时间序列分析(实验指导)

合集下载

时间序列分析实验报告(3)

时间序列分析实验报告(3)

时间序列分析实验报告(3)《时间序列分析》课程实验报告⼀、上机练习(P124)1.拟合线性趋势12.79 14.02 12.92 18.27 21.22 18.8125.73 26.27 26.75 28.73 31.71 33.95data a;input gov_cons@@;time=intnx('year','1jan1981'd,_n_-1);format time year2.;t=_n_;cards;12.79 14.02 12.92 18.27 21.22 18.8125.73 26.27 26.75 28.73 31.71 33.95;proc gplot;plot gov_cons*time=1;symbol1c=black v=star i=join;run;proc autoreg;model gov_cons=t;output out=out p=forecast;proc gplot data=out;plot gov_cons*time=1 forecast*time=2/overlay haxis='1jan1981'd to '1jan1993'd by year;symbol2c=red v=none i=join w=2l=3;run;分析:由上图可得DW的统计量等于2.7269,R⽅等于0.9555,SBC的值为48.3900913,AIC的值为47.420278.⼀元线性模型的截距等于9.7086,系数等于1.9829,且P<0.0001,故拒绝原假设,存在显著的线性关系。

2.拟合⾮线性趋势1.85 7.48 14.29 23.02 37.42 74.27 140.72265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95data b;input index@@; time=intnx('year','1jan1991'd,_n_-1);format time year2.;t=_n_;t2=t**2;cards;1.85 7.48 14.29 23.02 37.42 74.27 140.72265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95;proc gplot;plot index*time=1;symbol1c=black v=star i=join;proc reg;model index=t t2;model index=t2;output out=out p=index_cup;proc gplot data=out;plot index*time=1 index_cup*time=2/overlay ; symbol2 c =red v =none i =join w =2 l =3; run ;分析:⽅差结果显⽰,8435.02=R ,说明因变量84.35%由模型确定,P<0.0001,所以模型显著。

实验5时间序列分析解析

实验5时间序列分析解析

实验五时间序列分析【实验项目】419023003-05【实验目的与要求】1、掌握利用Excel和SPSS软件进行移动平均、滑动平均的基本方法2、掌握利用Excel和SPSS软件进行自相关分析和自回归分析的基本方法【实验内容】1、移动平均法2、滑动平均法3、自相关分析4、自回归分析【实验步骤】时间序列,也叫时间数列或动态数列,是要素(变量)的数拯按照时间顺序变动排列而形成的一种数列,它反映了要素(变虽:)随时间而变化的发展过程。

常规时间序列分析方法包括移动平均法、滑动平均法、指数平滑法、自回归分析方法。

本实验以教材P75表331 “某地区1990-2004年粮食产量”说明应用Excel和SPSS软件进行移动平均、滑动平均、指数平滑和自回归分析的基本方法。

在实验之前需要将表3.3」录入到Excel里(表5.1)o表5」某地区1990-2004一、移动平均法(-)应用Excel进行移动平均计算在“数据分析”里可以直接进行计算操作步骤1、打开表5」。

2、【工具】一【数据分析】一【移动平均】,在弹出的“移动平均”对话框中,分别作如图5」和图5.2的设置:图5.1 “移动平均”对话框(三点移动)图5.2 “移动平均”对话框(五点移动)3、在原数据表格的C1和D1单元格分別输入“三点移动平均”和“五点移动平均”(图53),得到“三点移动平均”和“五点移动平均"计算结果(注意和教材中的结果进行比较)。

(二)应用SPSS进行移动平均计算操作步骤1、启动SPSS,打开表5.1。

2、【转换】一【创建时间序列】,在弹出的“创建时间序列”对话框中,“函数”选项列举了创建新变量的方法,苴中“先前移动平均”即为通常所说的“移动平均",“中心移动平均则为•'滑动平均S图5.4 “创建时间序列”对话框“函数”选项3、在“创建时间序列”对话框“函数”选项中选择“先前移动平均”,在"跨度”方框中填写“3”,然后将“粮食产疑”通过箭头输入到右边的"变量:新名称”中,再在'‘爼称”方框中改成“粮食产捲三点移动”,点击“更改”按钮。

