离散时间信号z变换共39页
离散时间信号与系统的复频域分析——z变换ppt

其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
6.6.1 数字滤波器的概念
与模拟滤波器相对应,在离散系统中 广泛应用数字滤波器。它的作用是利用离 散时间系统的特性对输入信号波形或频谱 加工处理。或者说,把输入的数字信号通 过一定的运算关系变成所需要的输出数字 信号。
数字滤波器一般可以用两种方法来实 现:一种方法是用数字硬件装配成一台专 门的设备,这种设备称为数字信号处理机; 另一种方法就是将所需要的运算编制成程 序利用计算机软件来实现。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
第6章 离散时间信号与系统的复 频域分析——z变换
6.1 z 变 换 的 定 义 6.2 常 用 序 列 的 z 变 换 6.3 z 变 换 的 性 质 6.4 逆 z 变 换 6.5 离散系统的z域分析 6.6 数 字 滤 波 器 6.7 用MATLAB进行z域分析
离散时间信号及其Z变换

离散时间信号及其Z变换离散时间信号是信号与时间变量在一系列离散时间点上取值的函数,它在数字信号处理中有着重要的应用。
离散时间信号与连续时间信号类似,也可以通过不同的数学工具进行分析和处理。
其中,Z变换是离散时间信号的重要工具之一。
离散时间信号是在一系列离散时间点上取值的函数,这些离散时间点可以是整数、实数或复数。
离散时间信号通常用序列表示,即按一定顺序排列的值的集合。
离散时间信号可以是有限长度的,也可以是无限长度的。
离散时间信号在很多领域都有广泛的应用,包括通信、控制系统、数字图像处理等。
在通信系统中,信号可以是传输数据的形式,例如音频信号、视频信号等。
在控制系统中,离散时间信号可以作为控制信号,用于调整系统的状态和输出。
在数字图像处理中,图像可以被表示为二维离散时间信号,通过对其进行处理,可以实现图像的增强、压缩等功能。
Z变换是一种重要的工具,能够将离散时间信号从时域转换到复频域。
Z变换本质上是一种数学变换,它将离散时间信号转换为复平面上的函数。
Z变换的定义是通过对离散时间信号的每个样本点进行加权求和得到。
离散时间信号的Z变换可以表示为:X(z) = ∑[x(n) * z^(-n)] (n从负无穷到正无穷)其中,X(z)是离散时间信号X(n)的Z变换,x(n)是离散时间信号X(n)在时间点n上的取值,z是复平面上的变量。
通过Z变换,我们可以将离散时间信号转换到复频域,从而可以进行频域分析和处理。
在Z平面上,可以通过观察X(z)的性质来分析离散时间信号的频域特性,例如振幅谱、相位谱等。
我们还可以通过对Z变换进行逆变换,将离散时间信号恢复到时域。
Z变换的性质包括线性性、平移性、时域乘法、频域卷积等。
这些性质使得Z变换在信号处理中有着广泛的应用。
通过Z变换,我们可以分析离散时间系统的稳定性、频率响应、脉冲响应等。
此外,Z变换还可以用来设计离散时间系统,例如数字滤波器的设计等。
总结来说,离散时间信号及其Z变换在数字信号处理中起着重要的作用。
离散z变换公式大全

离散z变换公式大全1.基本形式:离散Z变换的基本形式可以表示为:X(z)=Z{x[n]}=Σ(x[n]*z^(-n)),n=-∞到+∞其中,Z表示Z变换,x[n]表示离散时间域的输入序列,X(z)表示离散Z域的输出序列,z表示复平面上的变量。
2.单位冲激函数:Z变换可以将单位冲激函数(δ函数)的离散时间域表示转换为复平面的频率域表示。
单位冲激函数的Z变换是一个常数:Z{δ[n]}=13.延时性质:离散Z变换具有延时性质,即在离散时间域上的序列向右或向左移动k个单位,对应于复平面上的Z域序列乘以z^(-k)。
Z{x[n-k]}=Z{x[n]}*z^(-k)4.线性性质:离散Z变换具有线性性质,即输入序列的线性组合的Z变换等于各个输入序列Z变换的线性组合。
Z{a*x[n]+b*y[n]}=a*X(z)+b*Y(z)其中,a和b为常数。
5.对时域微分:离散Z变换可以对时域上的序列进行微积分运算。
对于序列x[n]的微分,可以通过在Z域中将其对应的Z变换X(z)乘以z的导数1-z^(-1)来表示。
Z{dx[n]/dn} = (1-z^(-1)) * X(z)6.对时域积分:离散Z变换可以对时域上的序列进行积分运算。
对于序列x[n]的积分,可以通过在Z域中将其对应的Z变换X(z)除以z来表示。
Z{∫x[n]dn} = (1/z) * X(z)7.Z变换的时移性质:将离散时间序列x[n]向右移动k个单位,相当于Z域中的序列乘以z^(-k)。
Z{x[n-k]}=Z{x[n]}*z^(-k)8.Z变换的褶积性质:在离散Z域中,两个序列的卷积等于它们各自Z变换的乘积。
Z{x[n]*y[n]}=X(z)*Y(z)其中,*表示卷积运算。
9.初始值定理:序列x[n]在n=0时的值与其Z变换X(z)在z=1时的值是相等的。
x[0]=X(1)10.终值定理:序列x[n]在n趋近于无穷大时的值与其Z变换X(z)在z=1处的极限值是相等的。
离散时间信号、系统和Z变换

