高考数学一轮复习第三章导数及其应用第4讲导数与函数的综合应用教案理(含解析)新人教A版
2020版高考数学一轮复习第三章导数及其应用第4讲导数与函数的综合应用教案理(含解析)新人教A版

第4讲导数与函数的综合应用基础知识整合01优化问题,一般地,对于实际1.通常求利润最大、用料最省、效率最高等问题称为□问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点.2.生活中的优化问题解决优化问题的基本思路:3.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.1.把所求问题通过构造函数,转化为可用导数解决的问题,这是用导数解决问题时常用的方法.2.利用导数解决与方程、函数零点、不等式等问题时,常用到数形结合及转化与化归的数学思想.1.(2019·四川南充一诊)若函数f(x)=x3+x2-ax-4在区间(-1,1)内恰有一个极值点,则实数a的取值范围为( )A.(1,5)B.[1,5)C.(1,5]D.(-∞,1)∪(5,+∞)答案 A解析由题意知f′(x)=3x2+2x-a=0在区间(-1,1)内恰有一根(且在根两侧f′(x)异号)⇔f′(1)·f′(-1)=(5-a)(1-a)<0⇔1<a<5.故选A.2.(2019·湖北襄阳模拟)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )A.(-1,1)B.(-1,+∞)C .(-∞,-1)D .(-∞,+∞)答案 B解析 由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2.因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1.故选B.3.若函数f (x )=x 3-3x +a 有3个不同的零点,则实数a 的取值范围是( ) A .(-2,2) B .[-2,2] C .(-∞,-1) D .(1,+∞)答案 A解析 f ′(x )=3x 2-3,令f ′(x )=0,∴x =±1.三次方程f (x )=0有3个根⇔f (x )极大值>0且f (x )极小值<0. ∵x =-1为极大值点,x =1为极小值点. ∴⎩⎪⎨⎪⎧f -=2+a >0,f=a -2<0,∴-2<a <2.4.(2019·沈阳模拟)对于R 上可导的任意函数f (x ),若满足(x -1)·f ′(x )≥0,则必有( )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)答案 C解析 由题设,f (x )为R 上任意可导函数,不妨设f (x )=(x -1)2,则f ′(x )=2(x -1),满足(x -1)·f ′(x )=2(x -1)2≥0,且f (0)=1,f (1)=0,f (2)=1,则有f (0)+f (2)>2f (1);再设f (x )=1,则f ′(x )=0,也满足(x -1)·f ′(x )≥0,且有f (0)+f (2)=2f (1),即1+1=2×1.5.(2019·贵阳模拟)若关于x 的不等式x 3-3x 2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( )A .(-∞,7]B .(-∞,-20]C .(-∞,0]D .[-12,7]答案 B解析 令f (x )=x 3-3x 2-9x +2,则f ′(x )=3x 2-6x -9,令f ′(x )=0,得x =-1或3.因为f (-1)=7,f (-2)=0,f (2)=-20, 所以f (x )的最小值为f (2)=-20,故m ≤-20.6.已知a ≤1-x x +ln x 对任意的x ∈⎣⎢⎡⎦⎥⎤12,2恒成立,则a 的最大值为________. 答案 0解析 令f (x )=1-x x +ln x ,f ′(x )=x -1x 2,当x ∈⎣⎢⎡⎭⎪⎫12,1时,f ′(x )<0,当x ∈(1,2]时,f ′(x )>0,∴f (x )min =f (1)=0,∴a ≤0,故a 的最大值为0.核心考向突破考向一 导数与方程例 1 (2019·陕西汉中模拟)已知函数f (x )=x +1ex(其中e≈2.718…为自然对数的底数).(1)若F (x )=f (x )-f (-x ),求F (x )的单调区间;(2)若方程f (x )=k ⎝ ⎛⎭⎪⎫x +32在(-2,+∞)上有两个不同的实数根,求实数k 的取值范围. 解 (1)由题意知,F (x )=f (x )-f (-x )=x +1ex--x +1e-x,所以F ′(x )=-x e x +x e x=x ⎝ ⎛⎭⎪⎫e x -1e x .当x <0时,e x-1ex <0,所以x ⎝⎛⎭⎪⎫e x -1e x >0,即F ′(x )>0,当x =0时,F ′(x )=0,当x >0时,e x-1ex >0,即F ′(x )>0,所以F ′(x )≥0恒成立,当且仅当x =0时等号成立, 所以F (x )=f (x )-f (-x )在R 上单调递增,即F (x )的单调递增区间为(-∞,+∞),无单调递减区间. (2)因为f (x )=x +1e x,所以f ′(x )=-xex , 当x <0时,f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0, 故函数f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以f (x )在x =0处取得最大值,且f (0)=1,当x 趋近于-∞时,f (x )趋近于-∞,当x 趋近于+∞时,f (x )趋近于0,故函数f (x )的大致图象如图所示,结合函数图象可知,当k ≤0时,方程f (x )=k ⎝ ⎛⎭⎪⎫x +32有且仅有一个实数根. 当k >0时,设曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -x 0+1ex 0=-x 0ex 0 (x -x 0),且该直线过定点⎝ ⎛⎭⎪⎫-32,0, 所以0-x 0+1ex 0=-x 0e x 0⎝ ⎛⎭⎪⎫-32-x 0,解得x 0=-2(舍去)或x 0=-12, 此时切线的斜率为e 2, 数形结合可知,若方程f (x )=k ⎝ ⎛⎭⎪⎫x +32在(-2,+∞)上有两个不同的实数根,则实数k 的取值范围是⎝ ⎛⎭⎪⎫0,e 2. 触类旁通研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极最值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.即时训练 1.已知函数f (x )=1x +(1-a )ln x +ax ,g (x )=1x-(a +1)ln x +x 2+ax -t (a∈R ,t ∈R ).(1)讨论f (x )的单调性;(2)记h (x )=f (x )-g (x ),若函数h (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数t 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞), f ′(x )=-1x 2+1-a x +a =ax 2+-a x -1x2=x -ax +x 2.当a =0时,f ′(x )=x -1x 2,令f ′(x )>0,则x >1,令f ′(x )<0,则0<x <1. 所以函数f (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增.当a ≠0时,f ′(x )=a x -1⎝⎛⎭⎪⎫x +1ax2,①当a >0时,x +1a>0,令f ′(x )>0,则x >1,令f ′(x )<0,则0<x <1,所以函数f (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增; ②当a =-1时,1=-1a,f ′(x )=-x -2x 2≤0,所以函数f (x )在定义域(0,+∞)上单调递减;③当-1<a <0时,1<-1a ,令f ′(x )>0,则1<x <-1a ,令f ′(x )<0,则0<x <1或x >-1a,所以函数f (x )在区间(0,1)和⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,在区间⎝ ⎛⎭⎪⎫1,-1a 上单调递增;④当a <-1时,1>-1a ,令f ′(x )>0,则-1a <x <1,令f ′(x )<0,则0<x <-1a或x >1,所以函数f (x )在区间⎝ ⎛⎭⎪⎫0,-1a 和(1,+∞)上单调递减,在区间⎝ ⎛⎭⎪⎫-1a ,1上单调递增.综上,当a ≥0时,函数f (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增; 当a =-1时,函数f (x )在定义域(0,+∞)上单调递减;当-1<a <0时,函数f (x )在区间(0,1),⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,在区间⎝ ⎛⎭⎪⎫1,-1a 上单调递增;当a <-1时,函数f (x )在区间⎝ ⎛⎭⎪⎫0,-1a ,(1,+∞)上单调递减,在区间⎝ ⎛⎭⎪⎫-1a ,1上单调递增.(2)h (x )=f (x )-g (x )=2ln x -x 2+t ,定义域为(0,+∞), 则h ′(x )=2x-2x =-x +x -x,当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,令h ′(x )=0,得x =1, 当1e <x <1时,h ′(x )>0;当1<x <e 时,h ′(x )<0, 故h (x )在x =1处取得极大值h (1)=t -1. 又h ⎝ ⎛⎭⎪⎫1e =t -2-1e 2,h (e)=t +2-e 2,所以h (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧h =t -1>0,h ⎝ ⎛⎭⎪⎫1e =t -2-1e 2≤0,h =t +2-e 2≤0,解得1<t ≤2+1e 2,故实数t 的取值范围是⎝⎛⎦⎥⎤1,2+1e 2.考向二 导数与不等式角度1 证明不等式例2 (2019·银川模拟)已知函数f (x )=(x +b )(e x-a )(b >0)的图象在(-1,f (-1))处的切线方程为(e -1)x +e y +e -1=0.(1)求a ,b ;(2)若m ≤0,证明:f (x )≥mx 2+x .解 (1)由题意知f (-1)=0,f ′(-1)=-1+1e ,所以f (-1)=(-1+b )⎝ ⎛⎭⎪⎫1e -a =0, 所以b =1或a =1e,又f ′(x )=(x +b +1)e x-a ,所以f ′(-1)=b e -a =-1+1e,若a =1e,则b =2-e<0,与b >0矛盾,故a =1,b =1.(2)证法一:由(1)可知f (x )=(x +1)(e x -1),f (0)=0,f (-1)=0,由m ≤0,可得x ≥mx 2+x ,令g (x )=(x +1)(e x -1)-x ,则g ′(x )=(x +2)e x-2, 当x ≤-2时,g ′(x )=(x +2)e x-2≤-2<0, 当x >-2时,令h (x )=g ′(x )=(x +2)e x-2, 则h ′(x )=(x +3)e x>0,故函数g ′(x )在(-2,+∞)上单调递增,又g ′(0)=0,综上,当x ∈(-∞,0)时,g ′(x )<0,当x ∈(0,+∞)时,g ′(x )>0, 所以函数g (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增, 故g (x )≥g (0)=0,所以(x +1)(e x -1)≥x ≥mx 2+x . 故f (x )≥mx 2+x .证法二:由(1)可知f (x )=(x +1)(e x-1),f (0)=0,f (-1)=0,由m ≤0,可得x ≥mx 2+x ,令g (x )=(x +1)(e x -1)-x ,则g ′(x )=(x +2)e x-2, 令t (x )=g ′(x ),则t ′(x )=(x +3)e x,当x <-3时,t ′(x )<0,g ′(x )单调递减,且g ′(x )<0; 当x >-3时,t ′(x )>0,g ′(x )单调递增,且g ′(0)=0.所以g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,且g (0)=0. 故g (x )≥g (0)=0,所以(x +1)(e x -1)≥x ≥mx 2+x . 故f (x )≥mx 2+x . 触类旁通利用导数方法证明不等式f xg x 在区间D 上恒成立的基本方法是构造函数h x =f x -g x ,然后根据函数的单调性,或者函数的最值证明函数h x,其中一个重要技巧就是找到函数h x 在什么地方可以等于零,这往往就是解决问题的一个突破口.若待证不等式两端式子较复杂,可通过分析法转化为形式较简单的不等式,再构造函数证明.即时训练 2.(2019·石家庄模拟)已知函数f (x )=λln x -e -x(λ∈R ). (1)若函数f (x )是单调函数,求λ的取值范围; (2)求证:当0<x 1<x 2时,e1-x 2-e1-x 1>1-x 2x 1. 解 (1)函数f (x )的定义域为(0,+∞), ∵f (x )=λln x -e -x, ∴f ′(x )=λx +e -x=λ+x e -xx,∵函数f (x )是单调函数,∴f ′(x )≤0或f ′(x )≥0在(0,+∞)上恒成立, ①当函数f (x )是单调递减函数时,f ′(x )≤0, ∴λ+x e-xx≤0,即λ+x e -x≤0,λ≤-x e -x=-xex ,令φ(x )=-x e x ,则φ′(x )=x -1ex ,当0<x <1时,φ′(x )<0,当x >1时,φ′(x )>0, 则φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴当x >0时,φ(x )min =φ(1)=-1e ,∴λ≤-1e ;②当函数f (x )是单调递增函数时,f ′(x )≥0, ∴λ+x e-xx≥0,即λ+x e -x≥0,λ≥-x e -x=-xex ,由①得φ(x )=-xe x 在(0,1)上单调递减,在(1,+∞)上单调递增,又φ(0)=0,x →+∞时,φ(x )<0,∴λ≥0.综上,λ≤-1e或λ≥0.(2)证明:由(1)可知,当λ=-1e 时,f (x )=-1e ln x -e -x在(0,+∞)上单调递减,∵0<x 1<x 2,∴f (x 1)>f (x 2),即-1e ln x 1-e -x 1>-1e ln x 2-e -x 2,∴e1-x 2-e1-x 1>ln x 1-ln x 2.要证e1-x 2-e1-x 1>1-x 2x 1,只需证ln x 1-ln x 2>1-x 2x 1,即证ln x 1x 2>1-x 2x 1,令t =x 1x 2,t ∈(0,1),则只需证ln t >1-1t,令h (t )=ln t +1t -1,则当0<t <1时,h ′(t )=t -1t2<0,∴h (t )在(0,1)上单调递减,又h (1)=0,∴h (t )>0,即ln t >1-1t,得证.角度2 不等式恒成立问题例3 (2019·大连模拟)已知函数f (x )=(x -1)e x -ax 2(e 是自然对数的底数). (1)讨论函数f (x )的极值点的个数,并说明理由;(2)若对任意的x >0,f (x )+e x≥x 3+x ,求实数a 的取值范围. 解 (1)f ′(x )=x e x-2ax =x (e x -2a ).当a ≤0时,由f ′(x )<0得x <0,由f ′(x )>0得x >0,∴f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴f (x )有1个极值点;当0<a <12时,由f ′(x )>0得x <ln 2a 或x >0,由f ′(x )<0得0>x >ln 2a ,∴f (x )在(-∞,ln 2a )上单调递增,在(ln 2a,0)上单调递减,在(0,+∞)上单调递增,∴f (x )有2个极值点;当a =12时,由f ′(x )≥0,∴f (x )在R 上单调递增,∴f (x )没有极值点;当a >12时,由f ′(x )>0得x <0或x >ln 2a ,由f ′(x )<0得0<x <ln 2a ,∴f (x )在(-∞,0)上单调递增,在(0,ln 2a )上单调递减,在(ln 2a ,+∞)上单调递增,∴f (x )有2个极值点.综上,当a ≤0时,f (x )有1个极值点;当a >0且a ≠12时,f (x )有2个极值点;当a =12时,f (x )没有极值点.(2)由f (x )+e x ≥x 3+x 得x e x -x 3-ax 2-x ≥0.当x >0时,e x-x 2-ax -1≥0,即a ≤e x -x 2-1x 对任意的x >0恒成立.设g (x )=e x -x 2-1x,则g ′(x )=x -x-x -x2.设h (x )=e x-x -1,则h ′(x )=e x-1.∵x >0,∴h ′(x )>0,∴h (x )在(0,+∞)上单调递增, ∴h (x )>h (0)=0,即e x>x +1,∴g (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴g (x )≥g (1)=e -2,∴a ≤e-2, 所以实数a 的取值范围为(-∞,e -2]. 触类旁通不等式恒成立问题的求解策略(1)已知不等式f (x ,λ)≥0(λ为实参数)对任意的x ∈D 恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,其一般步骤如下:第一步:将原不等式f (x ,λ)≥0(x ∈D ,λ为实参数)分离,使不等式的一边是参数,另一边不含参数,即化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式;第二步:利用导数求出函数f 2(x )(x ∈D )的最大(小)值;第三步:解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,从而求出参数λ的取值范围.如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法a >0,Δ<0或a <0,Δ求解.即时训练 3.已知函数f (x )=2(x -1)ln x +a ⎝ ⎛⎭⎪⎫x 2-x -1+1x ,其中a ∈R .(1)当a =0时,求函数f (x )的单调区间;(2)若对于任意x >0,f (x )≤0恒成立,求实数a 的取值范围.解 (1)f ′(x )=2⎝ ⎛⎭⎪⎫ln x +1-1x ,令g (x )=2⎝ ⎛⎭⎪⎫ln x +1-1x ,则g ′(x )=2⎝ ⎛⎭⎪⎫1x +1x 2>0,所以可得g (x )单调递增,即f ′(x )单调递增,而f ′(1)=0,则在区间(0,1)上,f ′(x )<0,函数f (x )单调递减;在区间(1,+∞)上,f ′(x )>0,函数f (x )单调递增.