中国数学史
中国数学发展简史

中国数学发展简史(一)中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,考古发现,仰韶文化时期出土的陶器,上面就已刻有表示数字的符号。
到原始公社末期,就已开始用文字符号取代结绳记事了。
(二)春秋战国之际,筹算得到普遍的应用筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”(是我国古书中最早体现微积分思想的一段)等。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
秦汉是封建社会的上升时期,经济和文化均得到迅速发展。
中国古代数学体系正是形成于这个时期,它的主要标志是算术成为一个专门的学科以及《九章算术》为代表的数学著作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。
例如分数四则运算,今有术(西方称三率法),开平方与开立方(包括二次方程数值解法),盈不足术(西方称双设法),各种面积和体积公式,线性方程组解法,正负数运算的加减法则,勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的,其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。
就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
(三)中国古代数学体系的发展魏、晋时期出现的玄学有利于数学从理论上加以提高。
吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注2卷(已失传),魏末晋初刘徽撰《九章算术》注10卷(263)、《九章重差图》1卷(已失传)都是出现在这个时期,赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
中国数学发展历史

文典型域上的多元复变量函数论被国际学术界 称为「华氏定理」.
陈景润,中国现代数学家,世界著名解析数论 学家之一. 1966年,陈景润攻克了世界著名数 学难题哥德巴赫猜想中的1+2,创造了距摘取 这颗数论皇冠上的明珠1+ 1只是一步之遥的 辉煌.他在哥德巴赫猜想的研究上居世界领 先地位.他研究哥德巴赫猜想和其他数论问 题的成就,至今,仍然在世界上遥遥领先.世界 级的数学大师、美国学者阿 ·威尔A Weil曾 这样称赞他:陈景润的每一项工作,都好像 是在喜马拉雅山山巅上行走. 陈景润于1978 年和1982年两次收到国际数学家大会请他作 45分钟报告的邀请,这是中国人的自豪和骄 傲
唐朝在数学教育方面有长足的发
展.656年国子监设立算学馆,设有算学
博士和助教,由太史令淳风等人编纂注
释算经十书
包括周髀算经、九章算术
海岛算经、孙子算经
张丘建算经、夏侯阳算经
缉古
算经、五曹算经
五经算术、缀术,
作为算学馆学生用的课本.对保存古代
数学经典起了重要的作用.
淳风 公元604-672年 唐代岐州雍人今陕西风翔
梅文鼎幼时注意观察天象,27岁起,始治数学、 历法,终身潜心学术.后接触西方书籍.康熙年间进 京,以学识为康熙帝赏识,曾系统考察古今中外历 法,又介绍欧洲数学,研究中西历算.其间,为明史馆 校订历志舛错10余处,撰成明史历志拟稿.近人称 梅文鼎和日本的关孝和、英国的牛顿为当时世界 的三大数学家,著有方田通法、方程论.
近现代数学发展时期
陈省身
数学家,美国国籍 .曾获美国国家科学 奖1975,沃尔夫数学奖1984等.1994年当选 为中国科学院外籍院士.陈省身是20世纪 的伟大几何学家,在微分几何方面的成就尤 为突出,被世人称为微分几何之父.