冲激信号的强度压缩到原信号的1/2。
第二章信号分析和处理基础
设时域离散系统的输入为x(n),经过规定的运算,系统输出序 列用 y(n) 表示。设运算关系用 T [· ] 表示,输出与输入之间关 系用下式表示:
y(n)=T[x(n)]
其框图如图所示:
在时域离散系统中,最重要的是线性时不变系统,因为很多物 理过程可用这类系统表征。
e j(ω +2πM)n= e jω n,
0 0
M=0,〒1,〒2…
复指数序列具有以2π为周期的周期性。
指数信号
表达式:
f (t ) K e
直流(常数) 指数衰减
指数增长
t
f (t )
0
K
a0 a0 a0
0 0
O
t
重要特性:其对时间的微分和积分仍然是指数形式。
通常把 称为指数信号的时间常数,记作,代表 信号衰减速度,具有时间的量纲。
设输入为x1(n)和x2(n)时,输出分别为y1(n)和y2(n),即: T[ax1(n)] =3ax1(n)+4;
例2 已知f(t)的波形如图所示,试画出f(-3t-2)的波形
1.5 1 0.5 0 -4 1.5 1 0.5 0 -4 1.5 1 0.5 0 -4 1.5 1 0.5 0 -4
f(t)
-3
-2
-1
0 f(t-2)
1
2
3
4
-3
-2
-1
0
1 f(3t-2)
2
3
4
-3
-2
-1
0
1 f(-3t-2)
2
列就是时域离散信号。 实际信号处理中,这些数字序列值按顺序放在存贮器中,此时 nT 代表
信号与系统_第八章 z变换、离散时间系统的z域分析

Re(z)
C是包围X(z)zn-1所有极点之逆时针闭合积分路线,通常选 择z平面收敛域内以原点为中心的圆。
➢ 求X(z)的反z变换的三种方法 ✓留数法 ✓幂级数展开和长除法 ✓部分分式展开法
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(1)
✓ 步骤 (1)将X(z)除以z,得到X(z)/z=X1(z); (2)将X1(z)按其极点展成部分分式(其方法与拉氏变换 的部分分式展开完全一致);
3.x(n)为左边序列
x(n)是无始有终的序列,即当n n2 时, x(n)=0 。
X (z)
n2
x(n)
z
n
x(n)z n
jIm(z)
n
n n2
✓若n20,0z RX2
0
RX2 Re(z)
✓若n20,0z RX2
中国民航大学 CAUC
8.2 z变换的收敛域
4.x(n)为双边序列
x(n)是从n =延伸到n = 的序列 。
(3)X(z)=zX1(z),得到X(z)的部分分式展开式;
(4)对X(z)的每一个部分分式进行反z变换,就得到X(z) 对应的序列x(n)。
[例]求 X (z)
z2
( z 1) 的逆z变换。
(z 1)( z 0.5)
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(2)
[例]求收敛域分别为z1和 z1 两种情况下, X (z) 1 2z 1
➢X(z)收敛域的确定必须同时依赖于 ✓ 序列的性质(有限长,右边,左边,双边) ✓ 是对x(n)进行单边还是双边z变换 ✓ X(z)的极点
中国民航大学 CAUC
离散信号的z变换