所以当a =0时,函数f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞).(2)f (x )=(x -1)⎝⎛⎭⎪⎫2ln x +a ·x 2-1x ,令h (x )=2ln x +a ·x 2-1x ,可知h (1)=0,h ′(x )=ax 2+2x +a x2(x >0),令φ(x )=ax 2+2x +a , ①当a ≤-1时,结合φ(x )对应二次函数的图象可知,h ′(x )≤0,所以函数h (x )单调递减.又h (1)=0,所以当x ∈(0,1)时,h (x )>0,当x ∈(1,+∞)时,h (x )<0,可知当x ∈(0,+∞)时,f (x )≤0,符合题意.②当a ≥0时,结合φ(x )对应二次函数的图象可知,h ′(x )>0,h (x )单调递增.又h (1)=0,所以当x ∈(0,1)时,h (x )<0,当x ∈(1,+∞)时,h (x )>0,可知当x ∈(0,+∞)时,f (x )≤0不恒成立.③当-1<a <0时,研究函数φ(x )=ax 2+2x +a ,可知φ(1)>0,其图象的对称轴x =-1a>1,那么φ(x )在区间⎝ ⎛⎭⎪⎫1,-1a 上大于0,即h ′(x )在区间⎝ ⎛⎭⎪⎫1,-1a 上大于0,所以h (x )在区间⎝ ⎛⎭⎪⎫1,-1a 上单调递增,此时h (x )>h (1)=0,可知当x ∈(1,+∞)时,f (x )>0,不符合题意.综上,可知符合题意的实数a 的取值范围为(-∞,-1]. 角度3 赋值法证明正整数不等式例4 (2017·全国卷Ⅲ)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值. 解 (1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意.②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增. 故x =a 是f (x )在(0,+∞)上的唯一最小值点. 因为f (1)=0,所以当且仅当a =1时,f (x )≥0, 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n ,从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1. 故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <e. 而⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+123>2,所以m 的最小值为3. 触类旁通证明正整数不等式时,要把这些正整数放在正实数的范围内,通过构造正实数的函数进行证明,而不能直接构造正整数的函数,因为这样的函数不是可导函数,对其求导就是错误的.本例就是利用了问的结论,构造了函数的不等关系,再对其中的自变量赋值,令,可得到解题的基本思路.即时训练 4.(2019·合肥模拟)已知函数f (x )=ln x -ax +1.(1)若曲线y =f (x )在点A (1,f (1))处的切线l 与直线4x +3y -3=0垂直,求a 的值; (2)若f (x )≤0恒成立,试确定实数a 的取值范围; (3)证明:ln (n +1)>12+13+…+1n +1(n ∈N *).解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=1x-a ,f (1)=ln 1-a +1=1-a ,f ′(1)=1-a .故切线l 的方程为y -(1-a )=(1-a )(x -1), 即y =(1-a )x .因为切线l 与直线4x +3y -3=0垂直, 所以4×(1-a )+3×(-1)=0,解得a =14.(2)若a ≤0,则f ′(x )=1x-a >0,所以f (x )在(0,+∞)上是增函数.而f (1)=1-a >0,f (x )≤0不恒成立. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )=1x-a >0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )=1x-a <0.所以f (x )在⎝⎛⎦⎥⎤0,1a 上是增函数,在⎣⎢⎡⎭⎪⎫1a ,+∞上是减函数.所以f (x )的最大值为f ⎝ ⎛⎭⎪⎫1a =-ln a .要使f (x )≤0恒成立,则-ln a ≤0,所以a ≥1.故实数a 的取值范围是[1,+∞). (3)证明:由(2)知,当a =1时有f (x )≤0在(0,+∞)上恒成立,且f (x )在(0,1)上是增函数,f (1)=0,所以ln x <x -1在x ∈(0,1)上恒成立.令x =nn +1,则ln n n +1<n n +1-1=-1n +1, 令n =1,2,…,n ,则有ln 12<-12,ln 23<-13,ln 34<-14,…,ln n n +1<-1n +1,以上各不等式两边分别相加,得ln 12+ln 23+…+ln n n +1<-⎝ ⎛⎭⎪⎫12+13+…+1n +1,即ln1n +1<-⎝ ⎛⎭⎪⎫12+13+…+1n +1,故ln (n +1)>12+13+…+1n +1(n ∈N *).考向三 导数与优化问题例 5 (2018·江苏高考)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为△CDP ,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和△CDP 的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.解 (1)设PO 的延长线交MN 于H ,则PH ⊥MN ,所以OH =10米.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ米,EC =40sin θ米,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ)平方米, △CDP 的面积为12×2×40cos θ(40-40sin θ)=1600(cos θ-sin θcos θ)平方米.过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10米. 令∠GOK =θ0,则sin θ0=14,θ0∈⎝ ⎛⎭⎪⎫0,π6. 当θ∈⎣⎢⎡⎭⎪⎫θ0,π2时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是⎣⎢⎡⎭⎪⎫14,1.答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ-sin θcos θ)平方米,sin θ的取值范围是⎣⎢⎡⎭⎪⎫14,1.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,所以设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0). 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600×(cos θ-sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈⎣⎢⎡⎭⎪⎫θ0,π2. 设f (θ)=sin θcos θ+cos θ,θ∈⎣⎢⎡⎭⎪⎫θ0,π2. 则f ′(θ)=cos 2θ-sin 2θ-sin θ=-(2sin 2θ+sin θ-1)=-(2sin θ-1)(sin θ+1),令f ′(θ)=0,得θ=π6,当θ∈⎝⎛⎭⎪⎫θ0,π6时,f ′(θ)>0,所以f (θ)为增函数;当θ∈⎝ ⎛⎭⎪⎫π6,π2时,f ′(θ)<0,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.触类旁通利用导数解决生活中优化问题的方法求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,该极值点也就是最值点.即时训练 5.(2019·山东潍坊模拟)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升).(1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升);水底作业时的用氧量为10×0.9=9(升);返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v(升),∴总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v2=v 3-25v2,令y ′=0得v =1032.当0<v <1032时,y ′<0,函数单调递减;当v >1032时,y ′>0函数单调递增. ∴当0<c <1032时,函数在(c,1032)上单调递减,在(1032,15)上单调递增, ∴当v =1032时,总用氧量最少;当c ≥1032时,函数在[c,15]上单调递增,此时v =c 时,总用氧量最少.综上可知,当0<c <1032,v =1032时,总用氧量最少;当c ≥1032,v =c 时,总用氧量最少.(2019·兰州模拟)设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. 解 (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M . 由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x ⎝ ⎛⎭⎪⎫x -23.由g ′(x )>0得x <0或x >23,又x ∈[0,2],所以g (x )在⎣⎢⎡⎦⎥⎤0,23上是单调递减函数,在⎣⎢⎡⎦⎥⎤23,2上是单调递增函数,所以g (x )min =g ⎝ ⎛⎭⎪⎫23=-8527,g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M ,则满足条件的最大整数M =4.(2)对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,等价于在⎣⎢⎡⎦⎥⎤12,2上,函数f (x )min ≥g (x )max .由(1)可知在⎣⎢⎡⎦⎥⎤12,2上,g (x )的最大值为g (2)=1.在⎣⎢⎡⎦⎥⎤12,2上,f (x )=a x +x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,则h ′(x )=1-2x ln x -x ,令φ(x )=1-2x ln x -x ,φ′(x )=-(2ln x +3),当x ∈⎣⎢⎡⎦⎥⎤12,2时,φ′(x )<0,可知h ′(x )在⎣⎢⎡⎦⎥⎤12,2上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0.即函数h (x )=x -x 2ln x 在⎣⎢⎡⎦⎥⎤12,1上单调递增,在[1,2]上单调递减,所以h (x )max =h (1)=1,即实数a 的取值范围是[1,+∞).答题启示双参数不等式问题的求解方法一般采用等价转化法.(1)∀x 1∈[a ,b ],∀x 2∈[c ,d ],使f 1(x 1)>f 2(x 2)⇔[f 1(x 1)]min >[f 2(x 2)]max . (2)∃x 1∈[a ,b ],∃x 2∈[c ,d ],使f 1(x 1)>f 2(x 2)⇔[f 1(x 1)]max >[f 2(x 2)]min . (3)∀x 1∈[a ,b ],∃x 2∈[c ,d ],使f 1(x 1)>f 2(x 2)⇔[f 1(x 1)]min >[f 2(x 2)]min . (4)∃x 1∈[a ,b ],∀x 2∈[c ,d ],使f 1(x 1)>f 2(x 2)⇔[f 1(x )]max >[f 2(x )]max .(5)∃x 1∈[a ,b ],x 2∈[c ,d ],使f 1(x 1)=f 2(x 2)⇔f 1(x )的值域与f 2(x )的值域交集不为∅.对点训练已知函数f (x )=ln x -ax +1-ax-1(a ∈R ).(1)当a =1时,证明:f (x )≤-2;(2)设g (x )=x 2-2bx +4,当a =14时,若∀x 1∈(0,2),∃x 2∈[1,2],f (x 1)≥g (x 2),求实数b 的取值范围.解 (1)当a =1时,f (x )=ln x -x -1, 则f ′(x )=1x-1,所以当x ∈(0,1)时,f ′(x )>0,当x ∈(1,+∞)时,f ′(x )<0, 所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以f (x )max =f (1)=-2,故f (x )≤-2.(2)依题意得f (x )在(0,2)上的最小值不小于g (x )在[1,2]上的最小值,即f (x )min ≥g (x )min .当a =14时,f (x )=ln x -14x +34x -1,所以f ′(x )=1x -14-34x 2=-x -x -4x2,当0<x <1时,f ′(x )<0,当1<x <2时,f ′(x )>0,所以f (x )在(0,1)上单调递减,在(1,2)上单调递增,所以当x ∈(0,2)时,f (x )min =f (1)=-12.又g (x )=x 2-2bx +4,x ∈[1,2],①当b <1时,易得g (x )min =g (1)=5-2b ,则5-2b ≤-12,解得b ≥114,这与b <1矛盾;②当1≤b ≤2时,易得g (x )min =g (b )=4-b 2,则4-b 2≤-12,所以b 2≥92,这与1≤b ≤2矛盾;③当b >2时,易得g (x )min =g (2)=8-4b ,则8-4b ≤-12,解得b ≥178.综上,实数b 的取值范围是⎣⎢⎡⎭⎪⎫178,+∞.。
江苏专版高考数学一轮复习第三章导数及其应用第四节函数与导数的综合问题教案理含解析苏教版

江苏专版高考数学一轮复习第三章导数及其应用第四节函数与导数的综合问题教案理含解析苏教版第四节函数与导数的综合问题考点一导数与函数的零点问题题点多变型考点——多角探明[锁定考向]用导数解决函数的零点问题是近几年高考命题的热点题型之一.常见的命题角度有:(1)求函数零点或零点个数;(2)已知函数零点个数求参数的值或范围.[题点全练]角度一:求函数零点或零点个数1.已知函数f(x)=ax+ln x+1,讨论函数f(x)零点的个数.解:法一:函数f(x)的定义域为(0,+∞),由f(x)=ax+ln x+1=0,得ln x=-ax-1,令u(x)=ln x,v(x)=-ax-1,则函数v(x)的图象是过定点(0,-1),斜率k=-a 的直线.当直线y=kx-1与函数u(x)=ln x的图象相切时,两者只有一个交点,此时设切点为P(x0,y0),则⎩⎪⎨⎪⎧u′x0=1x0=k,y0=ln x0,y0=kx0-1,解得⎩⎪⎨⎪⎧x0=1,k=1,y0=0,所以当k>1时,函数f(x)没有零点;当k=1或k≤0时,函数f(x)有1个零点;当0<k<1时,函数f(x)有2个零点.即当a<-1时,函数f(x)没有零点;当a=-1或a≥0时,函数f(x)有1个零点;当-1<a<0时,函数f(x)有2个零点.法二:函数f(x)的定义域为(0,+∞),由f(x)=ax+ln x+1=0,得a=-ln x+1x.令g(x)=-ln x+1x(x>0),则g′(x)=ln xx2.当0<x<1时,g′(x)<0;当x>1时,g′(x)>0,故函数g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,g (x )min =g (1)=-1, 由于g ⎝ ⎛⎭⎪⎫1e =0,x →+∞时,g (x )→0,所以当0<x <1e 时,g (x )>0,当x >1e 时,g (x )<0.所以当a <-1时,函数f (x )没有零点;当a =-1或a ≥0时,函数f (x )有1个零点;当-1<a <0时,函数f (x )有2个零点.角度二:已知函数零点个数求参数的值或范围2.(2019·徐州调研)设函数f (x )=-x 2+ax +ln x (a ∈R),若函数f (x )在⎣⎢⎡⎦⎥⎤13,3上有两个零点,求实数a 的取值范围.解:令f (x )=-x 2+ax +ln x =0,得a =x -ln x x.令g (x )=x -ln x x ,其中x ∈⎣⎢⎡⎦⎥⎤13,3,则g ′(x )=1-1-ln x x 2=x 2+ln x -1x 2,令g ′(x )=0,得x =1,当13≤x <1时,g ′(x )<0;当1<x ≤3时,g ′(x )>0,∴g (x )的单调递减区间为⎣⎢⎡⎭⎪⎫13,1,单调递增区间为(1,3],∴g (x )min =g (1)=1,∵函数f (x )在⎣⎢⎡⎦⎥⎤13,3上有两个零点,g ⎝ ⎛⎭⎪⎫13=3ln 3+13,g (3)=3-ln 33,3ln 3+13>3-ln 33, ∴实数a 的取值范围是⎝ ⎛⎦⎥⎤1,3-ln 33.[通法在握]函数的零点个数也就是函数图象与x 轴交点的个数,所以可以借助函数图象的特征迅速求解函数的零点个数问题.对于含参函数的零点个数,一般可从两个方面讨论:(1)利用导数研究函数的单调性和极值,作出函数的大致图象,根据极大值和极小值的符号确定函数零点的个数.(2)分离参数,将问题转化为:求直线y =a 与函数y =f (x )的图象交点个数问题.[演练冲关]1.设函数f (x )=ln x +m x ,m ∈R.讨论函数g (x )=f ′(x )-x3零点的个数.解:由题设,g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. 所以x =1是φ(x )的极大值点,也是φ(x )的最大值点. 所以φ(x )的最大值为φ(1)=23.由φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.2.已知函数f (x )=a e x-x -2a 有两个零点,求实数a 的取值范围. 解:∵f (x )=a e x-x -2a ,∴f ′(x )=a e x-1.当a ≤0时,f ′(x )≤0恒成立,函数f (x )在R 上单调递减,不可能有两个零点; 当a >0时,令f ′(x )=0,得x =ln 1a,函数f (x )在⎝ ⎛⎭⎪⎫ -∞,ln 1a 上单调递减,在⎝ ⎛⎭⎪⎫ ln 1a ,+∞上单调递增,∴f (x )的最小值为f ⎝ ⎛⎭⎪⎫ ln 1a =1-ln 1a -2a =1+ln a -2a .令g (a )=1+ln a -2a (a >0),则g ′(a )=1a-2.当a ∈⎝ ⎛⎭⎪⎫ 0,12时,g (a )单调递增;当a ∈⎝ ⎛⎭⎪⎫ 12,+∞时,g (a )单调递减,∴g (a )max =g ⎝ ⎛⎭⎪⎫ 12=-ln 2<0, ∴f (x )的最小值f ⎝⎛⎭⎪⎫ ln 1a <0,函数f (x )=a e x-x -2a 有两个零点.综上所述,实数a 的取值范围是(0,+∞). 考点二 导数与不等式的证明问题重点保分型考点——师生共研 [典例引领]已知函数f (x )=ln x -12ax 2+x ,a ∈R.