第8章 z变换离散时间系统的z变换分析

合集下载

离散时间信号及其Z变换

离散时间信号及其Z变换

离散时间信号及其Z变换离散时间信号是信号与时间变量在一系列离散时间点上取值的函数,它在数字信号处理中有着重要的应用。

离散时间信号与连续时间信号类似,也可以通过不同的数学工具进行分析和处理。

其中,Z变换是离散时间信号的重要工具之一。

离散时间信号是在一系列离散时间点上取值的函数,这些离散时间点可以是整数、实数或复数。

离散时间信号通常用序列表示,即按一定顺序排列的值的集合。

离散时间信号可以是有限长度的,也可以是无限长度的。

离散时间信号在很多领域都有广泛的应用,包括通信、控制系统、数字图像处理等。

在通信系统中,信号可以是传输数据的形式,例如音频信号、视频信号等。

在控制系统中,离散时间信号可以作为控制信号,用于调整系统的状态和输出。

在数字图像处理中,图像可以被表示为二维离散时间信号,通过对其进行处理,可以实现图像的增强、压缩等功能。

Z变换是一种重要的工具,能够将离散时间信号从时域转换到复频域。

Z变换本质上是一种数学变换,它将离散时间信号转换为复平面上的函数。

Z变换的定义是通过对离散时间信号的每个样本点进行加权求和得到。

离散时间信号的Z变换可以表示为:X(z) = ∑[x(n) * z^(-n)] (n从负无穷到正无穷)其中,X(z)是离散时间信号X(n)的Z变换,x(n)是离散时间信号X(n)在时间点n上的取值,z是复平面上的变量。

