第四章蛋白质
合集下载
第四章 蛋白质的功能【生物化学】

• 153个氨基酸残基的多肽主链 • 由长短不等的8段直ɑ-螺旋组 成(A,B,C,D,E,F,G,H) • 螺旋段间为自由卷曲,相应的 非螺旋区段(也称拐弯)为 NA(N-末端区段)、AB、 BC…FG、GH、HC (C-末端区 段)。其中4个脯氨酸各处于一 个拐弯处。Ser, Thr, Asn, lle处于 其余4个拐弯处; • 整个分子分成两层,构成其单 结构域。
卟啉环 血红素
卟啉的充填模型
氧可以与血红素辅基结合
蛋白质不能与氧发生可逆结合, 而是通过与原卟啉Ⅸ固定的铁原 子来进行的 原卟啉Ⅸ与Fe的络合物铁原卟 啉Ⅸ称血红素,血红素位于肌红 蛋白分子的一个沟缝中。 卟啉环的中心亚铁原子只有六 个配位键,四个与平面的卟啉环 的氮原子结合,另外两个与卟啉 平面垂直 配体的4个氮原子有助于抑制 血红素铁原子转变为三价态。亚 铁可以可逆地结合氧,三价铁则 不能结合氧。
氧与肌红蛋白的结合
氧结合部位
亚铁离子的第5配位键与肌红蛋 白组氨酸残基(His F8)(近侧) 的咪唑N结合 如果Fe以三价存在,Fe3+将与水 结合而不能再与氧结合,血红素周围 的疏水环境能保护Fe2+不被氧化成 Fe3+ 远侧组氨酸残基为E7,其咪唑环N 能与O2分子相互作用,使O2分子夹 在Fe和咪唑环中间的空间位阻区域。
Hb含4个血红素辅基,能结合4个O2。Hb中作为氧结合部位的空穴与 Mb中的极相似, 它们都有两个关键的His残基(E7和F8)和两个疏水残基 (Phe-CDl和Leu-F4)。
血红蛋白(Hb)的三维结构
四个氧的结合部位彼此保 持一定的距离 两个不同亚基间即α1β2 或α2β1间作用力大而α α或β β间作用力小.
血红蛋白的结构与功能
第四章蛋白质的共价结构

三字母符号时,氨基酸之间用连字符(-)或(· )隔开。
• 一级结构的全部内容包括: 多肽链数目、氨基酸组成、氨基酸顺序、连接方式、 二硫键的数目和位置、非氨基酸成分等
自1953年Sanger F.报道了牛胰岛素两条多肽链 的氨基酸序列以来,已有100,000多个不同蛋白质 的氨基酸序列被测定(简称蛋白质测序)。
蛋白质的一级结构研究
研究一级结构需要阐明的内容: • 1)蛋白质分子的多肽链数目。 • 2)每条肽链的末端残基种类。 • 3)每条肽链的氨基酸顺序。 • 4)链内或链间二硫键的配置等。
测定蛋白质的一级结构的主要意义: • 一级结构是研究高级结构的基础。 • 可以从分子水平阐明蛋白质的结构与功能的关系。 • 可以为生物进化理论提供依据。 • 可以为人工合成蛋白质提供参考顺序。
CH C
N
CH COO -
O
Peptide bond
* 两分子氨基酸缩合形成二肽,三分子氨基酸 缩合则形成三肽……
* 由二十个以内氨基酸相连而成的肽称为寡肽 (oligopeptide),由更多的氨基酸相连形成的 肽称多肽(polypeptide)。
* 肽链中的氨基酸分子因为脱水缩合而基团不全, 被称为氨基酸残基(residue)。
R2 O
R3 O
H2N CH C HN CH C HN CH C
N端
氨基酸残基 氨基酸残基
肽链书写方式:N端→C端 肽链有链状、环状和分支状。
Rn O HN CH COH
C端