《中国数学史简介》课件

当代数学家的贡献
总结词
国际领先、创新发展
详细描述
当代中国数学家在许多领域的研究已经达到国际领先 水平,如陈景润在解析数论领域的“陈氏定理”,该 成果被国际数学界称为“陈景润定理”。此外,中国 数学家在几何、拓扑学、概率论等领域也取得了重要 的研究成果,如吴文俊在几何定理机器证明方面的贡 献,为中国数学在国际舞台上赢得了声誉。这些当代 数学家的创新发展为中国数学的未来发展奠定了坚实 的基础。
05
中国数学史的意义与影响
Chapter
对世界数学史的影响
推动世界数学发展
01
中国数学史为世界数学史贡献了独特的数学思想和成就,促进
了全球数学的发展和进步。
丰富世界数学文化
02
中国数学史的发展过程中,形成了具有中国特色的数学文化,
为世界数学文化增添了多样性。
启发其他文明数学进步
03
中国数学史上的重要思想和成就可以为其他文明所借鉴,促进
《中国数学史简介》ppt课件
目录
• 中国数学史的起源 • 古代数学的主要成就 • 近现代数学的发展 • 中国数学家的杰出贡献 • 中国数学史的意义与影响
01
中国数学史的起源
Chapter
起源时期
起源时期概述
从远古时代到先秦时期,中国数 学逐渐萌芽,经历了从简单的计 数到初步的数学体系的发展过程
《九章算术》
是中国古代第一部数学专著,是 《算经十书》中最重要的一种, 成于公元一世纪左右。
南北朝的数学家与数学著作
祖冲之
南北朝时期杰出的数学家、科学家。他的主要成就 有《大明历》、圆周率、水碓磨、指南车等。
《张丘建算经》
这是南北朝时期的一部重要数学著作,主要介绍了 代数和几何的基本概念,为后来的数学发展奠定了 基础。
中国的数学历史

中国的数学历史中国是古代文明的重要代表之一,同时也有着光辉的数学历史。
以下是有关中国数学历史的一些重要内容:1.最早的数学发展:约在公元前11世纪,中国的商代就已开始发展数学。
商代的贡献主要包括单位的建立,长度和重量的标准化以及简单的算数。
2.数学家张丘建的贡献:在东汉末年,张丘建发表的《算经》成为了数学史上的重要经典之一。
这部作品包括594个题目,主要涵盖了算术、代数、几何和三角学四个方面的内容。
3.数学家李冶的成就:唐代数学家李冶贡献了许多重要的发现,特别是在解释和应用三角函数方面做出了重要贡献。
他还发明了多种算术方法,并开发了新的几何工具。
4.算学的发展:在宋代,算学成为了学校的主要课程之一,并且开始出现了关于代数学和几何学的研究。
宋代数学家朱世杰发明了一种新的十进制计数方法,并提出若干关于除法和乘方的原则。
5.《数学九章》的出现:明代数学家秦九韶和杨辉共同编写了《数学九章》这部长篇巨著。
这本书详细介绍了代数学、几何学和三角学的各个方面。
它不仅仍然是数学研究的必读之书,而且还影响了欧洲的数学研究。
6.数学教育的革新:在清朝,数学成为了中国的高等教育的重要课程之一。
清末时期的数学家严复通过翻译数学教材的方式,将西方的数学思想引入到中国。
总的来说,中国的数学历史相当悠久而且丰富,其成就在几何、代数以及计算机等领域对现代科学技术的发展做出了积极的贡献。
虽然现代数学已经发生了很大的变化,但中国数学所开创的理性、系统、严密的数学思想仍然有着深远的影响。
数学在中国的发展历史

数学在中国的发展历史中国的数学发展历史可以追溯到古代,最早的数学文化可以追溯到商周时期,此时已经有扁鹊算术、卜筮等各种数学科技的应用。
接下来,随着战国时期的发展,数学逐渐形成了一些基本概念和计算方法,如乘法、几何应用等。
汉代是中国数学发展的重要时期之一,汉武帝时期出现了《九章算术》,它包含了“A+B”、“一元二次方程”、“直角三角形”等数学概念。
此外,还有另一部重要的数学著作《孙子算经》,它在数学领域的发展和应用方面都有重大的作用。
这些著作的出现标志着中国数学从此开始了一个新的时期。
唐代是中国数学史上又一个伟大的时期,数学领域的繁荣要归功于宋朝的一位伟大的数学家李冶。
他的著作“欧几里德几何原本”和“数学通轨”为中国数学发展的奠基石。
在中国数学的发展史上,唐朝还出现了用于计算圆周率的平积法、线性同余方程以及大中等肋芝麻算法等重要的数学方法。