通过Z变换,我们可以将离散时间信号转换到复频域,从而可以进行频域分析和处理。

在Z平面上,可以通过观察X(z)的性质来分析离散时间信号的频域特性,例如振幅谱、相位谱等。

我们还可以通过对Z变换进行逆变换,将离散时间信号恢复到时域。

Z变换的性质包括线性性、平移性、时域乘法、频域卷积等。

这些性质使得Z变换在信号处理中有着广泛的应用。

通过Z变换,我们可以分析离散时间系统的稳定性、频率响应、脉冲响应等。

此外,Z变换还可以用来设计离散时间系统,例如数字滤波器的设计等。

总结来说,离散时间信号及其Z变换在数字信号处理中起着重要的作用。

信号与系统 z变换

信号与系统 z变换

信号与系统 z变换信号与系统是电子信息学科中的一门重要课程,其中的z变换是信号与系统分析的一种重要工具。

本文将介绍信号与系统中的z变换原理及应用。

一、z变换原理z变换是一种离散域的数学变换,它将离散时间序列转换为复平面上的函数。

在信号与系统中,我们常常需要对信号进行分析和处理,而z变换提供了一种方便且有效的方式。

它将离散时间序列变换为z域函数,从而可以对信号进行频域分析。

z变换的定义是:X(z) = ∑[x(n)·z^(-n)],其中x(n)为离散时间序列,z为复变量。

通过z变换,我们可以将离散时间序列的差分方程转化为代数方程,从而简化信号与系统的分析和计算。

此外,z变换还具有线性性质和时移性质,使得我们可以方便地进行信号的加权叠加和时间偏移操作。

二、z变换的应用1. 系统的频域分析:z变换将离散时间序列转换为z域函数,可以方便地进行频域分析。

通过计算系统的传递函数在z域中的值,我们可以得到系统的频率响应,从而了解系统对不同频率信号的响应特性。

2. 系统的稳定性判断:通过z变换,可以将系统的差分方程转化为代数方程。

我们可以通过分析代数方程的根的位置,判断系统的稳定性。

如果差分方程的根都在单位圆内,说明系统是稳定的。

3. 离散时间系统的滤波设计:z变换为我们提供了一种方便的方法来设计离散时间系统的滤波器。

通过在z域中对滤波器的传递函数进行分析和调整,我们可以设计出满足特定需求的滤波器。

4. 信号的采样与重构:在数字信号处理中,我们常常需要对连续时间信号进行采样和重构。

通过z变换,我们可以将连续时间信号转换为离散时间信号,并在z域中进行处理。

然后再通过z逆变换将离散时间信号重构为连续时间信号。

5. 离散时间系统的时域分析:z变换不仅可以进行频域分析,还可以进行时域分析。

通过z变换,我们可以将离散时间系统的差分方程转换为代数方程,并通过对代数方程的分析,得到系统的时域特性。

z变换是信号与系统分析中非常重要的工具。

离散时间系统与z变换简介

离散时间系统与z变换简介

离散时间系统与z变换简介离散时间系统是一种在时间轴上以离散方式运行的系统。

在这种系统中,信号的取样是在特定的时间间隔内进行的,而不是连续地采样。

离散时间系统可以用于模拟实际世界中的许多系统,如数字信号处理、数字滤波器和控制系统等。

离散时间系统的数学表达通常使用z变换。

z变换是一种将离散时间信号转换为复平面上的函数的变换。

它与连续时间系统中的拉普拉斯变换类似,但在z变换中,时间是用离散的步长表示的。

z变换将离散时间系统中的差分方程转换为复平面上的代数表达式,从而方便了对系统的分析和设计。

在离散时间系统中,信号和系统的运算通常使用差分方程进行描述。

差分方程是一种递推关系,它将当前时间步的输入和输出与其之前的时间步的输入和输出之间建立起关联。

z变换提供了一种将这些差分方程转换为代数方程的方法,从而可以更方便地分析系统的特性。

使用z变换,可以计算离散时间系统的频率响应、稳定性和传输函数等重要性质。

频率响应描述了系统对不同频率输入的响应。

稳定性判断了系统是否能够产生有界的输出,而传输函数则表示系统输入和输出之间的关系。

总结来说,离散时间系统是一种以离散方式运行的系统,可以使用z变换进行数学建模和分析。

z变换将离散时间信号和系统转换为复平面上的函数,方便了对系统的频率响应、稳定性和传输函数等特性进行研究。

离散时间系统和z变换在数字信号处理和控制系统等领域具有广泛的应用。

离散时间系统是现代通信、信号处理、控制系统等领域中的核心概念之一。

离散时间系统可以通过对输入信号进行离散采样,以特定的时间间隔获取信号的采样值,从而实现在离散时间点上对信号进行处理和操作。

与连续时间系统不同,离散时间系统的输入和输出信号在时间上都是离散的。

离散时间系统的分析和设计常常采用差分方程描述。

差分方程是一种递推关系,它表达了当前时间步的输入和输出与之前时间步的输入和输出之间的关系。

在离散时间系统中,z变换是一种非常重要的数学工具。

z变换将离散时间信号转换为复平面上的函数,从而方便了对离散时间系统进行数学建模和分析。

第八章-Z变换与离散系统z域分析

第八章-Z变换与离散系统z域分析

第八章:Z 变换§8.1 定义、收敛域(《信号与系统》第二版(郑君里)8.1,8.2,8.3)定义(Z 变换): ♦序列()x n 的双边Z 变换:()(){}()nn X z x n x n z+∞-=-∞∑Z(8-1)♦序列()x n 的单边Z 变换:()(){}()0n n X z x n x n z +∞-=∑Z(8-2)注:1)双边:()()()()10nnn n n n X z x n zx n zx n z +∞-∞+∞---=-∞=-===+∑∑∑(8-3)为Laurent 级数,其中,()1nn x n z-∞-=-∑是Laurent 级数的正则部,()0nn x n z+∞-=∑是主部。