命名:根据氨基酸组成,由N端→C端命名
O
O
H3C CH C HN CH2 C HN CH COOH
NH2
CH2
CH H3C CH3
蛋白质的一级结构是指蛋 白质多肽链中氨基酸的排 列顺序,包括二硫键的位 置。其中最重要的是多肽 链的氨基酸顺序,它是蛋 白质生物功能的基础。
• 一级结构的全部内容包括: 多肽链数目、氨基酸组成、氨基酸顺序、连接方式、 二硫键的数目和位置、非氨基酸成分等
自1953年Sanger F.报道了牛胰岛素两条多肽链 的氨基酸序列以来,已有100,000多个不同蛋白质 的氨基酸序列被测定(简称蛋白质测序)。
蛋白质的一级结构研究
研究一级结构需要阐明的内容: • 1)蛋白质分子的多肽链数目。 • 2)每条肽链的末端残基种类。 • 3)每条肽链的氨基酸顺序。 • 4)链内或链间二硫键的配置等。
测定蛋白质的一级结构的主要意义: • 一级结构是研究高级结构的基础。 • 可以从分子水平阐明蛋白质的结构与功能的关系。 • 可以为生物进化理论提供依据。 • 可以为人工合成蛋白质提供参考顺序。
CH C
N
CH COO -
O
Peptide bond
* 两分子氨基酸缩合形成二肽,三分子氨基酸 缩合则形成三肽……
* 由二十个以内氨基酸相连而成的肽称为寡肽 (oligopeptide),由更多的氨基酸相连形成的 肽称多肽(polypeptide)。
* 肽链中的氨基酸分子因为脱水缩合而基团不全, 被称为氨基酸残基(residue)。
R2 O
R3 O
H2N CH C HN CH C HN CH C
N端
氨基酸残基 氨基酸残基
肽链书写方式:N端→C端 肽链有链状、环状和分支状。
Rn O HN CH COH
C端
命名:根据氨基酸组成,由N端→C端命名
O
O
H3C CH C HN CH2 C HN CH COOH
NH2
CH2
CH H3C CH3
蛋白质的一级结构是指蛋 白质多肽链中氨基酸的排 列顺序,包括二硫键的位 置。其中最重要的是多肽 链的氨基酸顺序,它是蛋 白质生物功能的基础。
蛋白质

pH=9 -
pH>ppIH=pI
4.2 基本结构单位——氨基酸
阴离子 pI= ½ (pKn+pKn+1) = ½ (2.34+9.60) = 5.97
两性离子
阳离子
甘氨酸的滴定曲线
4.2 基本结构单位——氨基酸
光学性质
280nm吸收值的测定是蛋 白质定量最常用的方法
芳香族氨基酸 的紫外吸收谱
4.2 基本结构单位——氨基酸
4.3 肽
四肽的形成
4.3 肽
肽的结构和表示法
肽键 性质相当于双键 酰胺平面
氨基端 或N端
多肽链中的氨基酸单位称为氨基酸残基 主链:氨基酸由肽键连接成的长链骨架 侧链:各氨基酸残基的R基团
羧基端 或C端
4.3 肽
中文表示法:从肽链的N端开始,对氨基酸残基逐一命名, 残基称氨酰,如:甲硫氨酰天冬氨酰亮氨酰酪氨酸 三字母表示法: Met-Asp-Leu-Tyr 或 Met.Asp.Leu.Tyr 单字母表示法:MDLY
4.4 蛋白质的分子结构
蛋白质的分子结构
4.4 蛋白质的分子结构
蛋白质的一级结构及其测定 蛋白质的分子构象 蛋白质分子结构与功能的关系
4.4 蛋白质的分子结构
蛋白质的一级结构及其测定 蛋白质的一级结构
