运输企业的物流配送领域最优路径规划的主要研究成果、研究存在问题及研究方向。主要研究成果包括运用各种数学模型和算法在运输网中选取最短或最优路径;从而达到路径、时间最优和费用最优;以及物流配送网络优化、车辆系统化统一调度的发展。今后研究的主要方向包括绿色物流,运输系统及时性和准确性研究等。 关键词:物流配送;最优路径;路径规划 Overview of scheme on Shortest Logistics Distribution Route in Transportation Industry Student: Wan Lu Tutor: Chen Qingchun Abstract: This paper reviewed of the optimal path planning about the main research results, problems and direction in the field of transportation enterprise logistics distribution. Main research results include using various mathematical model and algorithm selection or optimal shortest path in the network. So we can achieve the optimal path, the shortest time and minimum cost. At the same time, logistics distribution network optimization, the vehicle systematic development of unified scheduling are the research issues.The main direction of future research include green logistics, transportation system accurately and timely research and so on. Key words: Logics Distribution; Optimal Path; Path Planning 引言 物流业在我国的新兴经济产业中占据了重要了地位,称为促进经济快速增长的“加速器”。而物流配送作为物流系统的重要环节,影响着物流的整个运作过程以及运输企业的发展趋势和前景。采用科学、合理的方法来进行物流配送路径的优化,是物流配送领域的重要研究内容。近年,国内外均有大量的企业机构、学者对物流配送中最优路径选择的问题,进行了大量深入的研究,从早期车辆路径问题研究,到根据约束模型及条件不断变化的车辆最优路径研究,以及随着计算机学科的发展而推出的针对物流配送路径最优化的模型和算法等方面,都取得丰硕的学术成果。但是对于绿色物流配送的研究仍然不足。鉴于物流配送最优路径研究的重大理论意义和实践价值,为对我国物流配送的效率水平有一个系统的理解和把握,有必要对现有成果进行统计和归纳。本文尝试对我国运输企业物流配送最优路径规划进行探讨,以期为今后做更深人和全面的研究提供一定的线索和分析思路。 1 国内外研究现状 1.1 国内研究现状 1.1.1 主要研究的问题

基于蚁群算法的MATLAB实现

基于蚁群算法的机器人路径规划MATLAB源代码 基本思路是,使用离散化网格对带有障碍物的地图环境建模,将地图环境转化为邻接矩阵,最后使用蚁群算法寻找最短路径。 function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 基于蚁群算法的机器人路径规划 % GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→https://www.360docs.net/doc/4d8387923.html,/greensim %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N

粒子群优化算法车辆路径问题

粒子群优化算法 计算车辆路径问题 摘要 粒子群优化算法中,粒子群由多个粒子组成,每个粒子的位置代表优化问题在D 维搜索空间中潜在的解。根据各自的位置,每个粒子用一个速度来决定其飞行的方向和距离,然后通过优化函数计算出一个适应度函数值(fitness)。粒子是根据如下三条原则来更新自身的状态:(1)在飞行过程中始终保持自身的惯性;(2)按自身的最优位置来改变状态;(3)按群体的最优位置来改变状态。本文主要运用运筹学中粒子群优化算法解决车辆路径问题。车辆路径问题 由Dan tzig 和Ram ser 于1959年首次提出的, 它是指对一系列发货点(或收货点) , 组成适当的行车路径, 使车辆有序地通过它们, 在满足一定约束条件的情况下, 达到一定的目标(诸如路程最短、费用最小, 耗费时间尽量少等) , 属于完全N P 问题, 在运筹、计算机、物流、管理等学科均有重要意义。粒子群算法是最近出现的一种模拟鸟群飞行的仿生算法, 有着个体数目少、计算简单、鲁棒性好等优点, 在各类多维连续空间优化问题上均取得非常好的效果。本文将PSO 应用于车辆路径问题求解中, 取得了很好的效果。 针对本题,一个中心仓库、7个需求点、中心有3辆车,容量均为1,由这三辆车向7个需求点配送货物,出发点和收车点都是中心仓库。 1233,1,7. k q q q l =====货物需求 量12345670.89,0.14,0.28,0.33,0.21,0.41,0.57g g g g g g g =======, 且 m a x i k g q ≤。利用matlab 编程,求出需求点和中心仓库、需求点之间的各 个距离,用ij c 表示。求满足需求的最小的车辆行驶路径,就是求 m i n i j i j k i j k Z c x = ∑∑∑ 。经过初始化粒子群,将初始的适应值作为每个粒子的个