宋朝是中国数学史上的黄金时期之一,这个时期的数学领域达到了一个新的高峰。
这一时期著名的数学家有杨辉、李之仪、祖冲之、秦九韶等,他们的数学著作成为了学术研究成果的代表。
此外,宋朝还出现了加减乘除、高次方程、三角函数以及应用微积分等数学方法。
明朝是中国数学史上的又一个重要时期,明朝时期数学家朱载堉的“借芝麻将军之名开设算术课”的做法,引发了全国的数学热潮,使中国数学进入了一个新的时代。
总的来说,中国古代数学的发展历程非常悠久,这个发展过程的关键在于它不仅继承发扬了古代数学遗产,而且还对数学的发展提供了自己的贡献,成为了中华民族数学文化的一部分。
随着时代的发展与进步,如今的中国数学正在不断发展壮大。
数说中囯数学内容

数说中囯数学内容
中国是世界上数学发展最早、最悠久的国家之一。
从先秦时期的《周髀算经》到现代的高等数学、数学物理、概率论等研究,中国数学的发展历史可以概括为以下几个时期:
1. 先秦时期:《周髀算经》是中国数学史上最早的著作之一,内容包括算术、几何和代数等方面。
《九章算数》和《数书九章》也是此时期的代表作。
2. 汉唐时期:唐朝数学家《算经六书》、李冶《数书九章》、刘徽《九章算法》、杨辉《详解九章算法》和祖冲之《张丘建算经注》等著作,奠定了中国古代数学的基础。
3. 宋元明清时期:在这个时期,中国数学逐渐进入到了一个全面发展的时期。
数学家秦九韶和杨辉等人所著的《数书九章》、《详解九章算法》等著作深刻阐述了像平方差分公式、杨辉三角、数学归纳法等理论,开创了新的数学研究方法。
明代的数学家朱权则把中国数学理论推向了新的高峰。
他发明了中国古代数学中最重要的代数学会——方程方法。
4. 现代时期:进入现代以后,中国数学不仅在应用数学也在纯数学上都有很大的发展。
中国的高等数学、数学物理、几何学等领域的学术成果也逐渐受到国际学术界的认可。
总体来说,中国数学在古代经历了一个漫长而辉煌的过程,远远超越了许多西方国家。
现代数学的发展中,中国在一些领域取得了很大的成就,但仍需要不断地创新和进步。
中国古代数学历史时间轴

中国古代数学历史时间轴中国古代数学历史时间轴可以按照以下方式来编写:公元前3000年至公元前2000年:中国古代数学的起源可以追溯到这个时期,这一时期主要是集约农业和城市的兴起,人们开始用计数来记录物品和人口数量。
公元前2000年至公元前1100年:在这个时期,古代中国数学逐渐发展起来,出现了较复杂的数学问题和计算方法。
人们开始使用约等于3.14的圆周率,提出了一些几何概念。
公元前1100年至公元前200年:这段时间被称为春秋战国时期,数学的发展呈现出蓬勃的态势。
出现了中国古代最早的数学著作《三经新义》,该书对数学的发展起到了重要作用。
公元前200年至公元220年:西汉时期,中国的数学进一步发展,出现了《九章算术》这一重要的数学著作。
这本著作包含了丰富的数学内容,如代数、几何等。
公元220年至公元280年:三国时期,数学研究出现衰退的迹象,但仍有一些重要贡献。
蜀汉的刘徽提出了一套整数解方程的方法。
公元280年至公元589年:北朝时期,数学的研究再次兴起。
北朝的贾宪斯编写了《数学九章》等数学著作,其中包含了代数和几何的内容。
公元589年至公元618年:隋朝时期,数学研究再次进入了一个高峰期。
数学家李淳风提出了一种新的作图法,被称为“刻径法”。
公元618年至公元907年:唐朝时期,中国古代数学达到了一个新的高度。
数学家祖冲之在此时期提出了无穷法和割圆术,对后世的数学研究产生了深远的影响。
公元907年至公元1127年:五代十国时期,数学研究陷入了低谷,但仍有一些数学著作被编写出来。
公元1127年至公元1368年:南宋时期,中国数学开始恢复并发展。
数学家秦九韶、李冶等提出了一些重要的数学方法和问题。
公元1368年至公元1644年:明清时期,中国古代数学进一步发展。
明代数学家朱世杰编写了《数术补遗》,对于几何学的发展做出了贡献。
以上是中国古代数学历史的一个简要时间轴,展现了中国古代数学在不同时期的发展与进步。
中国数学史简述