(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程; (2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12. 解:(1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点为(1,1),又因为f ′(x )=1x+1,所以切线斜率k =f ′(1) =2,故切线方程为y -1=2(x -1),即2x -y -1=0. (2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0). 由f (x 1)+f (x 2)+x 1x 2=0,得ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0, 从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2), 令t =x 1x 2,设φ(t )=t -ln t (t >0), 则φ′(t )=1-1t =t -1t,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1,所以(x 1+x 2)2+(x 1+x 2)≥1, 因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. [由题悟法]破解含双参不等式的证明的关键一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. [提醒] 变量代换法适用于二元或多元不等式的有关问题.若出现的两个变量有主次之分,可以考虑主元法;若出现的两个变量没有主次之分,地位均衡,可以考虑换元法;若出现多个变量,需挖掘它们之间内在的等量关系,将原问题转化为曲线上的动点问题来解决.[即时应用]已知函数f (x )=ln x +a x. (1)求f (x )的最小值;(2)若方程f (x )=a 有两个根x 1,x 2(x 1<x 2),求证:x 1+x 2>2a . 解:(1)因为f ′(x )=1x -a x 2=x -ax2(x >0),所以当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增,函数f (x )无最小值. 当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 函数f (x )在x =a 处取最小值f (a )=ln a +1.(2)证明:若函数y =f (x )的两个零点为x 1,x 2(x 1<x 2), 由(1)可得0<x 1<a <x 2.令g (x )=f (x )-f (2a -x )(0<x <a ), 则g ′(x )=(x -a )⎣⎢⎡⎦⎥⎤1x2-12a -x 2=-4a x -a 2x 22a -x 2<0,所以g (x )在(0,a )上单调递减,g (x )>g (a )=0, 即f (x )>f (2a -x ).令x =x 1<a ,则f (x 1)>f (2a -x 1),所以f (x 2)=f (x 1)>f (2a -x 1), 由(1)可得f (x )在(a ,+∞)上单调递增,所以x 2>2a -x 1, 故x 1+x 2>2a .考点三 利用导数研究探索性问题重点保分型考点——师生共研 [典例引领](2018·泰州调研)已知f (x )=x 2+ax -ln x +e ,g (x )=x 2+e. (1)若a =-1,判断是否存在x 0>0,使得f (x 0)<0,并说明理由;(2)设h (x )=f (x )-g (x ),是否存在实数a ,当x ∈(0,e](e =2.718 28…为自然常数)时,函数h (x )的最小值为3,并说明理由.解:(1)不存在x 0>0,使得f (x 0)<0.理由如下:当a =-1时,f (x )=x 2-x -ln x +e ,x ∈(0,+∞), f ′(x )=2x -1-1x =2x 2-x -1x =x -12x +1x.f ′(x ),f (x )随x 的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) -0 +f (x )极小值f (1)当x =1时,函数f (x )有极小值,f (x )极小值=f (1)=e , 此极小值也是最小值, 故不存在x 0>0,使得f (x 0)<0.(2)因为f (x )=x 2+ax -ln x +e ,g (x )=x 2+e , 所以h (x )=f (x )-g (x )=ax -ln x , 则h ′(x )=a -1x.假设存在实数a ,使h (x )=ax -ln x (x ∈(0,e])有最小值3. (ⅰ)当a ≤0时,h ′(x )<0, 所以h (x )在(0,e]上单调递减,h (x )min =h (e)=a e -1=3,a =4e,不符合题意.(ⅱ)当a >0时,①当0<a ≤1e 时,1a ≥e,h ′(x )≤0在(0,e]上恒成立,所以h (x )在(0,e]上单调递减,h (x )min =h (e)=a e -1=3,a =4e,不符合题意.②当a >1e 时,0<1a<e ,当0<x <1a时,h ′(x )<0,h (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减;当1a<x <e 时,h ′(x )>0,h (x )在⎝ ⎛⎭⎪⎫1a ,e 上单调递增,所以h (x )min =h ⎝ ⎛⎭⎪⎫1a =1+ln a =3,解得a =e 2>1e.综上所述,存在a =e 2,使x ∈(0,e]时,h (x )有最小值3.[由题悟法]解决探索性问题的注意事项探索问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论;(2)当给出结论来推导存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采用另外的途径.[即时应用]已知函数f (x )=x -aln x,其中a 为实数.(1)当a =2时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)是否存在实数a ,使得对任意x ∈(0,1)∪(1,+∞),f (x )>x 恒成立?若不存在,请说明理由,若存在,求出a 的值并加以证明.解:(1)当a =2时,f (x )=x -2ln x, f ′(x )=x ln x -x +2x ln x 2,f ′(2)=1ln 2, 又f (2)=0,所以曲线y =f (x )在点(2,f (2))处的切线方程为y =1ln 2(x -2). (2)①当0<x <1时,ln x <0, 则x -aln x>x ⇔a >x -x ln x , 令g (x )=x -x ln x , 则g ′(x )=2x -2-ln x2x ,再令h (x )=2x -2-ln x , 则h ′(x )=1x -1x=x -1x,故当0<x <1时,h ′(x )<0, 所以h (x )在(0,1)上单调递减, 所以当0<x <1时,h (x )>h (1)=0, 所以g ′(x )=h x2x>0, 所以g (x )在(0,1)上单调递增, 所以g (x )<g (1)=1, 所以a ≥1.②当x >1时,ln x >0, 则x -aln x>x ⇔a <x -x ln x . 由①知当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增, 所以当x >1时,h (x )>h (1)=0,所以g ′(x )=h x2x>0, 所以g (x )在(1,+∞)上单调递增, 所以g (x )>g (1)=1, 所以a ≤1. 综合①②得:a =1. 考点四 新定义函数问题重点保分型考点——师生共研[典例引领](2018·南通、扬州、泰州、淮安调研)已知函数f (x )=ax 2+cos x (a ∈R). (1)若f (x )在x =0处取得极小值,求a 的取值范围;(2)设函数h (x )的定义域为D ,区间(m ,+∞)⊆D ,若h (x )在(m ,+∞)上是单调函数,则称h (x )在D 上广义单调.试证明函数y =f (x )-x ln x 在(0,+∞)上广义单调.解:(1)因为f ′(x )=2ax -sin x , 令g (x )=2ax -sin x , 则g ′(x )=2a -cos x .①当a ≥12时,g ′(x )≥1-cos x ≥0,所以函数f ′(x )在R 上单调递增.若x >0,则f ′(x )>f ′(0)=0; 若x <0,则f ′(x )<f ′(0)=0,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减, 所以f (x )在x =0处取得极小值,符合题意.②当a ≤-12时,g ′(x )≤-1-cos x ≤0,所以函数f ′(x )在R 上单调递减.若x >0,则f ′(x )<f ′(0)=0; 若x <0,则f ′(x )>f ′(0)=0,所以f (x )在(0,+∞)上单调递减,在(-∞,0)上单调递增, 所以f (x )在x =0处取得极大值,不符合题意.③当-12<a <12时,∃x 0∈(0,π),使得cos x 0=2a ,即g ′(x 0)=0,当x ∈(0,x 0)时,cos x >2a ,即g ′(x )<0, 所以函数f ′(x )在(0,x 0)上单调递减, 所以f ′(x )<f ′(0)=0,即函数f ′(x )在(0,x 0)上单调递减,不符合题意.综上所述,a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.(2)证明:记h (x )=ax 2+cos x -x ln x (x >0),①若a >0,注意到ln x <x ,则ln x 12<x 12,即ln x <2x . 当x >⎝⎛⎭⎪⎫1+4a +12a 2时,h ′(x )=2ax -sin x -1-ln x >2ax -2x -2 =2a ⎝ ⎛⎭⎪⎫x -1-4a +12a ⎝ ⎛⎭⎪⎫x -1+4a +12a >0.所以∃m =⎝⎛⎭⎪⎫1+4a +12a 2,函数h (x )在(m ,+∞)上单调递增. ②若a ≤0,当x >1时,h ′(x )=2ax -sin x -1-ln x ≤-sin x -1-ln x <0. 所以∃m =1,函数h (x )在(m ,+∞)上单调递减,综上所述,函数y =f (x )-x ln x 在区间(0,+∞)上广义单调.[由题悟法]对于题目定义的新函数,通过仔细阅读,分析定义以及新函数所满足的条件,围绕定义与条件来确定解题的方向,然后准确作答.解答这类问题的关键在于阅读理解时,要准确把握新定义、新信息,并把它纳入已有的知识体系之中,用原来的知识和方法来解决新情景下的问题.本题考查的新定义函数问题可看成是由两个已知函数构造而成,然后利用分类讨论思想解决.[即时应用]若在公共定义域D 上,f 1(x )<f (x )<f 2(x ),则称函数f (x )为函数f 1(x ),f 2(x )的“D 函数”.(1)已知函数f 1(x )=12x 2+2x +4ln x ,f 2(x )=x 2+2x +2,求证:在区间(0,+∞)上,f 1(x ),f 2(x )有“D 函数”;(2)已知a ∈R ,函数f (x )=ax 2+ln x ,f 1(x )=(a -1)x 2+ax +(1-a 2)ln x ,f 2(x )=12x 2+2ax .若在区间(1,+∞)上,f (x )为f 1(x ),f 2(x )的“D 函数”,求a 的取值范围.解:(1)证明:设K (x )=f 2(x )-f 1(x )=12x 2-4ln x +2,下证K (x )min >0.K ′(x )=x -4x=x -2x +2x,故K ′(x )与K (x )随x 的变化情况如下表:x (0,2) 2 (2,+∞)K ′(x ) -0 +K (x )4-4ln 2因为4-4ln 2>4-4ln e =0, 所以K (x )≥4-4ln 2>0.设R (x )=f 1(x )+λ(4-4ln 2),0<λ<1, 则f 1(x )<R (x )<f 2(x ).所以在区间(0,+∞)上,f 1(x ),f 2(x )有“D 函数”. (2)设H (x )=f 1(x )-f (x )=-x 2+ax -a 2ln x , 则在(1,+∞)上,H (x )<0.因为H ′(x )=-2x -a 2x +a =-2x 2+ax -a 2x =-4x -a 2+7a28x,所以在(1,+∞)上,H ′(x )<0,H (x )是减函数, 所以H (x )<H (1)≤0,所以a ≤1.设P (x )=f (x )-f 2(x )=⎝ ⎛⎭⎪⎫a -12x 2-2ax +ln x ,则在(1,+∞)上,P (x )<0. 若a >12,则4a 2a -1>1,所以P ⎝ ⎛⎭⎪⎫4a 2a -1=ln 4a 2a -1>0,矛盾. 若a ≤12,因为P ′(x )=(2a -1)x +1x -2a =x -1[2a -1x -1]x ,所以在(1,+∞)上,P ′(x )<0,P (x )是减函数, 所以P (x )<P (1)≤0. 所以a ≥-12,所以-12≤a ≤12.故所求a 的取值范围为⎣⎢⎡⎦⎥⎤-12,12.1.已知函数f (x )=ln x +1ax -1a(a ∈R 且a ≠0).(1)讨论函数f (x )的单调性;(2)当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,试判断函数g (x )=(ln x -1)e x+x -m 的零点个数.解:(1)f ′(x )=ax -1ax 2(x >0),当a <0时,f ′(x )>0恒成立,函数f (x )在(0,+∞)上单调递增; 当a >0时,由f ′(x )=ax -1ax 2>0,得x >1a , 由f ′(x )=ax -1ax 2<0,得0<x <1a, ∴函数f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,1a 上单调递减. 综上所述,当a <0时,函数f (x )在(0,+∞)上单调递增;当a >0时,函数f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,1a 上单调递减. (2)当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,函数g (x )=(ln x -1)e x +x -m 的零点个数,等价于方程(ln x -1)e x+x =m 的根的个数.令h (x )=(ln x -1)e x +x , 则h ′(x )=⎝ ⎛⎭⎪⎫1x +ln x -1e x +1. 由(1)知当a =1时,f (x )=ln x +1x -1在⎝ ⎛⎭⎪⎫1e ,1上单调递减,在(1,e)上单调递增, ∴当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,f (x )≥f (1)=0. ∴1x +ln x -1≥0在x ∈⎣⎢⎡⎦⎥⎤1e ,e 上恒成立. ∴h ′(x )=⎝ ⎛⎭⎪⎫1x +ln x -1e x +1≥0+1>0, ∴h (x )=(ln x -1)e x +x 在x ∈⎣⎢⎡⎦⎥⎤1e ,e 上单调递增, ∴h (x )min =h ⎝ ⎛⎭⎪⎫1e =-2e 1e +1e ,h (x )max =h (e)=e. ∴当m <-2e 1e +1e 或 m >e 时,函数g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上没有零点; 当-2e 1e +1e ≤m ≤e 时,函数g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有一个零点. 2.已知函数f (x )=x e x .(1)求f (x )的单调区间与极值;(2)是否存在实数a 使得对于任意的x 1,x 2∈(a ,+∞),且x 1<x 2,恒有f x 2-f a x 2-a >f x 1-f a x 1-a成立?若存在,求a 的取值范围,若不存在,请说明理由.解:(1)因为f (x )=x e x ,所以f ′(x )=(x +1)e x .令f ′(x )=0,得x =-1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-1) -1 (-1,+∞)f ′(x ) - 0 +f (x ) 极小值所以f (x )的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞),f (x )有极小值f (-1)=-1e ,无极大值.(2)存在满足题意的实数a .理由如下:令g (x )=f x -f a x -a =x e x -a e ax -a (x >a ),则f x 2-f ax 2-a >f x 1-f a x 1-a等价于g (x )在(a ,+∞)上单调递增.又g ′(x )=x 2-ax -a e x +a e ax -a 2,记h (x )=(x 2-ax -a )e x +a e a ,则h ′(x )=[x 2+(2-a )x -2a ]e x =(x +2)·(x -a )e x ,故当a ≥-2,且x >a 时,h ′(x )>0,h (x )在(a ,+∞)上单调递增.故h (x )>h (a )=0,从而g ′(x )>0,g (x )在(a ,+∞)上单调递增,满足题意; 另一方面,当a <-2,且a <x <-2时,h ′(x )<0,h (x )在(a ,-2)上单调递减. 故h (x )<h (a )=0,从而g ′(x )<0,g (x )在(a ,-2)上单调递减,不满足题意.所以a 的取值范围为[-2,+∞).3.已知函数f (x )=e x +ax +b (a ,b ∈R)在x =0处的导数值为0.(1)求实数a 的值;(2)若f (x )有两个零点x 1,x 2,且x 1<x 2,(ⅰ)求实数b 的取值范围;(ⅱ)证明:x 1+x 2<0.解:(1)因为f ′(x )=e x +a ,所以f ′(0)=e 0+a =1+a ,又f ′(0)=0,所以a =-1.(2)(ⅰ)因为f (x )=e x -x +b ,所以f ′(x )=e x -1.当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )在x =0处取得极小值,也是最小值,且f (0)=1+b .因为f (x )有两个零点x 1,x 2,所以f (0)=1+b <0,所以b <-1,即实数b 的取值范围是(-∞,-1).(ⅱ)证明:因为f (x 1)=0,f (x 2)=0,所以e x 1-x 1+b =0 ①,e x 2-x 2+b =0 ②,由②-①得e x 2-e x 1=x 2-x 1,即e x 1 (e x 2-x 1-1)=x 2-x 1.令x 2-x 1=t ,t >0,则e x 1 (e t -1)=t ,所以e x 1=t e t -1,e x 2=t e t e t -1. 