物流系统优化——定位——运输路线安排问题LRP研究评述

——第6届全国青年管理科学与系统科学学术会议论文集 2001年·大连 437 物流系统优化中的定位—运输路线安排问题 (LRP)研究评述* 林岩 胡祥培** (大连理工大学系统工程研究所, 116023) 摘要 本文概述了物流优化问题中的定位—运输路线安排问题 (Location-Routing Problems, LRP )的发展历程,并对LRP 的分类和解决方 法加以评述,最后就这一问题的发展方向进行简单地探讨。 关键词 LRP 物流 系统优化 运筹学 1 引言 新技术的迅速发展,特别是电子商务的风起云涌,为我国经济的快速发展提供了契机。目前我国电子商务得到政府和民众的支持,发展势头强劲,但是,由于它是一套全新的技术,同时还是一种全新的管理理念,所以其发展过程中必然存在一些难题。在电子商务“三流”(信息流、物流、资金流)中,随着网络基础设施建设的成熟、电子商务网站的蓬勃发展以及有效利用网络资源观念的普及,信息流的发展已经比较成熟了;而随着各大银行纷纷开展网上业务,以及支付网关的建立和加密技术的成熟,网上支付已经在许多网站上成为现实;然而,我国传统的物流体系是在计划经济环境下建立、发展起来的,与目前的电子商务环境已经无法相容。现今物流体系的落后现状已经成为我国社会经济快速发展的重要制约因素之 一。所以对物流系统优化的研究将会具有很大的现实意义。 国外许多学者在电子商务出现之前就已经研究物流系统优化的问题了,为各类实际问题构建了优化模型,并形成了许多解决问题的算法。依据实际问题的不同,可以对物流系统优化问题进行分类,比如,运输车辆路线安排问题(VRP )、定位—配给问题(LA )、定位—运输路线安排问题(LRP )等等,其中LRP 更贴近目前的物流系统复杂的实际特征,所以对它的研究是十分有意义的。 本文先从VRP 和LA 的集成来探讨LRP 的由来,然后讨论LRP 的分类,同时探讨LRP 的研究现状,并对LRP 的解决方法进行概述,最后就LRP 的未来发展方向作简要的讨论。 2 从VRP 、LA 到LRP ——物流系统的集成 依据实际问题的不同,可以对物流系统优化问题进行分类,比如确定设施(指的是物品流动的出发点和终到点,如配送中心、仓库、生产工厂、垃圾回收中心等)位置、运输路线 * 国家自然科学基金重点项目(70031020) ** 林岩, 硕士研究生, 1972年出生, 主要研究方向: 电子商务, 信息系统工程。 胡祥培, 1962年出生, 教授,博导, 主要研究方向: 电子商务, 智能运筹学, 信息系统集成。