指蛋白质分子中氨基酸残基的连接方式和排列 顺序。包括肽链的数目、端基的组成、氨基酸 的排列和二硫键的位置等,又称化学结构
表示法 三字母表示法 单字母表示法 标注二硫键
牛胰岛素
4.4 蛋白质的分子结构
蛋白质一级结构的测定
蛋白质制剂的纯化 活性蛋白质(未变性蛋白质)分子量测定 活性蛋白质肽链数的测定和分离 氨基酸序列测定
蛋白质的稳定性和稳定化

A
B
C
A.用多功能试剂交联;B.共价或非共价连于载体上 C.包埋到载体的紧密孔中
二、非共价修饰
反相胶束 添加剂
蛋白质间非共价相连,形成的多聚体或者
聚合体的活力和稳定性常比单体高
反胶束是由两性化合物在占优势的有机相中形 成的。它不仅可以保护酶,还能提高酶活力, 改变酶的专一性。
反相胶束示意图
固定化可通过下列效应影响酶的稳定性:
空间障碍:由于空间障碍可以防止蛋白水解
酶的作用,阻挡酶与化学失活剂的接触,同时
阻碍氧向酶的扩散可以保护对氧不稳定的酶
扩散机制: 使酶发生交联或包埋在载体紧
密的孔中可以使酶的构象更加坚牢,从而阻止
酶构象从折叠态向伸展态过渡。
一 酶固定到载体上后可产生空间障碍,结果其他大
质信息进行基因和蛋白质序列的改造, 通过定
点突变使得所表达的蛋白质产生相应的特征改
变。
组合设计(combinational design)
和数据驱动设计(data-driven design)
是另外两种最新的可以提高蛋白质稳定
性的蛋白质工程技术。
组合设计:
是通过一种策略使得在基因水平上产生 差异化,同时,通常需要大量的高通量筛选 来鉴别设计是否获得成功。组合设计方法的 目标在于通过在蛋白质随机位点引入随机突
进化目的的一种技术。
随着突变方法、突变体高通量筛选技术、基因结
构与功能研究的突破,特别是PCR 技术的进一步
成熟,DNA 改组技术(DNA shuffling)更加成熟,
使得DNA 改组成为蛋白质体外分子进化的主流技
术。
DNA 改组技术具有许多重要优点, 例如不需要
事先了解结构信息,也不需要了解蛋白质的功能
第四章__蛋白质--王镜岩《生物化学》第三版笔记(完美打印版)

侧链含有羧基:Asp(D), Glu(E)
侧链含酰胺基:Asn(N), Gln(Q)
侧链显碱性:Arg(R), Lys(K)
2.芳香族氨基酸 包括苯丙氨酸(Phe,F)和酪氨酸(Tyr,Y)两种。 酪氨酸是合成甲状腺素的原料。
3.杂环氨基酸 包括色氨酸(Trp,W)、组氨酸(His)和脯氨酸(Pro)三种。其中的色氨酸与芳香族氨基酸都含苯环,都有紫外吸收(280nm)。所以可通过测量蛋白质的紫外吸收来测定蛋白质的含量。组氨酸也是碱性氨基酸,但碱性较弱,在生理条件下是否带电与周围内环境有关。它在活性中心常起传递电荷的作用。组氨酸能与铁等金属离子配位。脯氨酸是唯一的仲氨基酸,是α-螺旋的破坏者。
B是指Asx,即Asp或Asn;Z是指Glx,即Glu或Gln。
基本氨基酸也可按侧链极性分类:
非极性氨基酸:Ala, Val, Leu, Ile, Met, Phe, Trp, Pro共八种
极性不带电荷:Gly, Ser, Thr, Cys, Asn, Gln, Tyr共七种
带正电荷:Arg, Lys, His
二、蛋白质的分类
(一)按分子形状分类
1.球状蛋白 外形近似球体,多溶于水,大都具有活性,如酶、转运蛋白、蛋白激素、抗体等。球状蛋白的长度与直径之比一般小于10。