要证x 1+x 2<0,只需证e x 1e x 2<1,即证t e t -1·t e t e t -1<1, 即证t 2e t <(e t -1)2,即证t 2e t -(e t )2+2e t -1<0.令m (t )=t 2e t -(e t )2+2e t -1,则m ′(t )=e t (t 2+2t +2-2e t ).令n (t )=t 2+2t +2-2e t ,则n ′(t )=2t +2-2e t .设φ(t )=2t +2-2e t ,则当t >0时,φ′(t )=2-2e t <0,所以当t >0时,φ(t )单调递减,因为φ(0)=0,所以当t >0时,φ(t )<0,则n ′(t )<0,所以当t >0时,n (t )单调递减,又n (0)=0,所以当t >0时,n (t )<0,则m ′(t )<0,所以当t >0时,m (t )单调递减,因为m (0)=0,所以当t >0时,m (t )<0.综上可知,原式得证.4.若对任意实数k ,b 都有函数y =f (x )+kx +b 的图象与直线y =kx +b 相切,则称函数f (x )为“恒切函数”,设函数g (x )=a e x-x -pa ,a ,p ∈R.(1)讨论函数g (x )的单调性;(2)已知函数g (x )为“恒切函数”.①求实数p 的取值范围;②当p 取最大值时,若函数h (x )=g (x )e x -m 为“恒切函数”,求证:0≤m <316. (参考数据:e 3≈20)解:(1)g ′(x )=a e x -1,当a ≤0时,g ′(x )<0恒成立,函数g (x )在R 上单调递减;当a >0时,由g ′(x )>0,得x >-ln a ;由g ′(x )<0,得x <-ln a ,所以函数g (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增.综上,当a ≤0时,函数g (x )在R 上单调递减;当a >0时,函数g (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增.(2)①若函数f (x )为“恒切函数”,则函数y =f (x )+kx +b 的图象与直线y =kx +b 相切,设切点为(x 0,y 0),则f ′(x 0)+k =k 且f (x 0)+kx 0+b =kx 0+b ,即f ′(x 0)=0,f (x 0)=0.因为函数g (x )为“恒切函数”,所以存在x 0,使得g ′(x 0)=0,g (x 0)=0,即⎩⎨⎧ a e 0x -x 0-pa =0,a e 0x -1=0,解得a =e -0x >0,p =e 0x (1-x 0).设m (x )=e x (1-x ),则m ′(x )=-x e x ,由m ′(x )<0,得x >0;由m ′(x )>0,得x <0,故函数m (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,从而m (x )max =m (0)=1,故实数p 的取值范围为(-∞,1].②证明:由①知当p 取最大值时,p =1,a =1,故h (x )=(e x -x -1)e x -m ,则h ′(x )=(2e x -x -2)e x .因为函数h (x )为“恒切函数”,故存在x 0,使得h ′(x 0)=0,h (x 0)=0,由h ′(x 0)=0,得(2e 0x -x 0-2)e 0x =0,即2e x 0-x 0-2=0.设n (x )=2e x -x -2,则n ′(x )=2e x -1,由n ′(x )>0,得x >-ln 2;由n ′(x )<0,得x <-ln 2,故n (x )在(-∞,-ln 2)上单调递减,在(-ln 2,+∞)上单调递增.在单调递增区间(-ln 2,+∞)上,n (0)=0,故x 0=0,则由h (x 0)=0,得m =0.在单调递减区间(-∞,-ln 2)上,n (-2)=2e -2>0,n ⎝ ⎛⎭⎪⎫-32=2e -32-12≈2×(20)-12-12=15-12<0,故在区间⎝ ⎛⎭⎪⎫-2,-32上存在唯一的x 0,使得2e 0x -x 0-2=0,即e 0x =x 0+22,此时由h (x 0)=0,得m =(e0x -x 0-1)e x 0=⎝ ⎛⎭⎪⎫x 0+22-x 0-1·x 0+22=-14x 0(x 0+2)=-14(x 0+1)2+14, 因为函数r (x )=-14(x +1)2+14在⎝ ⎛⎭⎪⎫-2,-32上单调递增,且r (-2)=0,r ⎝ ⎛⎭⎪⎫-32=316,所以0<m <316. 综上,0≤m <316.。
北师大版版高考数学一轮复习函数导数及其应用导数的概念及运算教学案理解析版

[考纲传真] 1.了解导数概念的实际背景,理解导数的几何意义.2.能根据导数定义求函数y=C (C为常数),y=x,y=x2,y=x3,y=错误!,y=错误!的导数.3.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.1.导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率.相应地,切线方程为y—f(x0)=f′(x0)(x—x0).2.基本初等函数的导数公式基本初等函数导函数f(x)=C(C为常数)f′(x)=0f(x)=xα(α是实数)f′(x)=αxα—1y=sin x y′=cos xy=cos x y′=—sin xf(x)=e x f′(x)=e xf(x)=a x(a>0,a≠1)f′(x)=a x ln_af(x)=ln x f′(x)=错误!f(x)=log a xf′(x)=错误!(a>0,且a≠1)(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)错误!′=错误!(g(x)≠0).4.复合函数的导数复合函数y=f(φ(x))的导数和函数y=f(u),u=φ(x)的导数间的关系为y x′=[f(φ(x))]′=f′(u)·φ′(x).[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.()(2)f′(x0)与[f(x0)]′表示的意义相同.()(3)与曲线只有一个公共点的直线一定是曲线的切线.()(4)函数f(x)=sin(—x)的导数是f′(x)=cos x.()[答案] (1)×(2)×(3)×(4)×2.已知f(x)=x ln x,若f′(x0)=2,则x0等于()A.e2B.eC.错误!D.ln 2B[∵f′(x)=ln x+x·错误!=ln x+1,由f′(x0)=ln x0+1=2得ln x0=1,∴x0=e.]3.有一机器人的运动方程为s(t)=t2+错误!(t是时间,s是位移),则该机器人在时刻t=2时的瞬时速度为()A.错误!B.错误!C.错误!D.错误!D[由题意知,机器人的速度方程为v(t)=s′(t)=2t—错误!,故当t=2时,机器人的瞬时速度为v(2)=2×2—错误!=错误!.]4.曲线y=x2+错误!在点(1,2)处的切线方程为________.x—y+1=0 [∵y′=2x—错误!,∴y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,∴切线方程为y—2=x—1,即x—y+1=0.]5.设f(x)=ln(3—2x)+cos 2x,则f′(0)=________.—错误![∵f′(x)=错误!—2sin 2x,∴f′(0)=—错误!.]导数的计算1.已知f(x)=x2+2xf′(1),则f′(0)=________.—4[∵f′(x)=2x+2f′(1),∴f′(1)=2+2f′(1),∴f′(1)=—2.∴f′(0)=2f′(1)=2×(—2)=—4.]2.求下列函数的导数:(1)y=(x+1)(x+2)(x+3);(2)y=sin 错误!错误!;(3)y=错误!.[解] (1)因为y=(x2+3x+2)(x+3)=x3+6x2+11x+6,所以y′=3x2+12x+11.(2)因为y=sin 错误!错误!=—错误!sin x,所以y′=错误!′=—错误!(sin x)′=—错误!cos x.(3)y′=错误!′=错误!=—错误!.[规律方法] 导数计算的技巧1求导之前,应对函数进行化简,然后求导,减少运算量.2复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.►考法1求切线方程【例1】(2018·全国卷Ⅰ)设函数f(x)=x3+(a—1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=—2xB.y=—xC.y=2xD.y=xD[因为函数f(x)=x3+(a—1)x2+ax为奇函数,所以f(—x)=—f(x),所以(—x)3+(a—1)(—x)2+a(—x)=—[x3+(a—1)x2+ax],所以2(a—1)x2=0,因为x∈R,所以a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.]►考法2求切点坐标【例2】已知曲线y=错误!—3ln x的一条切线的斜率为—错误!,则切点的横坐标为()A.3B.2C.1D.错误!B[因为y=错误!—3ln x,所以y′=错误!—错误!.再由导数的几何意义,令错误!—错误!=—错误!,解得x=2或x=—3(舍去).故选B.]►考法3切线的条数问题【例3】过点A(2,1)作曲线f(x)=x3—3x的切线最多有()A.3条B.2条C.1条D.0条A[由题意得,f′(x)=3x2—3,设切点为(x0,x错误!—3x0),那么切线的斜率为k=3x错误!—3,利用点斜式方程可知切线方程为y—(x错误!—3x0)=(3x错误!—3)(x—x0),将点A(2,1)代入可得关于x0的一元三次方程2x错误!—6x错误!+7=0,令y=2x错误!—6x错误!+7,则y′=6x错误!—12x0.由y′=0得x0=0或x0=2.当x0=0时,y=7>0;x0=2时,y=—1<0.结合函数y=2x错误!—6x错误!+7的单调性可得方程2x错误!—6x错误!+7=0有3个解,故过点A(2,1)作曲线f(x)=x3—3x的切线最多有3条,故选A.]►考法4求参数的值(范围)【例4】(2016·全国卷Ⅱ)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=________.1—ln 2[设直线y=kx+b与两曲线的切点分别为P1(x1,ln x1+2),P2(x2,ln(x2+1)).∵y′1=错误!,y′2=错误!,∴错误!=错误!,∴x1=x2+1.此时切点P1(x2+1,ln(x2+1)+2).故切线斜率k=错误!=2.由错误!=2,得切点P1的坐标为错误!,∴切线方程为y—2+ln 2=2错误!.令x=0,得y=1—ln 2,即b=1—ln 2.][规律方法] 1求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y=f x在点P x0,f x0处的切线方程是y—f x0=f′x0x—x0;求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:1切点处的导数是切线的斜率;2切点在切线上;3切点在曲线上.切线方程为()A.y=x—1B.y=2x—1C.y=2x—2D.y=x(2)若曲线y=ln x+ax2(a为常数)不存在斜率为负数的切线,则实数a的取值范围是()A.错误!B.错误!C.(0,+∞)D.[0,+∞)(3)(2019·青岛模拟)已知函数y=f(x)及其导函数y=f′(x)的图像如图所示,则曲线y=f (x)在点P处的切线方程是________.(1)C(2)D(3)x—y—2=0 [(1)∵f(x)=ln(2x—1),∴f′(x)=错误!.∴f′(1)=2,又∵f(1)=0,∴切线方程是:y=2x—2,故选C.(2)由题意得y′=错误!+2ax(x>0).因为曲线不存在斜率为负数的切线,则y′≥0恒成立,即a≥错误!m ax.因为x>0,所以—错误!<0,即a≥0,故选D.(3)根据导数的几何意义及图像可知,曲线y=f(x)在点P处的切线的斜率k=f′(2)=1,又过点P(2,0),所以切线方程为x—y—2=0.]1.(2016·全国卷Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=ln(—x)+3x,则曲线y=f (x)在点(1,—3)处的切线方程是________.y=—2x—1[因为f(x)为偶函数,所以当x>0时,f(x)=f(—x)=ln x—3x,所以f′(x)=错误!—3,则f′(1)=—2.所以y=f(x)在点(1,—3)处的切线方程为y+3=—2(x—1),即y=—2x—1.]2.(2018·全国卷Ⅲ)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为—2,则a=________.—3[y′=(ax+1+a)e x,由曲线在点(0,1)处的切线的斜率为—2,得y′|x=0=(ax+1+a)e x|x=0=1+a=—2,所以a=—3.]。
2020版高考数学一轮总复习 第三单元导数及其应用 教案全集 含解析

导数的概念及运算1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义,会求曲线的切线方程. 3.能根据导数的定义,求一些简单函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理 1.导数的概念(1)平均变化率: 函数y =f (x )从x 0到x 0+Δx 的平均变化率ΔyΔx= f x0+Δx -f x 0Δx.(2)函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →0 ΔyΔx 通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 f ′(x 0)=li m Δx →0f x 0+Δx -f x 0Δx.(3)函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,称作f (x )的导函数,记作 y ′或f ′(x ) .2. 导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的 切线的斜率 .曲线在点P (x 0,f (x 0))处的切线方程是 y -f (x 0)=f ′(x 0)(x -x 0) . 3.导数的运算(1)基本初等函数的导数公式 ①C ′= 0 (C 为常数); ②(x n)′= nxn -1(n ∈Q );③(sin x )′= cos x ; ④(cos x )′= -sin x ; ⑤(a x)′= a xln a (a >0且a ≠1);⑥(e x )′= e x; ⑦(log a x )′=1x ln a(a >0且a ≠1); ⑧(ln x )′= 1x.(2)导数的运算法则 ①和差的导数[f (x )±g (x )]′= f ′(x )±g ′(x ) . ②积的导数[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) . ③商的导数 [f xg x]′= fx g x -f x gxg 2x(g (x )≠0).热身练习1.若f (x )=2x 2图象上一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx 等于(C)A .3+2ΔxB .4+ΔxC .4+2ΔxD .3+ΔxΔy =f (x +Δx )-f (x )=2(1+Δx )2-2=2[2Δx +(Δx )2],所以Δy Δx =4+2Δx .2.设函数f (x )可导,则lim Δx →0 f+Δx -f2Δx等于(C)A .f ′(1) B.2f ′(1) C.12f ′(1) D.f ′(2)因为f (x )可导,所以lim Δx →0f+Δx -f2Δx =12lim Δx →0 f +Δx -fΔx =12f ′(1). 3.下列求导运算中正确的是(B) A .(x +1x )′=1+1x2 B .(lg x )′=1x ln 10C .(ln x )′=xD .(x 2cos x )′=-2x sin x(x +1x )′=1-1x 2,故A 错;(ln x )′=1x,故C 错;(x 2cos x )′=2x cos x -x 2sin x ,D 错.4.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为 2x -y -2=0 .因为y ′=2x,y ′| x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.5.(1)(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 3 .(2)y =xx +1,则y ′x =2= 19.(1)因为f ′(x )=2e x+(2x +1)e x=(2x +3)e x ,所以f ′(0)=3e 0=3. (2)因为y ′=(x x +1)′=x x +-x x +x +2=1x +2,所以y ′x =2=1+2=19.导数的概念利用导数的定义求函数f (x )=1x +2的导数.因为Δy =1x +Δx +2-1x +2=-Δx x +Δx +x +,所以Δy Δx=-1x +Δx +x +,所以f ′(x )=li m Δx →0 ΔyΔx =li m Δx →0[-1x +Δx +x +]=-1x +x +=-1x +2.利用定义求导数的基本步骤: ①求函数的增量:Δy =f (x +Δx )-f (x ); ②求平均变化率:Δy Δx=fx +Δx -f xΔx;③取极限得导数:f ′(x )=li m Δx →0f x +Δx -f xΔx.1.设函数f (x )在x 0处可导,则li m Δx →0 f x 0-Δx -f x 0Δx等于(B)A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)li m Δx →0f x 0-Δx -f x 0Δx=-li mΔx →0f [x 0+-Δx-f x 0-Δx=-f ′(x 0).导数的运算求下列函数的导数:(1)y =x 2sin x; (2)y =1+sin x 1-cos x.(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=+sin x-cos x -+sin x-cos x-cos x2=cos x-cos x -+sin xx-cos x2=cos x -sin x -1-cos x2.利用导数公式和运算法则求导数,是求导数的基本方法(称为公式法).用公式法求导数的关键是:认清函数式的结构特点,准确运用常用的导数公式.2.(1)(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 e .(2)设y =1+cos x sin x ,则y ′π2= -1 .(1)因为f (x )=e xln x ,所以f ′(x )=e xln x +ex x,所以f ′(1)=e.(2)因为y ′=+cos x x -+cos x xsin 2x=-sin 2x -+cos x os x sin 2x=-1-cos xsin 2x, 所以y ′π2=-1.