dijkstra最短路径算法

数据通信与计算机网络大作业 Dijkstra 最 短 路 径 算 法

【摘要】 摘要:最短路径分析在地理信息系统、计算机网络路由等方面发挥了重要的作用, 对其进行优化很有必要。本文分析了传统 的最短路径算法(即Dijkstra 算法)的优化途径及现有的优化算法, 然后在Dijkstra 算法的基础上, 采用配对堆结构来实现路 径计算过程中优先级队列的一系列操作, 经理论分析与实验测试结果对比, 可以大大提高该算法的效率和性能。 【关键词】 最短路径; Dijkstra 算法; 【正文】 随着计算机网络技术和地理信息科学的发展, 最短路径问题无论是在交通运输, 还是在城市规划、物流管理、网络通讯等方面, 它都发挥了重要的作用。因此, 对它的研究不但具有重要的理论价值, 而且具有重要的应用价值。研究最短路径问题通常将它们抽象为图论意义下的网络问题, 问题的核心就变成了网络图中的最短路径问题。此时的最短路径不单指“纯距离”意义上的最短路径, 它可以是“经济距离”意义上的最短路径, “时间”意义上的最短路径, “网络”意义上的最短路径。关于最短路径问题, 目前所公认的最好的求解方法, 是由F.W.Dijkstra 提出的标号法, 即Dijkstra 算法。 1 Dijkstra 算法 Dijkstra 算法是求最短路径的最基本和使用最广泛的算法。在求从网络中的某一节点(源点)到其余各节点的最短路径时, 经典Dijkstra 算法将网络中的节点分成三部分: 未标记节点、临时标记节点和最短路径节点(永久标记节点)。算法开始时源点初始化为最短路径节点, 其余为未标记节点, 算法执行过程中, 每次从最短路径节点往相邻节点扩展, 非最短路径节点的相邻节点修改为临时标记节点, 判断权值是否更新后, 在所有临时标记节点中提取权值最小的节点, 修改为最短路径节点后作为下一次的扩展源, 再重复前面的步骤, 当所有节点都做过扩展源后算法结束。具体算法描述如下: 设在一非负权简单连通无向图G=(V:顶点集, E:边集, W:边权值)中, d 为图G 的邻接矩阵, 求源点P 0到其余所有节点Pi的最短路径长度。 ⑴将V 分为未标记节点子集N、临时最短路径节点子集T和最短路径节点子集S, 每个节点上的路径权值为D(i)。初始化:S={P0}, T=¢, N=V- S, D(0)=0, D(i)=∞; ⑵更新:将新加入S 集合的节点Ps 作为扩展源, 计算从扩展源到相邻节点的路径值。若该值比节点上的原值小, 则用该值替换原值, 否则保持原值不变, 即D(i)=min{D(s)+d[s][i],D(i)},并将这些相邻节点之中的未标记节点归为临时标记节点, 即T= T∪Pi, N=N- Pi; ⑶选择:在T 中选择具有最小路径值D(s)的节点Ps, 归入集合S 中, 即S=S ∪Ps, T=T- Ps;

车辆路径优化及算法综述_袁建清

车辆路径优化及算法综述 袁建清 (黑龙江东方学院计算机科学与电气工程学部,黑龙江哈尔滨150086 )摘 要:阐述了VRP的主要求解算法, 在参阅大量文献基础之上以禁忌搜索算法、遗传算法、蚂蚁算法三种主要的算法为划分总结了VRP的研究现状以及三种算法的改良与应用情况,最后对车辆调度问题进行了展望,提出了进一步发展动向。 关键词:车辆路径问题;VRP; 算法中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2011)07-0060- 02作者简介:袁建清(1979-) ,女,黑龙江穆棱人,硕士,黑龙江东方学院讲师,研究方向为信息管理。0 引言 车辆路径问题(Vehicle Routing  Problem,VRP)是指在客户需求和位置已知的情况下, 确定车辆在各个客户间的行驶路线,使得运输路线最短或运输成本最低。对运输车辆进行优化调度,通过选择车辆的最佳运输路径,合理安排车辆调度顺序, 可以有效减少车辆的空驶率和行驶距离。它是物流系统优化环节中关键的一环。已经典型应用到牛奶配送、 报纸和快件投递、垃圾车的线路优化及连锁商店的送货线路优化等众多社会领域,而且在工业管理、物流管理、交通运输、通讯、电力、计算机设计等领域都有广泛的应用。 1 VRP求解算法 VRP是一个NP难问题, 因此根据各具体类型问题的特点应用启发式算法算法求解已经成为研究的主流。其中传统启发式算法主要有节约算法、插入算法、二阶段算法法等;现代启发式算法主要有禁忌搜索算法(TabuSearch,TS)、遗传算法(Genetic Alg orithm,GA)、模拟退火算法(Simulated Annealing,SA)、蚂蚁算法(ant colonyop timization,ACO)等。近年来应用最多的是禁忌搜索算法、 遗传算法、蚂蚁算法以及它们之间或它们与传统启发式算法之间的结合形成的混合算法。 (1)禁忌搜索算法(TS) :是一种全局优化搜索算法,通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。但是存在对初始解有较高的依赖性的缺点。 (2)遗传算法(GA) :是一种基于自然进化原理的全局搜索随机算法,它使用群体搜索技术,通过对当前群体施 加选择(reproduction)、交叉(crossover)及变异(mutation)等一系列遗传操作,从而产生出新一代的群体,并逐步使群体进化到包含或接近最优解的状态。该算法有局部搜索能力不强、易陷入早熟、总体上可行解的质量不是很高的缺点。 (3)蚁群算法(ACO) :是一种概率搜索算法,它模拟蚂蚁群体在觅食过程中所体现出的智能行为, 利用信息激素为媒介进行间接的信息传递,根据信息素的强度做出对较优解的选择。此算法有易陷入早熟、停滞、局部最优的缺点。 2 VRP研究现状 VRP一直是物流届研究的热点问题, 纵观国内外学者研究都是通过对以上几种算法进行改良或将其结合形成有效地混合算法, 而对不同约束条件下车辆路径优化问题进行求解。本文针对三种主要算法总结研究现状如下:(1 )应用遗传算法研究。文献分别用改进的遗传算法、免疫遗传算法、小生境遗传算法、以及与爬山算法、禁忌搜索算法、 蚁群算法相结合的混合算法对时间窗的车辆路径优化问题(VRPTW)进行了求解。另外:张海刚等提出用基于自然数编码的遗传算法同时处理有软硬时间窗的VRP,魏航等设计了基于自然数编码的遗传算法,针对有行驶里程限制的多车场满载车辆调度问题。 (2 )应用禁忌搜索法研究。学者们对禁忌搜索法的应用主要针对两方面进行改良。一是构造好的初始解,在这方面主要形成三种方法:①随机排列,然后将顾客按序列聚类分配到每辆车,从而产生每辆车的路径;②先分组,然后在每个组内采用旅行商算法产生初始解;③用C-W启发式构造线路。二是通过改进邻域移动方法构造候选