2)z 是复平面上的一点图8-13)对因果序列:单边Z 变换=双边Z 变换。

♦定义(逆Z 变换):对双边Z 变换()()nn X z x n z+∞-=-∞=∑()1C1d 2j m z X z z π-⎰(1C 12j m n z x π+∞-=-∞⎡=⎢⎣∑⎰ ()C 12j m n x n z π+∞=-∞⎡=⎢⎣∑⎰由Cauchy 定理,有1C d 0,2j m n z z m nπ--=⎨≠⎩⎰ (8-4)其中,C 为包围原点的闭曲线,()()1C1d 2j m x m z X z z π-∴=⎰上式= 定义:()()(){}11C1d 2j n x n z X z z X z π--==⎰Z(8-5)注:(8-4)的求解:j z re θ=,j d j d z r e θθ=,则有()()21110C 2011d 2j 2j 1102j m n m n m n j j m n m n z z r e rje d m n r e d m nπθθπθθππθπ--------==⎧==⎨≠⎩⎰⎰⎰,,图8-2 柯西定理证明示意图收敛域: ♦定义(收敛域):对有界()x n ,使()()nn X z x n z+∞-=-∞=<∞∑一致的z 的集合。

信号与系统_第八章 z变换、离散时间系统的z域分析

信号与系统_第八章 z变换、离散时间系统的z域分析

Re(z)
C是包围X(z)zn-1所有极点之逆时针闭合积分路线,通常选 择z平面收敛域内以原点为中心的圆。
➢ 求X(z)的反z变换的三种方法 ✓留数法 ✓幂级数展开和长除法 ✓部分分式展开法
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(1)
✓ 步骤 (1)将X(z)除以z,得到X(z)/z=X1(z); (2)将X1(z)按其极点展成部分分式(其方法与拉氏变换 的部分分式展开完全一致);
3.x(n)为左边序列
x(n)是无始有终的序列,即当n n2 时, x(n)=0 。
X (z)
n2
x(n)
z
n
x(n)z n
jIm(z)
n
n n2
✓若n20,0z RX2
0
RX2 Re(z)
✓若n20,0z RX2
中国民航大学 CAUC
8.2 z变换的收敛域
4.x(n)为双边序列
x(n)是从n =延伸到n = 的序列 。
(3)X(z)=zX1(z),得到X(z)的部分分式展开式;
(4)对X(z)的每一个部分分式进行反z变换,就得到X(z) 对应的序列x(n)。
[例]求 X (z)
z2
( z 1) 的逆z变换。
(z 1)( z 0.5)
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(2)
[例]求收敛域分别为z1和 z1 两种情况下, X (z) 1 2z 1
➢X(z)收敛域的确定必须同时依赖于 ✓ 序列的性质(有限长,右边,左边,双边) ✓ 是对x(n)进行单边还是双边z变换 ✓ X(z)的极点
中国民航大学 CAUC

信号与系统第8章 离散时间系统的z域分析

信号与系统第8章 离散时间系统的z域分析

零状态响应为
Yf
(z)
(1 z 1 z 2 ) 2 3z 1 z 2
1 1 z 1
1/ 6 0.5 5 / 6 1 z1 1 z1 1 0.5z1
yf [k] Z 1{Yf (z)}{1/ 6 0.5(1)k (5/ 6)(0.5)k}u[k]
y[k] yx[k] yf [k] {1/ 6 3.5(1)k (4 / 3)(0.5)k}u[k]
离散时间信号与系统的Z域分析
• 离散时间信号的Z域分析 • 离散时间系统的Z域分析 • 离散时间系统函数与系统特

离散时间信号的Z域分析
• 理想取样信号的拉普拉斯变换 • 单边Z变换定义 • 单边Z变换的收敛域 • 常用序列的Z变换 • 单边Z变换的性质 • Z反变换
理想取样信号的拉普拉斯变换
fs (t) f (t) (t kT) f (kT) (t kT)
Re(z)
三、常用序列的Z变换
1) Z{ (k)} 1, z 0
2) 3)
Z{u(k)} 1 1 z
Z{aku(k)}
1 , 1
1 a
z
z
1
1 z
a
4)
Z{e
j0k
u(k
)}
1
e
1
j0
z
1
z z e j0
5)
Z{e-
j0k u (k
)}
1
1 e- j0
z
1
z z e- j0
z e j0 z e j0
解代数方程
二阶系统响应的z域求解
y[k] a1 y[k 1] a2 y[k 2] b0 f [k] b1 f [k 1] k 0
初始状态为y[1], y[2] 对差分方程两边做Z变换,利用