求切线方程(1)(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)若曲线y =x ln x 存在斜率为2的切线,则该切线方程为________________.因为y′=2x-1x2,所以y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,所以切线方程为y-2=x-1,即x-y+1=0.(2)因为y′=ln x+1,设切点为P(x0,y0),则y′x=x0=ln x0+1=2,所以x0=e,此时y0=x0ln x0=eln e=e,所以切点为(e,e).故所求切线方程为y-e=2(x-e),即2x-y-e=0.(1)x-y+1=0 (2)2x-y-e=0(1)求切线方程有如下三种类型:①已知切点(x0,y0),求切线方程;②已知切线的斜率k,求切线方程;③求过(x1,y1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.(2)三种类型的求解方法:类型①,利用y-f(x0)=f′(x0)(x-x0)直接求出切线方程.类型②,设出切点(x0,y0),再由k=f′(x0),再由(x0,y0)既在切线上,又在曲线上求解;类型③,先设出切点(x0,y0),利用k=f′(x0)及已知点(x1,y1)在切线上求解.3.(2018·广州市模拟)已知直线y=kx-2与曲线y=x ln x相切,则实数k的值为(D) A.ln 2 B.1C.1-ln 2 D.1+ln 2本题实质上是求曲线过点(0,-2)的切线问题,因为(0,-2)不是切点,可先设出切点,写出切线方程,再利用切线过(0,-2)得到所求切线方程.设切点为(x0,x0ln x0),因为y′=ln x+1,所以k=ln x0+1,所以切线方程为y-x0ln x0=(ln x0+1)(x-x0),因为切线过点(0,-2),所以-2-x0ln x0=-x0ln x0-x0,所以x0=2,所以k=ln 2+1.1.函数y=f(x)的导数实质上是“增量(改变量)之比的极限”,即f′(x)=li mΔx→0Δy Δx=li mΔx→0f x+Δx-f xΔx.2.关于函数的导数,要熟练掌握基本导数公式和求导的运算法则,一般要遵循先化简再求导的基本原则.3.导数f′(x0)的几何意义是曲线y=f(x)在点M(x0,f(x0))处切线的斜率,其切线方程为y-f(x0)=f′(x0)(x-x0).若设点(x0,y0)是切线l与曲线C的切点,则有如下结论:①f′(x0)是切线l的斜率;②点(x0,y0)在切线l上;③点(x0,y0)在曲线C上.导数在函数中的应用——单调性1.了解函数的单调性与其导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).知识梳理1.函数的单调性与导数的关系设函数y=f(x)在某个区间(a,b)内有导数.如果f′(x)>0,则f(x)在(a,b)上为增函数;如果f′(x)<0,则f(x)在(a,b)上为减函数.2.导数与函数单调性的关系设函数y=f(x)在某个区间(a,b)内可导,且f′(x)在(a,b)的任意子集内都不恒等于0.如果f (x )在区间(a ,b )内单调递增,则在(a ,b )内f ′(x ) ≥ 0恒成立; 如果f (x )在区间(a ,b )内单调递减,则在(a ,b )内f ′(x ) ≤ 0恒成立.热身练习1.“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件f ′(x )>0在(a ,b )上成立⇒f (x )在(a ,b )上单调递增;反之,不一定成立,如y =x 3在(-1,1)上单调递增,但在(-1,1)上f ′(x )=3x 2≥0.2.设f (x )=2x 2-x 3,则f (x )的单调递减区间是(D) A .(0,43) B .(43,+∞)C .(-∞,0)D .(-∞,0)和(43,+∞)f ′(x )=4x -3x 2<0⇒x <0或x >43.3.函数f (x )=(3-x 2)e x的单调递增区间是(D) A .(-∞,0) B .(0,+∞)C .(-∞,-3)和(1,+∞) D.(-3,1)因为f ′(x )=-2x e x+(3-x 2)e x =(-x 2-2x +3)e x ,令f ′(x )>0,得x 2+2x -3<0,解得-3<x <1.所以f (x )的单调递增区间为(-3,1).4.设定义在区间(a ,b )上的函数f (x ),其导函数f ′(x )的图象如右图所示,其中x 1,x 2,x 3,x 4是f ′(x )的零点且x 1<x 2<x 3<x 4.则(1)f (x )的增区间为 (a ,x 1),(x 2,x 4) ; (2)f (x )的减区间为 (x 1,x 2),(x 4,b ) .5.(2019·福建三明期中)函数f (x )=x 3-3bx +1在区间[1,2]上是减函数,则实数b 的取值范围为 [4,+∞) .因为f ′(x )=3x 2-3b ≤0,所以b ≥x 2,要使b ≥x 2在[1,2]上恒成立, 令g (x )=x 2,x ∈[1,2],当x ∈[1,2],1≤g (x )≤4,所以b ≥4.利用导数求函数的单调区间函数f (x )=x 2-2x -4ln x 的单调递增区间是____________.函数f (x )的定义域为(0,+∞). f ′(x )=2x -2-4x =2x 2-2x -4x,由f ′(x )>0,得x 2-x -2>0,解得x >2或x <-1(舍去). 所以f (x )的单调递增区间为(2,+∞).(2,+∞)求可导函数f (x )的单调区间的步骤: ①求函数f (x )的定义域; ②求导数f ′(x );③解不等式f ′(x )>0和f ′(x )<0;④确定函数y =f (x )的单调区间:使f ′(x )>0的x 的取值区间为增区间,使f ′(x )<0的x 的取值区间为减区间.1.(2017·全国卷Ⅱ节选)设函数f (x )=(1-x 2)e x.讨论f (x )的单调性.f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.已知函数的单调性求参数的范围(经典真题)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞) D.[1,+∞)依题意得f ′(x )=k -1x≥0在(1,+∞)上恒成立,即k ≥1x在(1,+∞)上恒成立.令g (x )=1x,因为x >1,所以0<g (x )<1,所以k ≥1,即k 的取值范围为[1,+∞).D函数f (x )在(a ,b )上单调递增,可转化为f ′(x )≥0在该区间恒成立,从而转化为函数的最值(或值域)问题.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是(C)A .[-1,1]B .[-1,13]C .[-13,13]D .[-1,13](方法一)因为f (x )在(-∞,+∞) 单调递增,所以f ′(x )=1-23cos 2x +a cos x ≥0对x ∈(-∞,+∞)恒成立,即f ′(x )=-43cos 2x +a cos x +53≥0对x ∈(-∞,+∞)恒成立,令cos x =t ,-1≤t ≤1,则等价于:g (t )=-43t 2+at +53≥0对t ∈[-1,1]恒成立.等价于⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧-a +13≥0,a +13≥0,所以-13≤a ≤13.即a 的取值范围为[-13,13].(方法二:特殊值法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,因为f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增,排除A ,B ,D.故选C.利用导数求含参数的函数的单调区间已知f (x )=12x 2-a ln x (a ∈R ),求函数f (x )的单调区间.f (x )的定义域为(0,+∞),因为f ′(x )=x -a x =x 2-ax(x >0),当a ≤0时,f ′(x )≥0恒成立,所以函数f (x )的单调递增区间为(0,+∞). 当a >0时,令f ′(x )>0,得x >a . 令f ′(x )<0,得0<x <a .所以函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(1)当函数的解析式中含有参数时,如果参数对导函数的符号有影响或导数的零点是否在定义域内不确定时,要对参数进行分类讨论.(2)讨论时,首先要看f ′(x )的符号是否确定,再看f ′(x )的零点与定义域的关系. (3)画出导函数的示意图有助于确定单调性.3.(2017·全国卷Ⅲ节选)已知函数f (x )=ln x +ax 2+(2a +1)x .讨论f (x )的单调性.f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈(0,-12a )时,f ′(x )>0;当x ∈(-12a,+∞)时,f ′(x )<0.故f (x )在(0,-12a )上单调递增,在(-12a,+∞)上单调递减.(1)求f(x)的定义域,并求导数f′(x);(2)解不等式f′(x)>0和f′(x)<0;(3)确定函数y=f(x)的单调区间:使f′(x)>0的x的取值区间为增区间,使f′(x)<0的x的取值区间为减区间.在求单调区间时,要注意如下两点:①要注意函数的定义域;②当求出函数的单调区间(如单调增区间)有多个时,不能把这些区间取并集.2.已知函数在区间上单调,求其中的参数时,要注意单调性与导数的关系的转化.即:(1)如果f(x)在区间[a,b]单调递增⇒f′(x)≥0在x∈[a,b]上恒成立;(2)如果f(x)在区间[a,b]单调递减⇒f′(x)≤0在x∈[a,b]上恒成立.3.处理含参数的单调性问题,实质是转化为含参数的不等式的解法问题,但要注意在函数的定义域内讨论.导数在函数中的应用——极值与最值1.掌握函数极值的定义及可导函数的极值点的必要条件和充分条件(导数在极值点两侧异号).2.会研究一些简单函数的极值.3.会利用导数求一些函数在给定区间上的最值.知识梳理1.函数的极值(1)函数极值的定义:设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0) ,我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.函数的最值(1)(最值定理)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数f(x)在(a,b)内的极值.②将f(x)的极值和端点的函数值比较,其中最大的一个为最大值;最小的一个为最小值.热身练习1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(A)A.1个 B.2个C.3个 D.4个因为f′(x)与x轴有4个交点,即f′(x)=0有4个解,但仅左边第二个交点x=x0满足x<x0时,f′(x)<0;x>x0时,f′(x)>0,其他交点均不符合该条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(C) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件因为函数f(x)在x=x0处可导,所以若x=x0是f(x)的极值点,则f′(x0)=0,所以q⇒p,故p是q的必要条件;反之,以f (x )=x 3为例,f ′(0)=0,但x =0不是极值点.所以p q . 故p 不是q 的充分条件.3.(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =(D) A .-4 B .-2 C .4 D .2由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,所以当x <-2或x >2时,f ′(x )>0; 当-2<x <2时,f ′(x )<0,所以f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数. 所以f (x )在x =2处取得极小值,所以a =2.4.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值、最小值分别是(C) A .1,-1 B .1,-17 C .3,-17 D .9,-19令f ′(x )=3x 2-3=0,得x =±1.f (1)=1-3+1=-1,f (-1)=-1+3+1=3, f (-3)=-17,f (0)=1.所以最大值为3,最小值为-17. 5.(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为 2 .f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数, 故f (x )max =f (2)=22-1=2.求函数的极值、最值求函数f (x )=13x 3-4x +4的极值.因为f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.(1)求可导函数f (x )的极值的步骤: ①确定函数的定义域,求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f ′(x )在方程根左、右值的符号;④作出结论:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.(2)求可导函数f (x )在[a ,b ]上最值的步骤: ①求f (x )在(a ,b )内的极值;②将f (x )各极值与f (a ),f (b )比较,得出f (x )在[a ,b ]上的最值.1.求函数f (x )=13x 3-4x +4在[-3,3]上的最大值与最小值.由例1可知,在[-3,3]上, 当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.又f (-3)=7,f (3)=1,所以f (x )在[-3,3]上的最大值为283,最小值为-43.含参数的函数的极值的讨论已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值.由f ′(x )=1-a x =x -ax(x >0)可知(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )的零点的存在; (2)参数是否影响f ′(x )不同零点的大小; (3)参数是否影响f ′(x )在零点左右的符号. 如果有影响,则要分类讨论.2.(2018·银川高三模拟节选)已知函数f (x )=ax -1-ln x (a ∈R ).讨论函数f (x )在定义域内的极值点的个数.f (x )的定义域为(0,+∞). f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,所以f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ;由f ′(x )>0得x >1a.所以f (x )在(0,1a )上递减,在(1a,+∞)上递增,所以f (x )在x =1a处有极小值.所以当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点.含参数的函数的最值讨论已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最大值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )max =f (1)=-a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )max =f (2)=ln 2-2a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.所以f (x )max =f (1a)=-ln a -1.综上可知:当0<a ≤12时,f (x )max =ln 2-2a ;当12<a <1时,f (x )max =-ln a -1; 当a ≥1时,f (x )max =-a .(1)求函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内使f ′(x )=0的点和区间端点的函数值,最后比较即可.(2)当函数f (x )中含有参数时,需要依据极值点存在的位置与所给区间的关系,对参数进行分类讨论.3.已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最小值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )min =f (2)=ln 2-2a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )min =f (1)=-a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,f (x )min =f (1)=-a ;当ln 2≤a <1时,f (x )min =f (2)=ln 2-2a . 综上可知:当0<a <ln 2时,函数f (x )min =-a ; 当a ≥ln 2时,函数f (x )min =ln 2-2a .1.求可导函数f(x)的极值的步骤:(1)确定f(x)的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根左、右值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.求可导函数f(x)在[a,b]上的最大值和最小值可按如下步骤进行:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a),f(b)比较,确定f(x)的最大值和最小值.3.求含参数的极值,首先求定义域;然后令f′(x)=0,解出根,根据根是否在所给区间或定义域内进行参数讨论,并根据左右两边导函数的正负号,从而判断f(x)在这个根处取极值的情况.4.含参数的最值,首先按照极值点是否在所给区间对参数进行讨论,然后比较区间内的极值和端点值的大小.导数的综合应用——导数与不等式1.能够构造函数利用导数证明一些简单的不等式和解某些不等式.2.会将恒成立问题及存在性问题转化为最值问题进行求解.知识梳理1.如果不等式f(x)≥g(x),x∈[a,b]恒成立,则转化为函数φ(x)=f(x)-g(x)在x ∈[a,b]内的最小值≥0.(填“最小值”“最大值”“极小值”或“极大值”) 2.若f′(x)>0,x∈[a,b],且x0∈(a,b)有f(x0)=0,则f(x)>0的x的取值范围为(x0,b) ,f(x)<0的x的取值范围为(a,x0) .3.若f(x)>m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最小值>m.(填“最小值”“最大值”“极小值”或“极大值”)若f (x )<m 在x ∈[a ,b ]上恒成立,则函数f (x )在x ∈[a ,b ]的 最大值 <m .