中国数学史简述摘要:一、古代数学的发展1.古代数学的起源2.春秋战国时期的数学家及成就3.汉代数学的繁荣二、中世纪数学的兴盛1.隋唐时期的数学家及成就2.宋元时期的数学繁荣3.数学著作的涌现三、近代数学的崛起1.明清时期的数学发展2.19世纪中后期的数学突破3.20世纪数学的迅速发展四、现代数学的辉煌1.20世纪下半叶的数学成就2.数学领域的分支及应用3.中国数学家的国际影响力正文:中国数学史是一部悠久而辉煌的历程,自古以来,数学便在中华大地生根发芽,茁壮成长。
古代数学的发展可追溯至远古时期,当时的先民们为了日常生活和生产需要,逐渐发现并掌握了简单的数学知识。
春秋战国时期,数学家如墨子、荀子等开始对数学进行系统性研究,为后世奠定了基础。
汉代数学家如张衡、刘洪等人在天文、算术等领域取得了举世瞩目的成就,如发明了浑天仪和编撰了《九章算术》。
进入中世纪,数学发展迎来了又一春。
隋唐时期,数学家如祖冲之、贾宪等人致力于数学研究,为宋元时期的数学繁荣奠定了基础。
宋元时期,如秦九韶、杨辉、李冶等众多数学家涌现,他们的研究成果如《数书九章》、《算法统宗》等成为数学史上的瑰宝。
近代数学的崛起始于明清时期,数学家如梅文鼎、汪莱等人继续拓展数学领域。
19世纪中后期,随着西方数学的传入,中国数学家逐渐接触到现代数学体系,如柯西、黎曼等数学家的理论为中国数学的发展提供了新的思路。
进入20世纪,中国数学家在各个领域取得了突破性成果,如华罗庚、陈省身在代数、几何等领域的研究。
现代数学辉煌时期,中国数学家在20世纪下半叶取得了举世瞩目的成就。
数学领域不断涌现出新分支,如计算机科学、信息论、混沌理论等,这些分支的发展为我国科技进步做出了巨大贡献。
此外,中国数学家在国际舞台上的影响力逐渐提升,如陈省身荣获菲尔兹奖等荣誉。
总之,中国数学史是一部充满智慧与创新的历程,古代的摸索、中世纪的繁荣、近代的崛起和现代的辉煌共同见证了中国数学家的不懈努力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国数学史中国数学史1. 中国数学从公元前后至公元14 世纪,先后经历了三次发展高潮,即___________ 、魏晋南北朝时期以及宋元时期,其中___________ 时期达到了中国古典数学发展的顶峰。
3.1 《周髀算经》与《九章算术》1. 《史记》“夏本纪”记载说:夏禹治水,“左规矩,右准绳”,这里的规是指________ ,矩则是指_____________ 。
2 “一尺之棰,日取其半,万世不竭”出自我国古代名著( ) 。
A. 《考工记》B. 《墨经》C. 《史记》D. 《庄子》3. 在现存的中国古代数学著作中,《________ 》是最早的一部。
卷上叙述的关于荣方与陈子的对话,包含了________ 的一般形式。
4 中国历史上最早叙述勾股定理的著作是《______ 》,中国历史上最早完成勾股定理证明的数学家是三国时期的______ 。
5 《九章算术》是从先秦至___________ 的长时期里经众多学者编撰、修改而成的一部数学著作。
6 、“九数”是指:方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要。
7 、《九章算术》就是从九数发展来的。
8 《九章算术》" 方田" 、" 商功" 、" 勾股" 三章处理几何问题。
其中" 方田" 章讨论_________ ," 勾股" 章则是关于_________ 。
9 《九章算术》的“少广”章主要讨论()。
A. 比例术B. 面积术C. 体积术D. 开方术10 《九章算术》内容丰富,全书共有________ 章,大约有________ 个问题。
11. 世界上讲述方程最早的著作是( )A. 中国的《九章算术》B. 阿拉伯花拉子米的《代数学》C. 卡尔丹的《大法》D. 牛顿的《普遍算术》12 《九章算术》中" 方程术" 的关键算法是"__________" ,实质上这就是我们今天所使用的解线性联立方程组的___________ 。
简答题《周髀算经》( 作者,成书年代,主要成就)简答题赵爽在《勾股圆方图》中是如何证明勾股定理的?古典算法(10 分) 《九章算术》中的“方程术”,其关键算法是“遍乘直除”。