2.纤维状蛋白 外形细长,分子量大,大都是结构蛋白,如胶原蛋白,弹性蛋白,角蛋白等。纤维蛋白按溶解性可分为可溶性纤维蛋白与不溶性纤维蛋白。前者如血液中的纤维蛋白原、肌肉中的肌球蛋白等,后者如胶原蛋白,弹性蛋白,角蛋白等结构蛋白。
三.蛋白质的结构
一级结构 结构特点、测定步骤、常用方法、酶
二级结构 四种 结构特点、数据、超二级结构
侧链含酰胺基:Asn(N), Gln(Q)
侧链显碱性:Arg(R), Lys(K)
2.芳香族氨基酸 包括苯丙氨酸(Phe,F)和酪氨酸(Tyr,Y)两种。 酪氨酸是合成甲状腺素的原料。
3.杂环氨基酸 包括色氨酸(Trp,W)、组氨酸(His)和脯氨酸(Pro)三种。其中的色氨酸与芳香族氨基酸都含苯环,都有紫外吸收(280nm)。所以可通过测量蛋白质的紫外吸收来测定蛋白质的含量。组氨酸也是碱性氨基酸,但碱性较弱,在生理条件下是否带电与周围内环境有关。它在活性中心常起传递电荷的作用。组氨酸能与铁等金属离子配位。脯氨酸是唯一的仲氨基酸,是α-螺旋的破坏者。
B是指Asx,即Asp或Asn;Z是指Glx,即Glu或Gln。
基本氨基酸也可按侧链极性分类:
非极性氨基酸:Ala, Val, Leu, Ile, Met, Phe, Trp, Pro共八种
极性不带电荷:Gly, Ser, Thr, Cys, Asn, Gln, Tyr共七种
带正电荷:Arg, Lys, His
二、蛋白质的分类
(一)按分子形状分类
1.球状蛋白 外形近似球体,多溶于水,大都具有活性,如酶、转运蛋白、蛋白激素、抗体等。球状蛋白的长度与直径之比一般小于10。
2.纤维状蛋白 外形细长,分子量大,大都是结构蛋白,如胶原蛋白,弹性蛋白,角蛋白等。纤维蛋白按溶解性可分为可溶性纤维蛋白与不溶性纤维蛋白。前者如血液中的纤维蛋白原、肌肉中的肌球蛋白等,后者如胶原蛋白,弹性蛋白,角蛋白等结构蛋白。
三.蛋白质的结构
一级结构 结构特点、测定步骤、常用方法、酶
二级结构 四种 结构特点、数据、超二级结构
食品营养学-第四章-蛋白质

下公式推算出蛋白质的大致含量:
1/16 % 100克样品中蛋白质的含量 (g %) = 每克样品含氮克数× 6.25×100
一块块砖头垒成了万里长城
氨基酸就是构成蛋白质这个 “万里长城”的基石
必需氨基酸 构成蛋白质的氨基酸常见约有20种,其中 有8种是人体自身不能合成的必需通过食物 摄入称为必需氨基酸。
缬氨酸 、亮氨酸、异亮氨酸、 苯丙氨酸、蛋氨酸、丝氨酸、 苏氨酸、赖氨酸。
氨基酸模式 (amino acid pattern) 是指某种蛋白质中各种必需氨基酸的构成比例。
当食物蛋白质的氨基酸模式越接近人体蛋白质的 氨基酸模式时,必需氨基酸被机体利用的程度也越高, 则食物蛋白质的营养价值越高。 其中氨基酸模式与人体蛋白质氨基酸模式最接近的 某种蛋白质常被作为参考蛋白 (reference protein) ,通常为鸡蛋蛋白质。
蛋白质的食物来源
蛋白质广泛存在于动物性食物(畜、禽、鱼、 蛋、奶)和植物性食物(豆类、谷类)中。
动物性蛋白质质量好,在人体内利用率高,但 同时富含脂肪酸和胆固醇。
植物性蛋白质利用率较低。我国膳食谷类蛋白 为主。 大豆蛋白质量好,利用率高。 应注意膳食中蛋白质互补!