(填“最小值”“最大值”“极小值”或“极大值”)4.若f (x )>m 在x ∈[a ,b ]有解,则函数f (x )在x ∈[a ,b ]的 最大值 >m .(填“最小值”“最大值”“极小值”或“极大值”)热身练习1.对于∀x ∈[0,+∞),则e x与1+x 的大小关系为(A) A .e x≥1+x B .e x<1+xC .e x=1+x D .e x与1+x 大小关系不确定令f (x )=e x-(1+x ),因为f ′(x )=e x-1,所以对∀x ∈[0,+∞),f ′(x )≥0,故f (x )在[0,+∞)上递增,故f (x )≥f (0)=0, 即e x≥1+x .2.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )>0,则必有(B) A .f (0)+f (2)<2f (1) B .f (0)+f (2)>2f (1) C .f (0)+f (2)=2f (1)D .f (0)+f (2)与2f (1)的大小不确定依题意,当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数, 故当x =1时,f (x )取最小值,所以f (0)>f (1),f (2)>f (1),所以f (0)+f (2)>2f (1).3.已知定义在R 上函数f (x )满足f (-x )=-f (x ),且x >0时,f ′(x )<0,则f (x )>0的解集为(A)A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)因为f (x )是定义在R 上的奇函数,所以f (0)=0,又x >0时,f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减,所以f (x )>0的解集为(-∞,0).4.若函数h (x )=2x -k x +k3在[1,+∞)上是增函数,则实数k 的取值范围是 [-2,+∞).因为h′(x)=2+kx2,且h(x)在[1,+∞)上单调递增,所以h′(x)=2+kx2≥0,所以k≥-2x2,要使k≥-2x2在[1,+∞)上恒成立,则只要k≥(-2x2)max,所以k≥-2.5.设f(x)=-x2+a,g(x)=2x.(1)若∀x∈[0,1],f(x)≥g(x),则实数a的取值范围为[3,+∞);(2)若∃x∈[0,1],f(x)≥g(x),则实数a的取值范围为[0,+∞).(1)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]min=F(1)=-3+a.因为“若∀x∈[0,1],f(x)≥g(x)”等价于“[F(x)]min≥0,x∈[0,1]”,所以-3+a≥0,解得a≥3.所以实数a的取值范围为[3,+∞).(2)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]max=F(0)=a.因为“若∃x∈[0,1],f(x)≥g(x)”等价于“[F(x)]max≥0,x∈[0,1]”,所以a≥0.所以实数a的取值范围为[0,+∞).利用导数解不等式若f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4的解集为A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)令g(x)=f(x)-2x-4,因为g′(x)=f′(x)-2>0,所以g(x)在(-∞,+∞)上是增函数,又g(-1)=f(-1)-2×(-1)-4=0,所以f(x)>2x+4⇔g(x)>g(-x>-1.所以f(x)>2x+4的解集为(-1,+∞).B利用导数解不等式的基本方法:(1)构造函数,利用导数研究其单调性;(2)寻找一个特殊的函数值;(3)根据函数的性质(主要是单调性,结合图象)得到不等式的解集.1.(2018·遂宁模拟)已知f(x)为定义在(-∞,0)上的可导函数,2f(x)+xf′(x)>x2恒成立,则不等式(x+2018)2f(x+2018)-4f(-2)>0的解集为(B)A.(-2020,0) B.(-∞,-2020)C.(-2016,0) D.(-∞,-2016)构造函数F(x)=x2f(x),x<0,当x<0时,F′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)],因为2f(x)+xf′(x)>x2≥0,所以F′(x)≤0,则F(x)在(-∞,0)上递减.又(x+2018)2f(x+2018)-4f(-2)>0可转化为(x+2018)2f(x+2018)>(-2)2f(-2),即F(x+2018)>F(-2),所以x+2018<-2,所以x<-2020.即原不等式的解集为(-∞,-2020).利用导数证明不等式已知函数f(x)=(1+x)e-2x.当x∈[0,1]时,求证:f(x)≤11+x.要证x∈[0,1]时,(1+x)e-2x≤11+x,只需证明e x≥x+1.记k(x)=e x-x-1,则k′(x)=e x-1,当x∈(0,1)时,k′(x)>0,因此,k(x)在[0,1]上是增函数,故k(x)≥k(0)=0,所以f(x)≤11+x,x∈[0,1].(1)证明f(x)>g(x)的步骤:①构造函数F(x)=f(x)-g(x);②研究F(x)的单调性或最值;③证明F (x )min >0.(2)注意:其中构造函数是将不等式问题转化为函数问题.为了利用导数研究函数的性质,常用分析法...将要证明的不等式进行适当变形或化简,然后构造相应的函数.2.(2018·全国卷Ⅰ节选)已知函数f (x )=a e x-ln x -1.证明:当a ≥1e时,f (x )≥0.当a ≥1e 时,f (x )≥exe -ln x -1.设g (x )=e x e -ln x -1,则g ′(x )=e xe -1x .当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.已知不等式恒成立求参数的范围已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x ∈[-3,3],都有f (x )≤g (x )成立,求实数c 的取值范围.f (x )≤g (x ) ⇔7x 2-28x -c ≤2x 3+4x 2-40x ⇔c ≥-2x 3+3x 2+12x , 所以原命题等价于c ≥-2x 3+3x 2+12x 在x ∈[-3,3]上恒成立. 令h (x )=-2x 3+3x 2+12x ,x ∈[-3,3],则c ≥h (x )max . 因为h ′(x )=-6x 2+6x +12=-6(x -2)(x +1),当x 变化时,h ′(x )和h (x )在[-3,3]上的变化情况如下表:单调递减单调递增 单调递减 易得h (x )max =h (-3)=45,故c ≥45.(1)已知不等式恒成立,求参数a 的范围,例如f (x )>g (x )在x ∈D 上恒成立,其主要方法是:①构造函数法:将不等式变形为f (x )-g (x )>0,构造函数F (x )=f (x )-g (x ),转化为F (x )min >0.②分离参数法:将不等式变为a >h (x )或a <h (x )在x ∈D 内恒成立,从而转化为a >h (x )max或a <h (x )min .(2)注意:①恒成立问题常转化为最值问题,要突出转化思想的运用;②“f (x )max ≤g (x )min ”是“f (x )≤g (x )”的一个充分不必要条件,分析不等式恒成立时,要注意不等号两边的式子中是否是有关联的变量,再采取相应的策略.1. 已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x 1∈[-3,3],x 2∈[-3,3]都有f (x 1)≤g (x 2)成立,求实数c 的取值范围.此题与例3不同,例3中不等式两边的式子中均有相同的变化的未知量x ,故可先移项,直接进行转化;而此题中不等式两边的式子中的x 1,x 2相互独立,则等价于f (x 1)max ≤g (x 2)min.由∀x 1∈[-3,3],x 2∈[-3,3], 都有f (x 1)≤g (x 2)成立,得f (x 1)max ≤g (x 2)min . 因为f (x )=7x 2-28x -c =7(x -2)2-28-c , 当x 1∈[-3,3]时,f (x 1)max =f (-3)=147-c ;g (x )=2x 3+4x 2-40x ,g ′(x )=6x 2+8x -40=2(3x +10)(x -2),当x 变化时,g ′(x )和g (x )在[-3,3]上的变化情况如下表:单调递减单调递增易得g (x )min =g (2)=-48, 故147-c ≤-48,即c ≥195.1.利用导数证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数F (x )=f (x )-g(x),然后根据函数的单调性,或者函数的最值证明F(x)>0.其中要特别关注如下两点:(1)是直接构造F(x),还是适当变形化简后构造F(x),对解题的繁简有影响;(2)找到F(x)在什么地方可以等于零,往往是解决问题的一个突破口.2.利用导数解不等式的基本方法是构造函数,寻找一个函数的特殊值,通过研究函数的单调性,从而得出不等式的解集.3.处理已知不等式恒成立求参数范围的问题,要突出转化的思想,将其转化为函数的最值问题.已知f(x)>g(x)在x∈D上恒成立,求其中参数a的范围,其主要方法是:①构造函数法:将不等式变形为f(x)-g(x)>0,构造函数F(x)=f(x)-g(x),转化为F(x)min>0.②分离参数法:将不等式变为a>h(x)或a<h(x)在x∈D内恒成立,从而转化为a>h(x)max 或a<h(x)min.导数的综合应用——导数与方程1.能利用导数研究一般函数的单调性、极值与最值,获得对函数的整体认识.2.会利用导数研究一般函数的零点及其分布.知识梳理1.函数零点的有关知识(1)零点的概念:函数的零点是函数图象与x轴交点的横坐标.(2)几个常用结论:①f(x)有零点y=f(x)的图象与x轴有交点方程f(x)=0有实数解.②F(x)=f(x)-g(x)有零点y=f(x)与y=g(x)的图象有交点方程f(x)=g(x)有实数解.③零点存在定理:f (x )在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )内 至少有一 个零点.2.利用导数研究函数零点的方法(1)研究y =f (x )的图象,利用数形结合的思想求解. (2)研究方程有解的条件,利用函数与方程的思想求解.热身练习1.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是(D)观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,所以对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.2.函数f (x )=13x 3-4x +4的零点个数为(D)A .0B .1C .2D .3因为f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增由此可得到f (x )的大致图象(如下图).由图可知f (x )有3个零点.3.若方程13x 3-4x +4+a =0有3个不同的解,则a 的取值范围为(B)A .(-43,283)B .(-283,43)C .[-43,283]D .[-283,43]13x 3-4x +4+a =0有3个不同的解⇔f (x )=13x 3-4x +4与g (x )=-a 有3个不同的交点.利用第2题图可知,-43<-a <283,即-283<a <43.4.若函数g (x )=13x 3-4x +4+a 的图象与x 轴恰有两个公共点,则a =(B)A.283或-43 B .-283或43C .-283或283D .-43或43g (x )=13x 3-4x +4+a 与x 轴恰有两个公共点⇔方程13x 3-4x +4+a =0有2个不同的解⇔f (x )=13x 3-4x +4与φ(x )=-a 有2个不同的交点.利用第2题图可知,-a =-43或-a =283,所以a =-283或a =43.5.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是(C) A .(-∞,ln 2) B .(ln 2,+∞) C .(-∞,2ln 2-2] D .[2ln 2-2,+∞)(方法一)因为f′(x)=e x-2,令e x-2=0得,e x=2,所以x=ln 2,当x∈(-∞,ln 2)时,f′(x)<0,f(x)单调递减;当x∈(ln 2,+∞)时,f′(x)>0,f(x)单调递增,所以当x=ln 2时,f(x)取最小值f(x)min=2-2ln 2+a.要f(x)有零点,所以a≤2ln 2-2.(方法二)函数f(x)=e x-2x+a有零点,即关于x的方程e x-2x+a=0有实根,即方程a=2x-e x有实根.令g(x)=2x-e x(x∈R),则g′(x)=2-e x.当x<ln 2时,g′(x)>0;当x>ln 2时,g′(x)<0.所以当x=ln 2时,g(x)max=g(ln 2)=2ln 2-2,所以函数g(x)的值域为(-∞,2ln 2-2].所以a的取值范围为(-∞,2ln 2-2].利用导数研究三次函数的零点及其分布已知函数f(x)=x3-12x+a,其中a≥16,则f(x)的零点的个数是A.0或1 B.1或2C.2 D.3(方法一:从函数角度出发,研究f(x)的图象与x轴的交点)因为f′(x)=3x2-12,令f′(x)=3x2-12=0,得x=±2,当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增由此可得到f(x)的大致图象(如图),由a≥16得,a+16>0,a-16≥0,当a=16时,f(x)的图象与x轴有2个交点;当a>16时,f(x)的图象与x轴只有1个交点.所以f(x)的零点个数为1或2.(方法二:从方程角度出发,利用函数与方程的思想)f(x)=x3-12x+a的零点个数⇔方程x3-12x=-a的解的个数⇔g(x)=x3-12x与h(x)=-a的交点个数.画出g(x)=x3-12x与h(x)=-a的图象.由g′(x)=3x2-12=0,得x=±2,当x变化时,g′(x),g(x)的变化情况如下表:单调递增单调递减单调递增所以g(x)的图象如右图所示:因为a≥16,所以y=-a≤-16.由图可知直线y=-a与y=x3-12x的图象有1个或2个交点.B利用导数研究函数的零点的基本思路: (1)研究y =f (x )的图象,利用数形结合的思想求解; (2)研究f (x )=0有解,利用函数与方程的思想求解.1.(经典真题)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为(B)A .(2,+∞) B.(-∞,-2) C .(1,+∞) D.(-∞,-1)当a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a.若a >0,由图象知f (x )有负数零点,不符合题意.若a <0,由图象结合f (0)=1>0知,此时必有f (2a )>0,即a ×8a 3-3×4a2+1>0,化简得a 2>4,又a <0,所以a <-2.利用导数研究超越方程的根及其分布已知函数f (x )=x -a e x(a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2,求a 的取值范围.由f (x )=x -a e x,可得f ′(x )=1-a e x. 下面分两种情况讨论:(1)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (2)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞). 于是,“函数y =f (x )有两个零点”等价于如下条件同时成立: ①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0; ③存在s 2∈(-ln a ,+∞),满足f (s 2)<0. 由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1,而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;而当x ∈(-ln a ,+∞)时,由于x →+∞时,e x 增长的速度远远大于x 的增长速度,所以一定存在s 2∈(-ln a ,+∞)满足f (s 2)<0.另法:取s 2=2a +ln 2a ,满足s 2∈(-ln a ,+∞),且f (s 2)=(2a -e 2a )+(ln 2a -e 2a)<0.所以a 的取值范围是(0,e -1).函数的零点是导数研究函数的性质的综合应用,要注意如下方面: (1)利用导数研究函数的单调性、极值、最值等性质; (2)数形结合思想方法的应用;(3)函数零点存在定理及根的分布知识的应用.2.(2018·广州模拟节选)已知函数f (x )=a ln x +x 2(a ≠0),若函数f (x )恰有一个零点,求实数a 的取值范围.函数f (x )的定义域为(0,+∞). 因为f (x )=a ln x +x 2,所以f ′(x )=a x +2x =2x 2+ax.①当a >0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增, 取x 0=e -1a ,则f (e -1a )=-1+(e -1a)2<0,(或:因为0<x 0<a 且x 0<1e 时,所以f (x 0) =a ln x 0 +x 20 < a ln x 0+a <a ln 1e +a =0.)因为f (1)=1,所以f (x 0)·f (1)<0,此时函数f (x )有一个零点.②当a <0时,令f ′(x )=0,解得x =-a2. 当0<x <-a 2时,f ′(x )<0,所以f (x )在(0,-a2)上单调递减, 当x >-a2时,f ′(x )>0,所以f (x )在(-a2,+∞)上单调递增. 要使函数f (x )有一个零点, 则f (-a2)=a ln -a 2-a2=0,即a =-2e. 综上所述,若函数f (x )恰有一个零点,则a =-2e 或a >0.利用导数研究两函数图象的交点问题已知函数f (x )=x +a x (a ∈R ),g (x )=ln x .若关于x 的方程g xx 2=f (x )-2e(e 为自然对数的底数)只有一个实数根,求a 的值.由g x x 2=f (x )-2e ,得ln x x 2=x +ax-2e , 化为ln x x=x 2-2e x +a .问题转化为函数h (x )=ln x x与m (x )=x 2-2e x +a 有一个交点时,求a 的值.由h (x )=ln x x ,得h ′(x )=1-ln x x2.令h ′(x )=0,得x =e. 当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0. 所以h (x )在(0,e)上递增,在(e ,+∞)上递减. 所以当x =e 时,函数h (x )取得最大值,其值为h (e)=1e .而函数m (x )=x 2-2e x +a =(x -e)2+a -e 2,当x =e 时,函数m (x )取得最小值,其值为m (e)=a -e 2.所以当a -e 2=1e ,即a =e 2+1e 时,方程g x x 2=f (x )-2e 只有一个实数根.(1)利用f (x )=g (x )的解⇔y =f (x )与y =g (x )的图象交点的横坐标,可将方程的解的问题转化为两函数图象的交点问题,从而可利用数形结合的思想方法进行求解.(2)在具体转化时,要注意对方程f (x )=g (x )尽量进行同解变形,变到两边的函数是熟悉的形式或较简单的形式,以便于对其图象特征进行研究.3.(经典真题)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2, 由题意得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题意知1-k >0,当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ),h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.1.利用导数研究函数的零点及其零点分布问题的基本步骤: (1)构造函数,并确定定义域; (2)求导,确定单调区间及极值; (3)作出函数的草图;(4)根据草图直观判断函数的零点的情况或得到零点所满足的条件. 2.处理函数y =f (x )与y =g (x )的图象的交点问题,常用方法有: (1)数形结合,即分别作出两函数的图象,考察交点情况;。