时间序列分析实验指导

时间序列分析实验指导

时间序列分析实验指导时间序列分析是一种常用的统计方法,用于分析时间上的变化趋势和周期性变化。

它能够帮助我们预测未来的趋势和判断时间序列数据之间的因果关系。

本文将详细介绍进行时间序列分析的实验指导,包括实验准备、数据处理和模型建立等内容。

一、实验准备1. 确定实验目标:首先需要确定想要分析的时间序列的目标,如销售额、股票价格等。

明确实验目标有助于确定实验的方向和方法。

2. 数据采集:根据实验目标,选择合适的数据源,并采集相关数据。

常见的数据源包括数据库、API接口和互联网上的公开数据等。

3. 数据预处理:对采集到的数据进行预处理,包括数据清洗、填补缺失值和去除异常值等操作。

确保数据的准确性和一致性。

二、数据处理1. 数据可视化:将采集到的数据进行可视化,以便更好地理解数据的特征和变化趋势。

可以通过绘制时间序列图、箱线图和自相关图等方式进行数据可视化。

2. 数据平稳化:时间序列分析要求数据是平稳的,即均值和方差不随时间变化。

如果数据不平稳,需要进行平稳化处理。

常见的平稳化方法包括差分和对数变换。

3. 自相关性检验:利用自相关函数(ACF)和偏自相关函数(PACF)来检验数据的自相关性。

分析自相关系数的大小和延迟的时间间隔,判断是否存在显著的自相关关系。

4. 白噪声检验:利用残差的自相关函数和偏自相关函数来检验数据是否为白噪声。

如果数据是白噪声,说明数据中不存在周期性和趋势,不适合进行时间序列分析。

三、模型建立1. 模型选择:根据数据的特征和目标确定合适的时间序列模型。

常见的时间序列模型包括AR模型、MA模型、ARMA模型和ARIMA模型等。

2. 参数估计:对选择的模型进行参数估计,可以使用极大似然估计、最小二乘法或贝叶斯估计等方法。

3. 模型诊断:对模型进行诊断,判断模型的拟合程度和残差的性质。

可以使用残差自相关函数和偏自相关函数来检验模型的拟合优度。

4. 模型预测:利用已建立的模型对未来的数据进行预测。

时间序列分析实验报告

时间序列分析实验报告

引言概述:
时间序列分析是一种用于研究时间数据的统计方法,主要关注数据随时间的变化趋势、季节性和周期性等特征。

时间序列分析应用广泛,可以用于金融预测、经济分析、气象预测等领域。

本实验报告旨在介绍时间序列分析的基本概念和方法,并通过实例分析来展示其应用。

正文内容:
1.时间序列分析基本概念
1.1时间序列的定义
1.2时间序列的模式
1.3时间序列分析的目的
2.时间序列分析方法
2.1随机游走模型
2.2移动平均模型
2.3自回归移动平均模型
2.4季节性模型
2.5ARCH和GARCH模型
3.时间序列数据预处理
3.1数据平稳性检验
3.2数据平滑
3.3缺失值填补
3.4离群值检测
3.5数据变换
4.时间序列模型建立与评估
4.1模型的选择
4.2参数估计
4.3拟合优度检验
4.4模型诊断
4.5预测准确性评估
5.实例分析:某公司销售数据时间序列分析
5.1数据收集与预处理
5.2模型建立与评估
5.3预测分析与结果解释
5.4预测精度评估
5.5结果讨论与进一步改进方向
总结:
时间序列分析是一种重要的统计方法,可用于预测和分析时间相关的数据。