Z变换及其在离散系统中的应用

Z变换及其在离散系统中的应用

Z变换及其在离散系统中的应用Z变换是一种在信号处理和控制系统中广泛应用的数学工具。

它可以将离散时间信号转换为连续复平面上的函数,从而方便进行系统分析和设计。

本文将介绍Z变换的定义及其在离散系统中的应用。

一、Z变换的定义Z变换是一种将离散时间信号转换为连续复平面上的函数的数学变换方法。

它可以将离散时间信号转换为Z域中的复函数,为信号处理和控制系统的研究提供了便利。

Z变换的定义如下:X(z) = ∑[x(n) * z^(-n)]其中,X(z)是Z变换的结果,x(n)是离散时间信号,z是复平面上的复数。

在Z变换中,z的取值是复平面上的任意一点。

通过改变z的取值,可以得到不同的频域特性。

常见的选取方式有单位圆上的点、单位圆内的点以及单位圆外的点等。

二、Z变换的性质Z变换具有许多有用的性质,这些性质对于分析和设计离散系统非常有帮助。

以下是Z变换的几个重要性质:1. 线性性质:Z变换是线性的,即对于信号的和或差的Z变换等于该信号的Z变换的和或差。

2. 移位定理:对于离散时间序列,将序列向右或向左移动n个单位时,其Z变换结果乘以z的-n次方。

3. 初值定理:序列的初始值等于其Z变换在z=1处的值。

4. 终值定理:序列的最终值等于其Z变换在z=0处的值。

5. 延时定理:将序列推迟n个单位时,其Z变换结果乘以z的n次方。

三、Z变换在离散系统中的应用Z变换在离散系统中有广泛的应用。

它可以用来描述系统的传递函数,进而进行系统的分析和设计。

以下是几个常见的应用场景:1. 系统稳定性分析:通过对系统的传递函数进行Z变换,可以得到系统在Z域中的极点分布。

通过判断极点的位置,可以判断系统的稳定性。

2. 频率响应分析:通过将频域信号进行Z变换,可以得到系统在Z 域中的频率响应。

通过分析频率响应,可以了解系统对不同频率信号的特性。

3. 离散滤波器设计:Z变换可以用来分析和设计离散滤波器。

通过对滤波器的输入输出进行Z变换,可以得到滤波器的传递函数,并基于传递函数进行进一步设计和优化。

Z域变换分析方法

Z域变换分析方法
[1 0.7 z 0.1z ]Y ( z) 0.7 y(1) 0.1z y(1) 0.1y(2)
1 2 1
第8章 Z变换
(2 z 2.6)z 代入初始条件,整理得 : Y ( z ) 2 z 0.7 z 0.1 Y ( z) (2 z 2.6) 12 10 z ( z 0.2)(z 0.5) ( z 0.5) ( z 0.2)
例8-10: 已知某离散LTI系统的单位阶跃响应为:
s[n] (2 3 5 10)u[n]
n n
(1)求系统单位抽样响应 (2)求此二阶差分方程
解: ( 1)
h[n] s[n] s[n 1] 1 n 12 n ( 2 5 )u[n] 11.1 [n] 2 5稳定系统全部极点就一定是位于单位圆内的呢?
第8章 Z变换
三、由极点分布决定系统稳定性 系统稳定的充要条件是单位样值响应绝对可和。即:
n
h( n )

因果稳定系统的充要条件为 :h(n)是单边的而且是有 界的。即: 因果
稳定
h(n) h(n)u (n) 非因果也 可以稳定 h( n) a<1 n
一、系统函数的求取 定义一:系统单位样值响应h[n]的Z变换
激励与单位样值响应的卷积为系统零状态响应
y[n] x[n] h[n]
由卷积定理
Y ( z) X ( z)H ( z)
Y ( z) H ( z) X ( z)
H ( z ) h[n]z
n 0

n
第8章 Z变换
定义二:系统零状态响应的Z变换与输入的Z变换之比 若x(n)是因果序列, 则在系统零状态下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