北师大版版高考数学一轮复习函数导数及其应用导数的应用导数与函数的单调性教学案理解析版

[考纲传真] 1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).3.会利用导数解决某些实际问题(生活中的优化问题).1.导函数的符号和函数的单调性的关系(1)如果在某个区间内,函数y=f(x)的导数f′(x)≥0,则在这个区间上,函数y=f(x)是增加的;(2)如果在某个区间内,函数y=f(x)的导数f′(x)≤0,则在这个区间上,函数y=f(x)是减少的.2.函数的极值与导数(1)函数的极大值点和极大值:在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都小于x0点的函数值,称点x0为函数y=f(x)的极大值点.其函数值f(x0)为函数的极大值.(2)函数的极小值点和极小值:在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都大于x0点的函数值,称点x0为函数y=f(x)的极小值点,其函数值f(x0)为函数的极小值.(3)极值和极值点:极大值与极小值统称为极值,极大值点与极小值点统称为极值点.(4)求可导函数极值的步骤:1求f′(x).2求方程f′(x)=0的根.3检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值与导数(1)最大值点:函数y=f(x)在区间[a,b]上的最大值点x0指的是:函数在这个区间上所有点的函数值都不超过f(x0).函数的最小值点也有类似的意义.(2)函数的最大值:最大值或者在极值点取得,或者在区间的端点取得.(3)最值:函数的最大值和最小值统称为最值.(4)求f(x)在[a,b]上的最大值和最小值的步骤1求f(x)在(a,b)内的极值;2将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.错误!1.可导函数f(x)在(a,b)上是增(减)函数的充要条件是:对任意x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.2.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.3.闭区间上连续函数的最值在端点处或极值点处取得.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若函数f(x)在区间(a,b)上是增加的,那么在区间(a,b)上一定有f′(x)>0.()(2)函数的极大值不一定比极小值大.()(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()(4)若实际问题中函数定义域是开区间,则不存在最优解.()[答案] (1)×(2)√(3)√(4)×2.(教材改编)如图是函数y=f(x)的导函数y=f′(x)的图像,则下面判断正确的是()A.在区间(—2,1)上,f(x)是增加的B.在区间(1,3)上f(x)是减少的C.在区间(4,5)上f(x)是增加的D.当x=2时,f(x)取到极小值C[结合原函数与导函数的关系可知,当x∈(4,5)时,f′(x)>0,∴y=f(x)在(4,5)上是增函数,故选C.]3.函数f(x)=cos x—x在(0,π)上的单调性是()A.先增后减B.先减后增C.增函数D.减函数D[∵f′(x)=—sin x—1,∴当x∈(0,π)时,f′(x)<0,∴f(x)在(0,π)上是减函数.]4.已知a是函数f(x)=x3—12x的极小值点,则a=()A.—4B.—2C.4D.2D[由f′(x)=3x2—12=0得x=±2,又当x<—2时,f′(x)>0,当—2<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴x=2是f(x)的极小值点,即a=2.]5.函数y=2x3—2x2在区间[—1,2]上的最大值是________.8 [y′=6x2—4x,令y′=0,得x=0或x=错误!.∵f(—1)=—4,f(0)=0,f错误!=—错误!,f(2)=8,∴最大值为8.]第1课时导数与函数的单调性利用导数求函数的单调区间【例1】(1)函数y=错误!x2—ln x的递减区间为()A.(—1,1] B.(0,1]C.[1,+∞)D.(0,+∞)(2)(2016·北京高考)设函数f(x)=x e a—x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e—1)x+4.1求a,b的值;2求f(x)的单调区间.(1)B[∵y=错误!x2—ln x,∴x∈(0,+∞),y′=x—错误!=错误!.由y′≤0可解得0<x≤1,∴y=错误!x2—ln x的递减区间为(0,1],故选B.](2)[解] 1f′(x)=e a—x—x e a—x+b,由切线方程可得错误!解得a=2,b=e.2f(x)=x e2—x+e x,f′(x)=(1—x)e2—x+e.令g(x)=(1—x)e2—x,则g′(x)=—e2—x—(1—x)e2—x=e2—x(x—2).令g′(x)=0得x=2.当x<2时,g′(x)<0,g(x)递减;当x>2时,g′(x)>0,g(x)递增.所以x=2时,g(x)取得极小值—1,也是最小值.所以f′(x)=g(x)+e≥e—1>0.所以f(x)的增区间为(—∞,+∞),无减区间.[规律方法] 1.掌握利用导数求函数单调区间的3个步骤(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或f′(x)<0)解出相应的x的取值范围,对应的区间为f(x)的递增(减)区间.2.理清有关函数单调区间的3个点(1)单调区间是函数定义域的子区间,所以求解函数的单调区间要先求函数的定义域;(2)求可导函数f(x)的单调区间,可以直接转化为f′(x)>0与f′(x)<0这两个不等式的解集问题来处理;(3)若可导函数f(x)在指定区间D上递增(减),则应将其转化为f′(x)≥0(f′(x)≤0)来处理.2A.(0,1)B.(1,+∞)C.(—∞,1)D.(—1,1)(2)(2019·威海模拟)函数f(x)=(x—3)e x的递增区间是________.(1)A(2)(2,+∞)[(1)∵f′(x)=2x—错误!=错误!(x>0),∴当x∈(0,1)时,f′(x)<0,f(x)为减函数;当x∈(1,+∞)时,f′(x)>0,f(x)为增函数.(2)函数f(x)=(x—3)e x的导数为f′(x)=[(x—3)e x]′=e x+(x—3)e x=(x—2)e x.f′(x)=(x—2)e x>0,解得x>2.]利用导数讨论函数的单调性【例2】设函数f(x)=a ln x+错误!,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.[解] (1)由题意知a=0时,f(x)=错误!,x∈(0,+∞).此时f′(x)=错误!.可得f′(1)=错误!,又f(1)=0,所以曲线y=f(x)在(1,f(1))处的切线方程为x—2y—1=0.(2)函数f(x)的定义域为(0,+∞).f′(x)=错误!+错误!=错误!.当a≥0时,f′(x)>0,函数f(x)在(0,+∞)上递增.当a<0时,令g(x)=ax2+(2a+2)x+a,由于Δ=(2a+2)2—4a2=4(2a+1),1当a=—错误!时,Δ=0,f′(x)=错误!≤0,函数f(x)在(0,+∞)上递减.2当a<—错误!时,Δ<0,g(x)<0,f′(x)<0,函数f(x)在(0,+∞)上递减.3当—错误!<a<0时,Δ>0.设x1,x2(x1<x2)是函数g(x)的两个零点,则x1=错误!,x2=错误!.由x1=错误!=错误!>0,所以x∈(0,x1)时,g(x)<0,f′(x)<0,函数f(x)递减;x∈(x1,x2)时,g(x)>0,f′(x)>0,函数f(x)递增;x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)递减.综上可得:当a≥0时,函数f(x)在(0,+∞)上递增;当a≤—错误!时,函数f(x)在(0,+∞)上递减;当—错误!<a<0时,f(x)在错误!,错误!上递减,在错误!上递增.[规律方法] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.1讨论分以下四个方面,1二次项系数讨论,2根的有无讨论,3根的大小讨论,4根在不在定义域内讨论.2讨论时要根据上面四种情况,找准参数讨论的分类.3讨论完必须写综述.2调性.[解] 函数的定义域为(0,+∞),f′(x)=x—错误!+a—2=错误!.1当—a=2,即a=—2时,f′(x)=错误!≥0,f(x)在(0,+∞)内递增.2当0<—a<2,即—2<a<0时,∵0<x<—a或x>2时,f′(x)>0;—a<x<2时,f′(x)<0,∴f(x)在(0,—a),(2,+∞)内递增,在(—a,2)内递减.3当—a>2,即a<—2时,∵0<x<2或x>—a时,f′(x)>0;2<x<—a时,f′(x)<0,∴f(x)在(0,2),(—a,+∞)内递增,在(2,—a)内递减.综上所述,当a=—2时,f(x)在(0,+∞)内递增;当—2<a<0时,f(x)在(0,—a),(2,+∞)内递增,在(—a,2)内递减;当a<—2时,f(x)在(0,2),(—a,+∞)内递增,在(2,—a)内递减.函数单调性的应用►考法1比较大小或解不等式【例3】(1)设函数f′(x)是定义在(0,2π)上的函数f(x)的导函数,f(x)=f(2π—x),当0<x<π时,若f(x)sin x—f′(x)cos x<0,a=错误!f错误!,b=0,c=—错误!f错误!,则()A.a<b<cB.b<c<aC.c<b<aD.c<a<b(2)(2019·山师大附中模拟)已知f′(x)是函数f(x)的导函数,f(1)=e,任意x∈R,2f (x)—f′(x)>0,则不等式f(x)<e2x—1的解集为()A.(—∞,1)B.(1,+∞)C.(—∞,e)D.(e,+∞)(1)A(2)B[(1)由f(x)=f(2π—x),得函数f(x)的图像关于直线x=π对称,令g(x)=f(x)cos x,则g′(x)=f′(x)cos x—f(x)sin x>0,所以当0<x<π时,g(x)在(0,π)内递增,所以g错误!<g错误!<g错误!=g错误!,即a<b<c,故选A.(2)设F(x)=错误!,则F′(x)=错误!′=错误!.因为2f(x)—f′(x)>0,所以F′(x)=错误!<0,即F(x)是减函数,f(x)<e2x—1等价于错误!<1,即F(x)<1.又因为f(1)=e,所以F(1)=错误!=1,则不等式f(x)<e2x—1的解集是(1,+∞),故选B.]►考法2求参数的取值范围【例4】已知函数f(x)=ln x,g(x)=错误!ax2+2x(a≠0).(1)若函数h(x)=f(x)—g(x)存在递减区间,求a的取值范围;(2)若函数h(x)=f(x)—g(x)在[1,4]上递减,求a的取值范围.[解] (1)h(x)=ln x—错误!ax2—2x,x∈(0,+∞),所以h′(x)=错误!—ax—2,由于h(x)在(0,+∞)上存在递减区间,所以当x∈(0,+∞)时,错误!—ax—2<0有解,即a>错误!—错误!有解.设G (x )=错误!—错误!,所以只要a >G (x )min 即可.而G (x )=错误!2—1,所以G (x )min =—1.所以a >—1,即a 的取值范围为(—1,+∞).(2)由h (x )在[1,4]上递减得,当x ∈[1,4]时,h ′(x )=错误!—ax —2≤0恒成立,即a ≥错误!—错误!恒成立.所以a ≥G (x )m ax ,而G (x )=错误!2—1,因为x ∈[1,4],所以错误!∈错误!,所以G (x )m ax =—错误!(此时x =4),所以a ≥—错误!,即a 的取值范围是错误!.[母题探究] (1)本例(2)中,若函数h (x )=f (x )—g (x )在[1,4]上递增,求a 的取值范围.(2)本例(2)中,若h (x )在[1,4]上存在递减区间,求a 的取值范围.[解] (1)由h (x )在[1,4]上递增得,当x ∈[1,4]时,h ′(x )≥0恒成立,∴当x ∈[1,4]时,a ≤错误!—错误!恒成立,又当x ∈[1,4]时,错误!min =—1(此时x =1),∴a ≤—1,即a 的取值范围是(—∞,—1].(2)h (x )在[1,4]上存在递减区间,则h ′(x )<0在[1,4]上有解,∴当x ∈[1,4]时,a >错误!—错误!有解,又当x ∈[1,4]时,错误!min =—1,∴a >—1,即a 的取值范围是(—1,+∞). [规律方法] 1.已知函数的单调性,求参数的取值范围,应用条件f ′x ≥0或f ′x ≤0,x ∈a ,b 恒成立,解出参数的取值范围一般可用不等式恒成立的理论求解,应注意参数的取值是f ′x 不恒等于0的参数的范围.2.若函数y=f x在区间a,b上不单调,则转化为f′x=0在a,b上有解.3.利用导数比较大小或解不等式的常用技巧,利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:y=f′(x),当x>0时,xf′(x)—f(x)<0,若a=错误!,b=错误!,c=错误!,则a,b,c的大小关系正确的是()A.a<b<cB.b<c<aC.a<c<bD.c<a<b(2)(2019·兰州模拟)已知函数f(x)=错误!x2—2a ln x+(a—2)x.1当a=—1时,求函数f(x)的单调区间;2是否存在实数a,使函数g(x)=f(x)—ax在(0,+∞)上递增?若存在,求出a的取值范围;若不存在,说明理由.(1)D[设g(x)=错误!,则g′(x)=错误!,∵当x>0时,xf′(x)—f(x)<0,∴g′(x)<0.∴g(x)在(0,+∞)上是减函数.由f(x)为奇函数,知g(x)为偶函数,则g(—3)=g(3),又a=g(e),b=g(ln 2),c=g(—3)=g(3),∴g(3)<g(e)<g(ln 2),故c<a<B.](2)[解] 1当a=—1时,f(x)=错误!x2+2ln x—3x,则f′(x)=x+错误!—3=错误!=错误!.当0<x<1或x>2时,f′(x)>0,f(x)递增;当1<x<2时,f′(x)<0,f(x)递减.∴f(x)的单调增区间为(0,1)与(2,+∞),减区间为(1,2).2假设存在实数a,使g(x)=f(x)—ax在(0,+∞)上是增函数,∴g′(x)=f′(x)—a=x—错误!—2≥0恒成立.即错误!≥0在x∈(0,+∞)上恒成立.∴x2—2x—2a≥0当x>0时恒成立,∴a≤错误!(x2—2x)=错误!(x—1)2—错误!恒成立.又φ(x)=错误!(x—1)2—错误!,x∈(0,+∞)的最小值为—错误!.∴当a≤—错误!时,g′(x)≥0恒成立.又当a=—错误!,g′(x)=错误!当且仅当x=1时,g′(x)=0.故当a∈错误!时,g(x)=f(x)—ax在(0,+∞)上递增.1.(2016·全国卷Ⅰ)若函数f(x)=x—错误!sin 2x+a sin x在(—∞,+∞)递增,则a的取值范围是()A.[—1,1] B.错误!C.错误!D.错误!C[取a=—1,则f(x)=x—错误!sin 2x—sin x,f′(x)=1—错误!cos 2x—cos x,但f′(0)=1—错误!—1=—错误!<0,不具备在(—∞,+∞)递增的条件,故排除A,B,D.故选C.]2.(2015·全国卷Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(—1)=0,当x>0时,xf′(x)—f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(—∞,—1)∪(0,1)B.(—1,0)∪(1,+∞)C.(—∞,—1)∪(—1,0)D.(0,1)∪(1,+∞)A[设y=g(x)=错误!(x≠0),则g′(x)=错误!,当x>0时,xf′(x)—f(x)<0,∴g′(x)<0,∴g(x)在(0,+∞)上为减函数,且g(1)=f(1)=—f(—1)=0.∵f(x)为奇函数,∴g(x)为偶函数,∴g(x)的图像的示意图如图所示.当x>0,g(x)>0时,f(x)>0,0<x<1,当x<0,g(x)<0时,f(x)>0,x<—1,∴使得f(x)>0成立的x的取值范围是(—∞,—1)∪(0,1),故选A.]。
高考数学一轮复习 第三章 导数及其应用 第4讲 定积分与微积分基本定理课件 理 北师大版

【训练 2】 (1)由曲线 y=sin x,y=cos x 与直线 x=0,x=π2 所
围成的平面图形的面积是( )
A.1
π
22
B. 4
C. 3
D.2 2-2
(2)(2016·日照模拟)如图,由两条曲线 y=-x2,y=-14x2 及直
线 y=-1 所围成的平面图形的面积为________.
解析
=3+2f′(1),解得 f′(1)=-3.所以 f(x)=x3-3x2.
故2f(x)dx=2(x3-3x2)dx=
0
0
x44-x320=-4.
答案 (1)B (2)-4
考点二 运用定积分求平面图形的面积 【例 2】 (1)(2015·唐山质检)已知曲线 y= x,y=2-x,y=
-13x 所围成图形的面积为 S,则 S=________. (2)已知曲线 y=x2 与直线 y=kx(k>0)所围成的曲边图形的面 积为43,则 k=________. 解析 (1)由yy==2-x,x 得交点 A(1,1);
第4讲 定积分与微积分基本定理
最新考纲 1.了解定积分的实际背景,了解定积分的基 本思想,了解定积分的概念,几何意义;2.了解微积分 基本定理的含义.