6、蛋白质缺乏的表现
按照蛋白质营养价值高低分类
完全蛋白质
半完全蛋白质
不完全蛋白质
种类齐全 数量充足 比例合适
种类齐全
种类不全
食物蛋白质中一种或几种必需氨基酸含量 相对较低,导致其它必需氨基酸在体内不能被 充分利用,造成食物蛋白质营养价值降低,则 这些含量较低的氨基酸称限制氨基酸 (limiting amino acid,LAA)。其中含量最低 的称第一限制氨基酸。
二、蛋白质的组成
第4章 蛋白质折叠

后来,有人把这设想的一级结构决定空间结构
的密码叫作“第二遗传密码”。
完整的提法应该是遗传密码的第二部分, 即蛋白质中氨基酸序列与其空间结构的对应 关系,国际上称之为第二遗传密码或折叠密 码。
第二遗传密码的特点
简并性
在第一遗传密码中有所谓“简并性”,即同一
AA可以由不同密码子所编码,如CGA 和AGC 都编码为Arg,UCC 和AGU都编码为Ser等。
到底非天然构象的什么特征能被分子伴侣识别呢?
确切的原因还未知,目前只知道在天然构象
中,疏水残基多半位于分子的内部而形成疏水核,
去折叠后就可能暴露出来,或者在新生肽段的折叠
过程中,会暂时形成在天然构象中本应该存在于分 子内部的疏水表面,因此认为分子伴侣最有可能是 与疏水表面相结合。
分子伴侣的类型
=GropES+GropEL
凋亡,从而改善氧合功能,降低病死率。
增加心脏组织中Hsp70基因的表达,可使心脏具有
抵抗缺血或内毒素损伤的作用
近几年 ,有关Hsp70的研究已成为分子生物
学的一大热点,并逐渐成为临床多种疾病 治疗的新途径。由于Hsp能够对各种形式的
组织细胞损伤提供保护作用,随着研究的
深人,应用药物或基因工程等技术诱导Hsp 作为肺损伤的治疗方法颇具前景。
DNA 遗传信息的传递
肽链
RNA
Proteins
实质上是多肽链
?
有活性的蛋白 质天然构象
遗传信息的传递应该是从核苷酸序列到有完 整结构的功能蛋白质的全过程。
第二遗传密码
多肽链的一级结构决定它的空间结构,既然前
者决定后者,一级结构和空间结构之间肯定存
在某种确定的关系,这是否也像核苷酸通过 “三联密码”决定氨基酸顺序那样有一套密码 呢?
的密码叫作“第二遗传密码”。
完整的提法应该是遗传密码的第二部分, 即蛋白质中氨基酸序列与其空间结构的对应 关系,国际上称之为第二遗传密码或折叠密 码。
第二遗传密码的特点
简并性
在第一遗传密码中有所谓“简并性”,即同一
AA可以由不同密码子所编码,如CGA 和AGC 都编码为Arg,UCC 和AGU都编码为Ser等。
到底非天然构象的什么特征能被分子伴侣识别呢?
确切的原因还未知,目前只知道在天然构象
中,疏水残基多半位于分子的内部而形成疏水核,
去折叠后就可能暴露出来,或者在新生肽段的折叠
过程中,会暂时形成在天然构象中本应该存在于分 子内部的疏水表面,因此认为分子伴侣最有可能是 与疏水表面相结合。
分子伴侣的类型
=GropES+GropEL
凋亡,从而改善氧合功能,降低病死率。
增加心脏组织中Hsp70基因的表达,可使心脏具有
抵抗缺血或内毒素损伤的作用
近几年 ,有关Hsp70的研究已成为分子生物
学的一大热点,并逐渐成为临床多种疾病 治疗的新途径。由于Hsp能够对各种形式的
组织细胞损伤提供保护作用,随着研究的
深人,应用药物或基因工程等技术诱导Hsp 作为肺损伤的治疗方法颇具前景。
DNA 遗传信息的传递
肽链
RNA
Proteins
实质上是多肽链
?