本报告介绍了时间序列分析的基本概念和方法,并通
过实例分析展示了其应用过程。

通过时间序列分析,可以更好地理解数据的趋势和周期性,并进行准确的预测。

时间序列分析也面临着多样的挑战,如数据质量问题和模型选择困难等。

因此,在实际应用中,需要综合考虑多种因素,灵活运用合适的方法和技巧,以提高预测准确性和分析可靠性。

时间序列分析实验指导范文

时间序列分析实验指导范文

时间序列分析实验指导范文分析时间序列数据是一种常见的数据分析方法,它可以帮助我们识别和预测数据中的趋势和模式。

本实验将介绍如何进行时间序列分析,并使用ARIMA模型来预测未来的数据。

一、实验目的:掌握时间序列数据的分析方法,了解ARIMA模型的应用。

二、实验步骤:1. 数据准备从可靠的数据源获取时间序列数据,确保数据的完整性和准确性。

将数据保存为csv格式以便分析。

2. 数据预处理对时间序列数据进行必要的预处理,如去除缺失值、异常值处理等。

可以使用Python中的pandas库进行数据清洗。

3. 数据可视化使用Python中的matplotlib库绘制时间序列数据的折线图,观察数据的整体趋势和周期性。

4. 模型拟合利用ARIMA模型对时间序列数据进行拟合。

ARIMA模型包括自回归(AR)、差分(I)和移动平均(MA)三个组成部分。

根据数据的特点选择合适的参数来进行模型的训练。

5. 模型诊断对拟合的ARIMA模型进行诊断,检查模型的残差是否满足平稳性、独立性和正态分布性等假设。

可以绘制残差的自相关图和偏自相关图进行检验。

6. 模型预测使用训练好的ARIMA模型对未来的数据进行预测。

可以通过Python中的statsmodels库来实现。

7. 结果评估对模型预测的结果进行评估,比较预测值和实际值的差异。

可以计算预测误差的均方根误差(RMSE)或平均绝对误差(MAE)来评估模型的精度。

三、实验注意事项:1. 根据数据的性质选择合适的时间序列模型,不同的数据可能需要不同的模型来进行拟合和预测。

2. 在进行时间序列分析之前,需要对数据进行充分的了解,包括数据的来源、采集方法等,以确保数据的可靠性。

3. 在进行ARIMA模型的拟合时,可以通过调整模型的参数来提高模型的拟合度和预测精度。

四、实验总结:时间序列分析是一种常用的数据分析方法,可用于预测未来的数据趋势和模式。

通过本实验,我们学习了如何进行时间序列分析,并使用ARIMA模型对未来的数据进行预测。

新大计量地理学实验指导04时间序列分析

新大计量地理学实验指导04时间序列分析

用 SPSS 统计软件学会建立时间序列新变量方法时间序列,也叫时间数列或动态数列,是要素(变量) 的数据按照时间顺序变动排列而形成的一种数列,它反映了要素(变量) 随时间变化的发展过程。

地理过程的时间序列分析,就是通过分析地理要素(变量) 随时间变化的历史过程,揭示其发展变化规律,并对其未来状态进行预测。

在描述实际中出现的某些问题时,一种非常有用的随机模型就是自回归模型 (Autoregression) .在该模型中,过程的当前值被表示过程的有穷线性组合在加上一个重击e t .我们用X t,X t- 1,X t-2,… ,记在等间隔时间t,t- 1,t-2,…上的过程值。

此外,用Z t,Z t- 1,Z t-2,…,记关于均值u 的偏差,即Z t=X t-u 。

则:Z t=φ1Z t- 1+φ2Z t-2+…+φp Z t-p+e t便叫做为P阶自回归(AR)过程,当P=1时,称为一阶自回归模型。

1) 定义变量,建立数据文件并输入数据,至少要有一个变量。

打开Data 菜单中的DefineDates 对话框,定义时间序列的周期。

采用Transform 菜单中的Create Time Series 的方法,建立一个时间序列的新的变量。

2) 按Analyze ⇒ Time series ⇒ Autoregression 顺序展开相应的对话框。

3) 选择一个因变量,将其移到Dependent 框。

选择一个或多个自变量移到independent(s)框。

在Media 栏中,从三种方法中选择一种预测方法。

如果在回归方程中不需要包括常数项,可不选Include constant in model 复选项。

4) 单击Save 按钮展开保存对话框,在对话框中选择计算结果存放方式。

O 在Create Variables 栏中给出今Add to file 选项,将新建变量存放在原数据文件中,是系统默认的。

今Replace existing 选项,用新建变量数据替代数据文件中原先存在的计算结果。

时间序列分析(实验指导)