请利用该“方程术”解答下面的问题:今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗;问上、中、下禾实一秉各几何?3.2 从刘徽到祖冲之 1. 刘徽数学成就中最突出的是________ 和________ 。
2. 我国古代数学家刘徽用来推算圆周率的方法叫术,用来计算面积和体积的一条基本原理是---- 原理。
3. 在中算史上,刘徽首先建立了可靠的理论来推算圆周率,他所算得的“徽率”是( ) 。
A.3.1B.3.14C.3.142D.3.14159264" 幂势既同,则积不容异" 的原理,其现代汉语意思是_________ ,_________ 。
是我国古代数学家____________ 首先明确提出的,在我国现行教材中叫做_________ ,在西方文献中称_________ 。
5. 世界上第一个把π计算到 3.1415926 <π< 3.1415927 的数学家是( )A. 刘徽B. 祖冲之C. 阿基米德D. 卡瓦列利6 祖冲之父子的主要数学成就是_ 圆周率计算和球体积公式.7 祖冲之的代表作是()A. 《考工记》B. 《海岛算经》C. 《缀术》D. 《缉古算经》8 祖冲之著《缀术》,关于圆周率的计算,他的“密率”(355/113)在世界上有着独特的地位。
关于球体积的计算,他指出“牟合方盖”与球体积之比才是圆与方的比。
更正了《九章算术》中关于球体积与外切等高圆柱体体积之比等于圆率与方率之比(:4)的错误。
9 、祖暅原理:“幂势既同,则积不容异。
”,求出牟合方盖的体积,给出了球体积的正确公式。
10 我国的数学教育有悠久的历史,____ 代开始在国子监中设立“算学”,____ 代则在科举考试中开设了数学科目,叫“明算科”。
11 下列数学著作中不属于“算经十书”的是( ) 。
A. 《数书九章》B. 《五经算术》C. 《缀术》D. 《缉古算经》12. 我国古代十部算经中年代最晚的一部( )A. 《孙子算经》B. 《张邱建算经》C. 《缉古算经》D. 《周髀算经》名词解释1. 牟合方盖2.阳马3祖氏原理. 简述祖冲之生活的朝代、代表著作以及在数学上的主要成就。
简述《算经十书》是指:《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缀术》、《五曹算经》、《缉古算经》。
试述祖氏父子在我国数学史上的重要地位和贡献。
论述题(10分)试述刘徽在我国数学史上的重要地位和贡献。
论述题(10分)3.3 宋元数学1 贾宪的高次开方法称为___________ 开方法,可适用于开任意高次方,而与此相联系的" 贾宪三角" ,在西方文献中则称为"___________ 三角" 。
2 北宋数学家贾宪,构造贾宪三角的“增乘方求廉法”是个创举。
3 “贾宪三角”实际上是将整指数二项式,n=0、1、2…的展开式的系数由上到下排成三角数表。
4 、增乘方求廉法可以直接推广到开方程序中,这就是增乘开方法,《详解九章算法细草》中贾宪设开4次方问题。
它是贾宪最大的贡献。
5 中国剩余定理是求解一次同余组的理论,发端于《孙子算经》的“物不知数”问题,由宋代数学家秦九韶完善。
6 隋代杰出的天文学家刘焯编写哪部著作时,创用等间距二次内插法公式(A )A .〈皇极历〉B.〈大衍历〉C.〈数书九章〉D.〈议古根源〉7 . 我国元代数学著作《四元玉鉴》的作者是( )A. 秦九韶B. 杨辉C. 朱世杰D. 贾宪8 元代杰出的数学家和数学教育家朱世杰的著作是(B)A .《算学启蒙》和《九章算术》B.〈算学启蒙〉和〈四元玉鉴〉C .〈四元玉鉴〉和〈九章算术〉D.〈算经十书〉和〈四元玉鉴〉9 《四元玉鉴》突出的数学创造有招差术垛积术和四元术.简答题简述我国宋元时期的数学成就.简答题1 什么是天元术?用天元式表示方程简答题2 什么是四元式?用四元式表示方程名词解释: 中国剩余定理的内容是什么?古典算法(10 分) 请利用“中国剩余定理”解决下面的问题:今有物,不知其数。
五、五数之,剩二;七、七数之剩三;九、九数之,剩五。