蚁群算法最短路径通用Matlab程序(附图)

蚁群算法最短路径通用Matlab程序(附图) function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 蚁群算法动态寻路算法 % ChengAihua,PLA Information Engineering University,ZhengZhou,China % Email:aihuacheng@https://www.360docs.net/doc/4d8387923.html, % All rights reserved %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N if ix==-0.5

物流配送的车辆路径优化

物流配送的车辆路径优化 专业:[物流管理] 班级:[物流管理2班] 学生姓名:[江东杰] 指导教师:[黄颖] 完成时间:2016年6月30日

背景描述 物流作为“第三利润源泉”对经济活动的影响日益明显,越累越受到人们的重视,成为当前最重要的竞争领域。近年来,现代物流业呈稳步增长态势,欧洲、美国、日本成为当前全球范围内的重要物流基地。中国物流行业起步较晚,随着国民经济的飞速发展,物流业的市场需求持续扩大。特别是进入21世纪以来,在国家宏观调控政策的影响下,中国物流行业保持较快的增长速度,物流体系不断完善,正在实现传统物流业向现代物流业的转变。现代物流业的发展对促进产业结构调整、转变经济增长方式和增强国民经济竞争力等方面都具有重要意义。 配送作为物流系统的核心功能,直接与消费这相关联,配送功能完成质量的好坏及其达到的服务水平直接影响企业物流成本及客户对整个物流服务的满意程度。配送的核心部分是配送车辆的集货、货物分拣及送货过程,其中,车辆配送线路的合理优化对整个物流运输速度、成本、效益影响至关重要。 物流配送的车辆调度发展现状 VRP(车辆调度问题)是指对一系列装货点和卸货点,组织适当的行车线路,使车辆有序的通过,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量等限制)下,达到一定的目标(如路程最短、费用最少、时间最少、使用车辆数最少等)。一般认为,不涉及时间的是路径问题,涉及时间的是调度问题。VRP示意图如下 当然,VRP并不止是这样的一个小范围,而是又更多的客户点与一个仓库链接,从而达

到一整个物流集群。 根据路径规划前调度员对相关信息是否已知,VRP可分为静态VRP和动态VRP,动态VRP 是相对于静态VRP而言的。静态VRP指的是:假设在优化调度指令执行之前,调度中心已经知道所有与优化调度相关的信息,这些信息与时间变化无关。一旦调度开始,便认为这些信息不再改变。 而VRP发展到现在的问题也是非常突出的,例如,只有一单货物,配送成本远高于一单的客户所给的运费,在这种情况下,该如何调度车辆?甚至还有回程运输的空载问题,在这些问题之中,或多或少都涉及到了VRP的身影,那么在这样的配送中怎么有效的解决车辆的路径优化问题就是降低运输和物流成本的关键所在。 解决怎么样的问题? 现如今对于VRP研究现状主要有三种静态VRP的研究、动态VRP的研究以及随机VRP的研究。 而我对于VRP的看法主要有以下几点。 有效解决VRP或者优化车辆调度路径优化问题,那么将非常有效的降低物流环节对于成本的比重,有效的增大利润。 而我想到的方法,就是归类总结法。 建立完善的信息系统机制,将订单归类总结出来,可以按地区划分出来,一个地区一个地方的进行统一配送,这样也有效的降低了物流配送的车辆再使用问题,降低了成本。如下图所示。 仓库 客户 变换前 由上图可以看出来这样的路径,车辆需要来回两次,严重增加了配送成本,也增加了运输成本,使得利润并不能最大化。