有活性的蛋白 质天然构象
遗传信息的传递应该是从核苷酸序列到有完 整结构的功能蛋白质的全过程。
第二遗传密码
多肽链的一级结构决定它的空间结构,既然前
者决定后者,一级结构和空间结构之间肯定存
在某种确定的关系,这是否也像核苷酸通过 “三联密码”决定氨基酸顺序那样有一套密码 呢?
第四章蛋白质(中医)PPT课件

.
17
三、肽
(一)肽(peptide)
* 肽键(peptide bond)是由一个氨基酸的羧基与另一个氨基酸的-氨基脱水缩合 而形成的化学键。
.
18
O
NH2-CH-C +
H OH
甘氨酸
O NH-CH-C
H H OH
甘氨酸
-HOH
O
O
NH2-CH-C-N-CH-C
H HH OH
肽键 .
甘氨酰甘氨酸
天冬氨酸 aspartic acid Asp D 2.97 谷氨酸 glutamic acid Glu E 3.22
赖氨酸
lysine
Lys K 9.74
精氨酸 arginine Arg R 10.76
组氨酸 histidine
.
His H 7.59
12
半胱氨酸
-OOC-CH-CH2-SH + HS-CH2-CH-COO-
分子,占人体干重的45%,某些组织含量更 高,例如脾、肺及横纹肌等高达80%。
.
2
2. 蛋白质具有重要的生物学功能
1)作为生物催化剂(酶) 2)代谢调节作用 3)免疫保护作用 4)物质的转运和存储 5)运动与支持作用 6)参与细胞间信息传递
3. 氧化供能
.
3
第一节
蛋白质的分子组成
The Molecular Component of Protein
三酮反应。
⒉双缩脲反应(biuret reaction)
蛋白质和多肽分子中肽键在稀碱溶液中与
硫酸铜共热,呈现紫色或红色,此反应称为双
缩脲反应,双缩脲反应可用来检测蛋白质水解
程度。
.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
\
第四章蛋白质的共价结构
1、某肽经CNBr水解得到三个肽段,这三个肽段的结构分别是:Asn-Trp-Gly-Met, Thr-Leu-Ala, Val-Arg-Tyr-Asn-Met;用胰凝乳蛋白酶水解此肽也得到三个肽段,其中一个为四肽,用6mol/L 盐酸水解此四肽只得到(Asp)2 和Met三个氨基酸,试写出此肽的氨基酸排列顺序。
(胰凝乳蛋白酶断裂Phe、Trp、Tyr羧基端的肽段)
Val-Arg-Tyr-Asn-Met -Asn-Trp-Gly-Met -Thr-Leu-Ala
2、当一种4肽与FDNB反应后,用6NHCl水解,得DNP-Val 及3种其它氨基酸。
当4肽用胰蛋白酶水解时,形成2种片段。
其中之一,用LiBH4还原后再水解,水解液中发现有氨基乙醇和1种与茚三酮反应生成黄色产物的氨基酸。
试问在原来4肽中可能存在哪几种氨基酸?它们的序列如何?为什么?(华师大97)Val -Lys(Arg) –HyPro- Gly
3、为确定某一短肽的氨基酸序列,进行了一系列的实验,得到以下的数据:酸水解,得到的氨基酸组成为(Tyr,2Asp,Lys,Met);胰蛋白酶,得到两个片段在中性pH溶液中均显中性;用CNBr处理,并未发现有任何反应。
酸水解后测得两个片段中的氨基酸组成为(Asp,Tyr,Lys)和(Met,Asp);紫外扫描发现,组成为(Met,Asp)的肽段在280nm处有特征吸收。
另一片段与FDNB试剂反应后,满载薄层层析上得到DNP-Tyr的斑点。
试决定该肽段的氨基酸序列。
(复旦大学2002)
Tyr- Asp –Lys- Asn- Trp(n)-Met或Tyr- Asp –Lys- Trp(n)- Asn –Met 侧链的酰胺基被酸水解成了羧基。