时间序列分析(实验指导)

时间序列分析(实验指导)时间序列分析实验指导随着计算机技术的飞跃发展以及应⽤软件的普及,对⾼等院校的实验教学提出了越来越⾼的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对⼤学⽣动⼿能⼒的培训和创新思维的培养,注重学⽣知识、能⼒、素质的综合协调发展。

为此,我们组织统计与应⽤数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的⼤量经济案例紧密联系我国的经济发展实际,有利于提⾼学⽣分析问题解决问题的能⼒。

②理论教学与应⽤软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使⽤⽅法,有利于提⾼学⽣建⽴数学模型并能正确求解的能⼒。

这套实验教学指导书在编写的过程中始终得到安徽财经⼤学教务处、实验室管理处以及统计与应⽤数学学院的关⼼、帮助和⼤⼒⽀持,对此我们表⽰衷⼼的感谢!限于我们的⽔平,欢迎各⽅⾯对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中⼼ 2007年2⽉⽬录实验⼀ EVIEWS中时间序列相关函数操作 ·································· - 1 - 实验⼆确定性时间序列建模⽅法··············································· - 8 - 实验三时间序列随机性和平稳性检验 ····································· - 18 - 实验四时间序列季节性、可逆性检验 ····································· - 21 - 实验五 ARMA模型的建⽴、识别、检验 ···································· - 27 - 实验六 ARMA模型的诊断性检验 ················································ - 30 - 实验七 ARMA模型的预测···························································· - 31 - 实验⼋复习ARMA建模过程······················································· - 33 - 实验九时间序列⾮平稳性检验 ················································· - 35 -实验⼀ EVIEWS中时间序列相关函数操作【实验⽬的】熟悉Eviews的操作:菜单⽅式,命令⽅式;练习并掌握与时间序列分析相关的函数操作。

时间序列分析实验指导书

时间序列分析实验指导书

《时间序列分析》实验指导书一、实验教学简介«时间序列分析»是统计学本科专业的专业必修课,同时也是核心课程,尤其强调理论与实践的有机结合。

实验教学是该课程教学中的重要组成部分。

实验教学的主要内容有:时间序列平稳性检验和纯随机性检验;平稳时间序列的建模;非平稳时间序列的确定性模型的识别;建立ARIMA 模型;残差序列的建模;单位根检验和协整检验。

本课程实验教学主要采用国际权威统计软件—SAS 软件进行统计分析,实验数据来自国内外优秀教材、各类统计年鉴、教师科研课题的部分数据、国内外专业期刊等二、实验教学目的与任务通过本课程的实验教学,要使学生对时间序列的基本概念、基本原理、基本方法有直观的认识,能熟练应用时间序列分析处理动态数据,培养学生利用时间序列分析对社会经济现象及自然现象作定量分析的能力,掌握时间序列分析的统计思想,以此提高学生解决实际问题的基本素质,锻炼学生的动手能力、独立思考能力和团队合作能力。

三、实验内容与基本要求实验一、时间序列平稳性检验和纯随机性检验(验证性实验) (3课时)实验题目:1945-1950年费城月度降雨量数据如下(单位:mm ),见下表。