问物几何?1 、中国传统数学的突出成就主要有哪些?( 1 )筹算、筹算与十进位制计数法;( 2 )分数理论:( 3 )率的理论;(4 )正负数的加减乘除法则;( 5 )线性方程租解法;(6 )设未知数列方程及高次方程数值解法;(7 )多元高次方程组解法(8 )高阶等差级数求和(9 )一次同余式解法(10 )勾股定理、重差理论(11 )无穷小分割和极限思想证明面积和体积公式(12 )珠算技术等。
2 、中国最早的计算工具是算筹。
3 、中国古代的测绘工具是规、矩。
4 、算筹计数法:5 、“九数”是指:方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要。
6 、《九章算术》就是从九数发展来的。
7 、《墨经》是诸子百家中阐述自然科学理论和学说最丰富的著作。
8 、《墨经》中的几何定义:平行线:“平,同高也”——两线间高相等,叫平。
同长:“同长,已正相尽也”——如果两条线段重合,就叫同长。
中点:“中,同长也”——到线段两端的距离相同的点叫中点。
圆:“圆,一中同长也”。
——到一中心距离相同的图形叫圆。
直:“直,参也”——以三点共线定义直。
点:“端,体之无厚,而最前者也”——点不可分。
“端,是无间也”。
——点,没有空隙。
9 、《墨经》中的逻辑思想十分丰富:“小故,有之不必然,无之必不然。
大故,有之必然。
”大故是“充分条件”,小故是“必要条件”。
10 、《墨经》中的无限分割思想:端:通过无限分割,而最终分到一个无可再分的“端”。
11 、“一尺之棰,日取其半,万事不竭”。
出自《庄子. 天下篇》。
12 、《周易》中所包含的数学思想有:(1 )组合数学的萌芽(2 )二进制(3 )坐标系思想。
13 、《周髀算经》是中国最早的一部天文、数学著作。
14 、勾股定理出自《周髀算经》。
15 、赵爽在《勾股圆方图》中是如何证明勾股定理的?16 、《九章算术》的主要内容以及历史地位及其影响?主要内容为:“方田”章、“粟米”章、“衰分”章、“少广”章、“商功”章、“均输”章、“赢不足”章、“方程”章、“勾股”章。
(1 )《九章算术》在中国数学史上的地位和影响①《九章算术》为中国古代数学著作提供了编撰创作的范例和样板。
②《九章算术》已经建立了中国古代数学的基本框架。
③《九章算术》奠定了中国古代数学教育体系的基础,形成了中国古代数学教育内容体系的特点:开放的归纳应用体系和算法化的内容。
(2 )《九章算术》在世界数学史上的地位和影响①《九章算术》决定了世界数学研究重心由地中海沿岸的希腊地区转换到了太平洋西海岸的华夏大地。
②《九章算术》标志着数学研究的对象和成果形态的改换,对世界数学的发展起着十分重大的作用。
17 、《九章算术》提出了一系列完整的分数运算法则:合分术——分数加法法则;减分术——分数减法法则;乘分术——分术乘法法则;经分术——分数除法法则。
此外,还有课分术——比较分数大小的方法;平分术——求分数平均值的办法。
18 、《九章算术》中的“更相减损求等”法与欧几里得《几何原本》求最大公约数发基本一致。
用“更相减损求等”法求49 和91 的最大公约数。
19 、赢不足算法的方法论意义是什么?赢不足是我国古代独立的创造,是指也是RMI 的表现:即给定一个含有目标原象x 的关系结构S ,如果能找到一个可定映映射,将S 映入或映满S* ,则可从S* 通过一定的数学方法(定映手续)把目标映射X*= (x )确定出来,进而通过反演又可把x= (x*) 确定出来,这样原来的问题就得到了解决。
20 、最早的不定方程问题出自《九章算术》。
21 、刘徽的主要贡献表现在哪些方面?( 1 )刘徽发展了《九章算术》中“率”的概念,提出律师算法之“纲纪”,发展了出入相补原理;( 2 )解决了若干多变形面积和多面体体积问题,证明了勾股、测望的若干公式;他发展了重差方法,解决若干可望不可及的复杂测望问题;(3 )在证明圆面积公式和锥体体积公式时,他引入了无穷小分割和极限的思想,他把四面体体积看成解多面体体积问题的核心,将多面体体积理论建立在无穷小分割的基础上的思想,与现代数学的思想相契合;(4 )它在中国首次提出了计算圆周率近似值的正确方法,求出了=157/50 (又称徽率)和=3927/1250 两个圆周率。