的部分分式
(5)写出原序列
例1.5 已知
收敛域为
,求其z反变换。
解:因为
展开为部分分式得
乘以z得
求z反变换得
信号与系统
其z变换存在的所有z值的集合。
z变换收敛的充分必要条件
例1.1 已知离散时间信号为
求它的z变换及z变换的收敛域。
解:信号的z变换为
若该级数收敛,只有使 z变换的收敛域为 且此时 收敛半径
例1.2 已知离散时间信号为
求它的z变换及z变换的收敛域。 解:由z变换的定义可得
前一个级数的收敛条件为
即
因此,z变换的收敛域为
信号与系统
离散信号的z变换
1.1 z变换的定义
z变换
为原序列 简写作
z为复变量
为像函数
单边 z变换 仅考虑 时的序列 的值,则有
抽样信号的拉氏变换
连续信号 抽样信号
两边同时取双边拉普拉斯变换,得
令
可得
当令
时,序列 的z变换就等于抽
样信号 的拉氏变换,即
1.2 z变换的收敛域
z变换的收敛域 对于任意给定的序列 ,使
解:由于收敛域为
故 为因果序列
根据多项式除法,得
即
于是得
时,
部分分式法
常常是较为复杂的有理分式,即
可将
展开成若干简单的部分分式之和,然后
分别求出各部分分式的z反变换,从而求得 对应的
原序列
基本步骤: (1)将 除以z,得到
(2)将
展开为部分分式
(3)将展开的部分分式乘以z,得到 (4)将各部分分式进行z反变换
1.4 z反变换
定义:由z变换 和其收敛域求原序列
数字信号处理-z变换与离散时间傅立叶变换(DTFT)

N a i y i ( n ) T a i xi ( n ) i 1 i 1
N
9
4.移不变系统
——系统的响应与激励施加于系统的时刻无关
x ( n)
移位m
T[ ]
T [ x(n m)]
x ( n)
T[ ]
移位m
y ( n m)
10
5.单位抽样响应与卷积和
序列x(n)的Fourier反变换定义:
a<-1
0<a<1
-1<a<0
a=1
a=-1
7
5.复指数序列 x(n) Ca n
x(n) C a n cos(0 n ) j sin( 0 n )
|a|=1
C C e j a a e j0
|a|>1
|a|<1
8
3.线性系统
——满足叠加原理(可加性、比例性)
15
1.1 z变换的定义
序列x(n)的Z变换定义为:
X ( z) Z x(n) x(n) z
n
n
Z是复变量,所在的平面称为Z平面
16
1.2 z变换的收敛域
对于任意给定的序列x(n),使其Z变换X(z)收敛的所有z值
的集合称为X(z)的收敛域(Region of convergence,ROC)。
=X (e
jT
ˆ ( j ) ) X a
抽样序列在单位圆上的z变换=其理想抽样信号的傅里叶变换
52
第五节 序列的傅立叶变换(DTFT)
5.1 序列的傅立叶变换定义
序列x(n)的Fourier变换定义:
X (e ) DTFT [ x(n)]
离散时间信号及其Z变换

离散时间信号及其Z变换离散时间信号是指在离散时间点上取值的信号。
它可以用一个数列来表示,其中每个数代表了在相应时间点上的信号取值。
离散时间信号在数字信号处理中起着重要的作用,因为它们可以通过数字系统来表示和处理。
离散时间信号的定义可以表示为x(n),其中n是离散时间点的索引。
离散时间信号可以是有限长度的,也可以是无限长度的。
有限长度的离散时间信号可以表示为x(n),其中n取值范围在0到N-1之间,N为信号的长度。
而无限长度的离散时间信号可以表示为x(n),其中n取遍整个整数集。
离散时间信号的Z变换是一种重要的信号变换方法,它将离散时间信号转换为复变量的函数。
Z变换是一种在数字信号处理中常用的工具,它将离散时间信号从时域转换到复频域,从而可以进行频谱分析和系统设计等操作。
离散时间信号x(n)的Z变换可以表示为X(z),其中z为复变量。
Z变换的定义可以表示为:X(z) = Σ(x(n) * z^(-n))其中Σ表示求和符号,x(n)表示离散时间信号的取值,z^(-n)表示z的负幂次方。
Z变换的性质和连续时间信号的拉普拉斯变换类似,具有线性性、平移性、卷积性、频率抽样等性质。
Z变换将离散时间信号映射到复平面上的点,其中每个点对应离散时间信号在不同频率上的幅度和相位信息。
Z变换在信号处理中有广泛的应用。
它可以用于系统的频域分析,比如计算系统的频率响应、幅频特性和相频特性等。
Z变换还可以用于信号的滤波和等级控制,用于设计数字滤波器和控制器,从而实现对信号的调制和解调。
此外,Z变换还可以用于信号的压缩和编码,用于提取信号中的相关特征和压缩信号的数据量。
总而言之,离散时间信号及其Z变换是数字信号处理中的重要概念和工具。
离散时间信号可以用一个数列来表示,在离散时间点上取值。
而Z变换则将离散时间信号从时域转换到复频域,从而实现对信号的频谱分析和系统设计等操作。
离散时间信号及其Z变换的应用广泛,包括系统分析、信号滤波、信号压缩等领域。