知识梳理
1.定积分的概念与几何意义
(1)定积分的定义
一般地,给定一个在区间[a,b]上的函数y=f(x),将[a,b]区 间分成n份,分点为: a=x0<x1<x2<…<xn-1<xn=b. 第i个小区间为[xi-1,xi],设其长度为Δxi,在这个小区间上取 一点ξi,使f(ξi)在区间[xi-1,xi]上的值最大,设S=f(ξ1)Δx1+ f(ξ2)Δx2+…+f(ξi)Δxi+…+f(ξn)Δxn. 在这个小区间上取一点ζi,使f(ζi)在区间[xi-1,xi]上的值最小, 设s=f(ζ1)Δx1+f(ζ2)Δx2+…+f(ζi)Δxi+…+f(ζn)Δxn.
2025年高考数学一轮复习课件第三章一元函数的导数及其应用-专题突破7导数的综合应用

【拆解】
分类
第一问
第二问
参考赋分
6分
6分
难易
中上
难
返回至目录
续表
①总体看,题目为指数型函数与对数型函数的最值及图象交点问题,实际考
查利用导数研究函数零点问题.
②第一问是根据函数单调性求最值问题,根据最小值相等可求.注意分类讨
审题
要点
论.
③第二问是构造新函数利用零点个数解决问题.根据(1)可得当 > 1时,
所以函数 在 0,1 上单调递增,在 1, +∞ 上单调递减, 的最大值为 1 = 1.
所以 ≤ 1,即实数的取值范围是(−∞, 1].
返回至目录
考点三 利用导数研究函数零点
例3 已知函数 = − e + ,讨论函数 零点的个数.
解:′ = 1 − e .
返回至目录
第一问
在基础性的层次上考查
数学运算学科素养,和
.
2
e −1
恒成立.
− 1 + 1 > 0 ,所以′ = e ⋅ > 0,所以 在 0, +∞ 上单调
递增.
所以 > 0 = 0,所以ℎ′ > 0,所以ℎ 在 0, +∞ 上单调递增.
由洛必达法则,知 lim+ ℎ =
→0
e −1
lim
→0+
e − = 的解的个数、 − ln = 的解的个数均为2,构建新函数
= − ,利用导数可得该函数只有一个零点且可得 , 的
大小关系,根据存在直线 = 与曲线 = , = 有三个不同的交点
2014届高考江苏专用(理)一轮复习第三章第4讲导数的综合应用

③若-e<a<-1,令f′(x)=0得x=-a, 当1<x<-a时,f′(x)<0,
∴f(x)在(1,-a)上为减函数;
当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数,
答案 2 2
考向一
运用导数解决恒成立及求参数范围
a 【例 1】 (理)已知函数 f(x)=ln x-x.
(1)若a>0,试判断f(x)在定义域内的单调性; 3 (2)若 f(x)在[1,e]上的最小值为 ,求 a 的值; 2 (3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.
审题视点
解析 大. 答案
y′=-x2+81,令y′=0解得x=9(-9舍去).当0<x
<9时,y′>0;当x>9时,y′<0,则当x=9时,y取得最
9
2.从边长为10 cm×16 cm的矩形纸板的四角截去四个相 同的小正方形,作成一个无盖的盒子,则盒子容积的 最大值为________cm3.
解析 设盒子容积为 y cm3,盒子的高为 x cm.
则 y=(10-2x)(16-2x)x(0<x<5)=4x3-52x2+160 x, 20 ∴y′=12x -104x+160.令 y′=0,得 x=2 或 (舍去), 3
2
∴ymax=6×12×2=144 (cm)3.
答案
144
2 ,x≥2, 3.(2011· 北京)已知函数 f(x)=x 若关于 x 的 x-13,x<2. 方程 f(x)=k 有两个不同的实根,则实数 k 的取值范围是 ________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学一轮复习第三章导数及其应用第4讲导数与函数的综合应用教案理(含解析)新人教A版第4讲导数与函数的综合应用基础知识整合01优化问题,一般地,对于实际1.通常求利润最大、用料最省、效率最高等问题称为□问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点.2.生活中的优化问题解决优化问题的基本思路:3.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.1.把所求问题通过构造函数,转化为可用导数解决的问题,这是用导数解决问题时常用的方法.2.利用导数解决与方程、函数零点、不等式等问题时,常用到数形结合及转化与化归的数学思想.1.(2019·四川南充一诊)若函数f(x)=x3+x2-ax-4在区间(-1,1)内恰有一个极值点,则实数a的取值范围为( )A.(1,5)B.[1,5)C.(1,5]D.(-∞,1)∪(5,+∞)答案 A解析由题意知f′(x)=3x2+2x-a=0在区间(-1,1)内恰有一根(且在根两侧f′(x)异号)⇔f′(1)·f′(-1)=(5-a)(1-a)<0⇔1<a<5.故选A.2.(2019·湖北襄阳模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)答案 B解析 由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2.因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1.故选B.3.若函数f (x )=x 3-3x +a 有3个不同的零点,则实数a 的取值范围是( ) A .(-2,2) B .[-2,2] C .(-∞,-1) D .(1,+∞)答案 A解析 f ′(x )=3x 2-3,令f ′(x )=0,∴x =±1.三次方程f (x )=0有3个根⇔f (x )极大值>0且f (x )极小值<0. ∵x =-1为极大值点,x =1为极小值点. ∴⎩⎪⎨⎪⎧f -1=2+a >0,f1=a -2<0,∴-2<a <2.4.(2019·沈阳模拟)对于R 上可导的任意函数f (x ),若满足(x -1)·f ′(x )≥0,则必有( )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)答案 C解析 由题设,f (x )为R 上任意可导函数,不妨设f (x )=(x -1)2,则f ′(x )=2(x -1),满足(x -1)·f ′(x )=2(x -1)2≥0,且f (0)=1,f (1)=0,f (2)=1,则有f (0)+f (2)>2f (1);再设f (x )=1,则f ′(x )=0,也满足(x -1)·f ′(x )≥0,且有f (0)+f (2)=2f (1),即1+1=2×1.5.(2019·贵阳模拟)若关于x 的不等式x 3-3x 2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( )A .(-∞,7]B .(-∞,-20]C .(-∞,0]D .[-12,7]答案 B解析 令f (x )=x 3-3x 2-9x +2,则f ′(x )=3x 2-6x -9,令f ′(x )=0,得x =-1或3.因为f (-1)=7,f (-2)=0,f (2)=-20, 所以f (x )的最小值为f (2)=-20,故m ≤-20.6.已知a ≤1-x x +ln x 对任意的x ∈⎣⎢⎡⎦⎥⎤12,2恒成立,则a 的最大值为________. 答案 0解析 令f (x )=1-x x +ln x ,f ′(x )=x -1x 2,当x ∈⎣⎢⎡⎭⎪⎫12,1时,f ′(x )<0,当x ∈(1,2]时,f ′(x )>0,∴f (x )min =f (1)=0,∴a ≤0,故a 的最大值为0.核心考向突破考向一 导数与方程例 1 (2019·陕西汉中模拟)已知函数f (x )=x +1ex(其中e≈2.718…为自然对数的底数).(1)若F (x )=f (x )-f (-x ),求F (x )的单调区间;(2)若方程f (x )=k ⎝ ⎛⎭⎪⎫x +32在(-2,+∞)上有两个不同的实数根,求实数k 的取值范围. 解 (1)由题意知,F (x )=f (x )-f (-x )=x +1ex--x +1e-x,所以F ′(x )=-x e x +x e x=x ⎝ ⎛⎭⎪⎫e x -1e x .当x <0时,e x-1ex <0,所以x ⎝⎛⎭⎪⎫e x -1e x >0,即F ′(x )>0,当x =0时,F ′(x )=0,当x >0时,e x-1ex >0,即F ′(x )>0,所以F ′(x )≥0恒成立,当且仅当x =0时等号成立, 所以F (x )=f (x )-f (-x )在R 上单调递增,即F (x )的单调递增区间为(-∞,+∞),无单调递减区间. (2)因为f (x )=x +1e x,所以f ′(x )=-xex , 当x <0时,f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0, 故函数f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以f (x )在x =0处取得最大值,且f (0)=1,当x 趋近于-∞时,f (x )趋近于-∞,当x 趋近于+∞时,f (x )趋近于0,故函数f (x )的大致图象如图所示,结合函数图象可知,当k ≤0时,方程f (x )=k ⎝ ⎛⎭⎪⎫x +32有且仅有一个实数根. 当k >0时,设曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -x 0+1ex 0=-x 0ex 0 (x -x 0),且该直线过定点⎝ ⎛⎭⎪⎫-32,0, 所以0-x 0+1ex 0=-x 0e x 0⎝ ⎛⎭⎪⎫-32-x 0,解得x 0=-2(舍去)或x 0=-12, 此时切线的斜率为e 2, 数形结合可知,若方程f (x )=k ⎝ ⎛⎭⎪⎫x +32在(-2,+∞)上有两个不同的实数根,则实数k 的取值范围是⎝ ⎛⎭⎪⎫0,e 2. 触类旁通研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极最值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.即时训练 1.已知函数f (x )=1x +(1-a )ln x +ax ,g (x )=1x-(a +1)ln x +x 2+ax -t (a∈R ,t ∈R ).(1)讨论f (x )的单调性;(2)记h (x )=f (x )-g (x ),若函数h (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数t 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞), f ′(x )=-1x 2+1-a x +a =ax 2+1-ax -1x2=x -1ax +1x2.当a =0时,f ′(x )=x -1x 2,令f ′(x )>0,则x >1,令f ′(x )<0,则0<x <1. 所以函数f (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增.当a ≠0时,f ′(x )=a x -1⎝⎛⎭⎪⎫x +1ax2,①当a >0时,x +1a>0,令f ′(x )>0,则x >1,令f ′(x )<0,则0<x <1,所以函数f (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增; ②当a =-1时,1=-1a,f ′(x )=-x -12x 2≤0,所以函数f (x )在定义域(0,+∞)上单调递减;③当-1<a <0时,1<-1a ,令f ′(x )>0,则1<x <-1a ,令f ′(x )<0,则0<x <1或x >-1a,所以函数f (x )在区间(0,1)和⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,在区间⎝ ⎛⎭⎪⎫1,-1a 上单调递增;④当a <-1时,1>-1a ,令f ′(x )>0,则-1a <x <1,令f ′(x )<0,则0<x <-1a或x >1,所以函数f (x )在区间⎝ ⎛⎭⎪⎫0,-1a 和(1,+∞)上单调递减,在区间⎝ ⎛⎭⎪⎫-1a ,1上单调递增.综上,当a ≥0时,函数f (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增; 当a =-1时,函数f (x )在定义域(0,+∞)上单调递减;当-1<a <0时,函数f (x )在区间(0,1),⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,在区间⎝ ⎛⎭⎪⎫1,-1a 上单调递增;当a <-1时,函数f (x )在区间⎝ ⎛⎭⎪⎫0,-1a ,(1,+∞)上单调递减,在区间⎝ ⎛⎭⎪⎫-1a ,1上单调递增.(2)h (x )=f (x )-g (x )=2ln x -x 2+t ,定义域为(0,+∞), 则h ′(x )=2x-2x =-2x +1x -1x,当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,令h ′(x )=0,得x =1, 当1e <x <1时,h ′(x )>0;当1<x <e 时,h ′(x )<0, 故h (x )在x =1处取得极大值h (1)=t -1. 又h ⎝ ⎛⎭⎪⎫1e =t -2-1e 2,h (e)=t +2-e 2,所以h (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧h 1=t -1>0,h ⎝ ⎛⎭⎪⎫1e =t -2-1e 2≤0,h e =t +2-e 2≤0,解得1<t ≤2+1e 2,故实数t 的取值范围是⎝⎛⎦⎥⎤1,2+1e 2.考向二 导数与不等式角度1 证明不等式例2 (2019·银川模拟)已知函数f (x )=(x +b )(e x-a )(b >0)的图象在(-1,f (-1))处的切线方程为(e -1)x +e y +e -1=0.(1)求a ,b ;(2)若m ≤0,证明:f (x )≥mx 2+x .解 (1)由题意知f (-1)=0,f ′(-1)=-1+1e ,所以f (-1)=(-1+b )⎝ ⎛⎭⎪⎫1e -a =0, 所以b =1或a =1e,又f ′(x )=(x +b +1)e x-a ,所以f ′(-1)=b e -a =-1+1e,若a =1e,则b =2-e<0,与b >0矛盾,故a =1,b =1.(2)证法一:由(1)可知f (x )=(x +1)(e x -1),f (0)=0,f (-1)=0,由m ≤0,可得x ≥mx 2+x ,令g (x )=(x +1)(e x -1)-x ,则g ′(x )=(x +2)e x-2, 当x ≤-2时,g ′(x )=(x +2)e x-2≤-2<0, 当x >-2时,令h (x )=g ′(x )=(x +2)e x-2, 则h ′(x )=(x +3)e x>0,故函数g ′(x )在(-2,+∞)上单调递增,又g ′(0)=0,综上,当x ∈(-∞,0)时,g ′(x )<0,当x ∈(0,+∞)时,g ′(x )>0, 所以函数g (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增, 故g (x )≥g (0)=0,所以(x +1)(e x -1)≥x ≥mx 2+x . 故f (x )≥mx 2+x .证法二:由(1)可知f (x )=(x +1)(e x-1),f (0)=0,f (-1)=0,由m ≤0,可得x ≥mx 2+x ,令g (x )=(x +1)(e x -1)-x ,则g ′(x )=(x +2)e x-2, 令t (x )=g ′(x ),则t ′(x )=(x +3)e x,当x <-3时,t ′(x )<0,g ′(x )单调递减,且g ′(x )<0; 当x >-3时,t ′(x )>0,g ′(x )单调递增,且g ′(0)=0.所以g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,且g (0)=0. 故g (x )≥g (0)=0,所以(x +1)(e x -1)≥x ≥mx 2+x . 故f (x )≥mx 2+x . 触类旁通1利用导数方法证明不等式f x >g x 在区间D 上恒成立的基本方法是构造函数h x =f x -g x ,然后根据函数的单调性,或者函数的最值证明函数h x >0,其中一个重要技巧就是找到函数h x 在什么地方可以等于零,这往往就是解决问题的一个突破口.2若待证不等式两端式子较复杂,可通过分析法转化为形式较简单的不等式,再构造函数证明.即时训练 2.(2019·石家庄模拟)已知函数f (x )=λln x -e -x(λ∈R ). (1)若函数f (x )是单调函数,求λ的取值范围; (2)求证:当0<x 1<x 2时,e1-x 2-e1-x 1>1-x 2x 1. 解 (1)函数f (x )的定义域为(0,+∞), ∵f (x )=λln x -e -x,∴f ′(x )=λx +e -x =λ+x e -xx,∵函数f (x )是单调函数,∴f ′(x )≤0或f ′(x )≥0在(0,+∞)上恒成立, ①当函数f (x )是单调递减函数时,f ′(x )≤0,∴λ+x e -x x ≤0,即λ+x e -x ≤0,λ≤-x e -x=-x e x ,令φ(x )=-x e x ,则φ′(x )=x -1ex ,当0<x <1时,φ′(x )<0,当x >1时,φ′(x )>0, 则φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴当x >0时,φ(x )min =φ(1)=-1e ,∴λ≤-1e ;②当函数f (x )是单调递增函数时,f ′(x )≥0,∴λ+x e -x x ≥0,即λ+x e -x ≥0,λ≥-x e -x=-x ex ,。