第三方物流运输方式和配送路径优化研究

第三方物流运输方式和配送路径优化研究 摘要:经典的优化理论大多是在已知条件不变的基础上给出最优方案(即最优解),其最优性在条件发生变化时就会失去其最优性。本文提出的局内最短路问题,就是在已知条件不断变化的条件下,如何来快速的计算出此时的最优路径,文章设计了解决该问题的一个逆向标号算法,将它与传统算法进行了比较和分析,并针对实际中的物流配送管理中路径优化问题,按照不同的算法分别进行了详细的阐述与分析。 一、引言 现实生活中的许多论文发表经济现象通常都具有非常强的动态特征,人们对于这些现象一般是先进行数学上的抽象,然后用静态或统计的方法来加以研究和处理。从优化的理论和方法上看,经典的优化理论大多是站在旁观者的立场上看问题,即首先确定已知条件,然后在假设这些已知条件不变的基础上给出最优方案(即最优解)。条件一旦发生变化,这种方法所给出的最优方案就会失去其最优性。在变化的不确定因素对所考虑的问题影响很大的时候,经典的优化方法有:一是将可变化的因素随机化,寻求平均意义上的最优方案,二是考虑可变化因素的最坏情形,寻求最坏情形达到最优的方案。这两种处理方法对变化因素的一个特例都可能给出离实际最优解相距甚远的解,这显然是难以满足实际的要求的。那么是否存在一种方法,它在变化因素的每一个特例中都能给出一个方案,使得这一方案所得到的解离最优方案给出的解总在一定的比例之内呢? 近年来兴起的局内问题与竞争算法的研究结果在一定意义上给如上问题一个肯定的答案。其实本文所提出的逆向标号算法就是对应局内最短路问题的一个竞争算法,从本质上来说它是一种贪婪算法,在不知将来情况的条件下,求出当前状态下的最优解。[1]本文所考虑问题的实际背景是一个物流配送公司对其运输车辆的调度。假设物流公司需要用货车把货物从初始点O(Origin)运送到目的点D(Destination)。从日常来看,物流公司完全可以通过将整个城市交通网络看成一个平面图来进行运算,找到一条从O到D的最短路径以减少运输费用和节省运输时间。现考虑如下一个问题:如果当运输车辆沿着最短路径行驶到最短路径上的一点A,发现前方路径上的B点由于车辆拥塞而不能通过,车辆必须改道行驶,而此时物流配送公司应如何应对来保证其花费最低。问题推展开去,如果不是单个堵塞点,而是一个堵塞点序列,那物流配送公司又将如何来设计其最短路算法来在最短的时间内求出已知条件发生变化后的最优路径,从而有效的调度其运输车。本文首先建立了物流配送公司动态最短路的数学模型,相比较给出了求本文所提出的动态最短路问题的传统算法和作者提出的逆向标号算法,并分析了各自的算法复杂度。 二、数学模型假设城市交通网络是一个平面图,记为G,各个交通路口对应于图G上的各个顶点,令G=(G,V)为一边加权无向图,其中V为顶点的集合,E为边的集合,|G|=n,对于一般平面图上的三点之间,一定满足三角不等式,即任意三角形的两边之和一定不小于另外一边。对于本文要讨论的城市交通网络来说,即,任意三个结点之间的距离一定满足三角不等式。我们用O来表示运输的起始点,D表示运输的目的点。SP表示在没有路口堵塞情况下的最短路径,W(SP)表示沿着最短路径所要花费的运输费用。以下的讨论都是基于如下的基本假设:第一,去掉堵塞点后图G仍是连通的。第二,只有当运输车走到前一点后,才能发现后面的一点发生堵塞而不能通过。

相关文档
最新文档