9.3 80.0 40.9 74.9 84.6 101.1 225.0 95.3 100.6 48.3 144.5 128.338.4 52.3 68.6 37.1 148.6 218.7 131.6 112.8 81.8 31.0 47.5 70.196.8 61.5 55.6 171.7 220.5 119.4 63.2 181.6 73.9 64.8 166.9 48.0137.7 80.5 105.2 89.9 174.8 124.0 86.4 136.9 31.5 35.3 112.3 143.0160.8 97.0 80.5 62.5 158.2 7.6 165.9 106.7 92.2 63.2 26.2 77.052.3 105.4 144.3 49.5 116.1 54.1 148.6 159.3 85.3 67.3 112.8 59.4(1) 计算该序列的样本自相关系数k ∧ρ(k=1,2,……,24)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列分析实验指导随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心 2007年2月目录实验一 EVIEWS中时间序列相关函数操作 ·································· - 1 - 实验二确定性时间序列建模方法 ··············································· - 8 - 实验三时间序列随机性和平稳性检验 ····································· - 18 - 实验四时间序列季节性、可逆性检验 ····································· - 21 - 实验五 ARMA模型的建立、识别、检验 ···································· - 27 - 实验六 ARMA模型的诊断性检验 ················································ - 30 - 实验七 ARMA模型的预测···························································· - 31 - 实验八复习ARMA建模过程······················································· - 33 - 实验九时间序列非平稳性检验 ················································· - 35 -实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

【实验内容】一、EViews软件的常用菜单方式和命令方式;二、各种常用差分函数表达式;三、时间序列的自相关和偏自相关图与函数;【实验步骤】一、EViews软件的常用菜单方式和命令方式;㈠创建工作文件⒈菜单方式启动EViews软件之后,进入EViews主窗口在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。

选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日期,然后点击OK按钮,将在EViews 软件的主显示窗口显示相应的工作文件窗口。

工作文件窗口是EViews的子窗口,工作文件一开始其中就包含了两个对象,一个是系数向量C(保存估计系数用),另一个是残差序列RESID(实际值与拟合值之差)。

⒉命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。

命令格式为:CREATE 时间频率类型起始期终止期则菜单方式过程可写为:CREATE A 1985 1998㈡输入Y、X的数据⒈DATA命令方式在EViews软件的命令窗口键入DATA命令,命令格式为:DATA <序列名1> <序列名2>…<序列名n>本例中可在命令窗口键入如下命令:DATA Y X⒉鼠标图形界面方式在EViews软件主窗口或工作文件窗口点击Objects/New Object,对象类型选择Series,并给定序列名,一次只能创建一个新序列。

再从工作文件目录中选取并双击所创建的新序列就可以展示该对象,选择Edit+/-,进入编辑状态,输入数据。

㈢生成log(Y)、log(X)、X^2、1/X、时间变量T等序列在命令窗口中依次键入以下命令即可:GENR LOGY=LOG(Y)GENR LOGX=LOG(X)GENR X1=X^2GENR X2=1/XGENR T=@TREND(84)㈣选择若干变量构成数组,在数组中增加变量。

在工作文件窗口中单击所要选择的变量,按住Ctrl键不放,继续用鼠标选择要展示的变量,选择完以后,单击鼠标右键,在弹出的快捷菜单中点击Open/as Group,则会弹出数组窗口,其中变量从左至右按在工作文件窗口中选择变量的顺序来排列。

在数组窗口点击Edit+/-,进入全屏幕编辑状态,选择一个空列,点击标题栏,在编辑窗口输入变量名,再点击屏幕任意位置,即可增加一个新变量。

增加变量后,即可输入数据。

点击要删除的变量列的标题栏,在编辑窗口输入新变量名,再点击屏幕任意位置,弹出RENAME对话框,点击YES按钮即可。

㈤在工作文件窗口中删除、更名变量。

⒈在工作文件窗口中选取所要删除或更名的变量并单击鼠标右键,在弹出的快捷菜单中选择Delete(删除)或Rename(更名)即可⒉在工作文件窗口中选取所要删除或更名的变量,点击工作文件窗口菜单栏中的Objects/Delete selected…(Rename selected…),即可删除(更名)变量⒊在工作文件窗口中选取所要删除的变量,点击工作文件窗口菜单栏中的Delete按钮即可删除变量。

相关文档
最新文档