略!
二、幂级数展开法(长除法)
! 一般为变量z的有理分式,可用长除法,
将变换式展开为幂级数的形式。
略! 例
解 进行长除
用长除法可得z -1的幂级 数。但得不到解析式
根据Z变换定义有 所以
重点!
三、部分分式展开法
一般Z变换式是有理函数
以下研究因果序列的逆变换,即
X(z) ← Z → x(n)
(|z|>R)
8.4 逆z变换
定义: 由已知F(z)求f(n)的运算,称为逆Z变换。
记为 求逆变换方法
1、留数法 2、长除法 3、部分分式展开法(重点)
略!
一、围线积分法(留数法)
据单边Z反变换的积分公式,有
式中,C是包围
所有极点的逆时针闭合积
分路线,常选择z平面收敛域以原点为中心的圆。
因围线C包围了所有孤立奇点(极点),故此积分式可运 用留数定理来进行运算。又称为留数法,即

s平面上的单极点映射到z平面上,并不一定是单 极点。这是因为在s平面上,具有同样实部而虚部
相差 的两个极点映射到z平面上的极点都是
相同的。反之,z平面到s平面的映射是多值的。
8.7 利用z变换解差分方程
对于N阶LTI离散系统的差分方程:
X(n)为因果序列

输入信号 输入信号
初始条件 (已知)
6.5.1 零输入响 应
二、 典型序列的z变换
1. 单位样值序列δ(n)
2. 单位阶跃序列u(n)
收敛域 为Z平面
收敛域 为 z >1
3. 斜变序列
间接求 解方法
已知 两边对(z -1)求导
两边乘(z -1)

同理,两边再求导,得 …
4. 指数序列 求导
收敛域为
z > a
5. 单边正、余弦序列 由

根据欧拉公式 -
零输入响应(x(n)=0),即仅由系统初始储能引起的 响应。有
零输入响应
反z变换

x(n)=0,y(-1)=-1/b,求y(n)
解 激励x(n)=0,是零输入响应。对方程两边取Z变换

代入初始条件,得:

进行Z反变换,得:
6.5.2 零状态响 应
零状态响应是仅由激励引起的响应。当激励x(n)是因 果序列时,且初始条件为零(y(l)=0),有
三、序列线性加权(z域微分) 若
四、序列指数加权(z域尺度变换) 若
五、初值定理 若
且x(n)为因果序列,则
六、终值定理 若
且x(n)为因果序列,则
七、时域卷积定理 若
8.6 z变换与拉氏变换的关系
由连续函数拉氏变换,求离散函数Z变换,可将s代换为 ,有
可应用留数定理来计算:
Z变换和拉氏变换间的关系,还可由两者在z平 面和s平面上的极点间的映射关系表示:

单边定义为: 重点
双边定义为:
其中: z — 复变量
∵ z = e sT , s = + jΩ(拉氏变换→z变换)
∴ z = e ( + jΩ)T = e T + jΩT = e T e jΩT 令 |z| = e T , ΩT = ω,则有z = |z| e jω 其中:Ω模拟角频率, ω数字频率, T抽样间隔
(因果序列)
为了保证z = ∞处收敛,要求k ≥ r
1、X(z)只含一阶极点 将X(z) / z展为

式中 反变换为
例题 解
∴ ∴
求x(n) = ? 极点:z1 = -1, z2 = -2
2、X(z)含有重阶极点 设X(z)有M个一阶极点,在z = zi处有一个s阶极点

其中 反变换为
分子,当j≥2,从最后一项(n-j+2)一直递增乘到n
若 x(n)u(n) ←→ X(z)
x(n - m)u(n) ←→ z –m [ X(z) + 则
x(n + m)u(n) ←→ z m [ X(z) -
② x(n m)u(n) ←→ z –m [ X(z) ] 则
x(n + m)u(n) ←→ z m [ X(z) -
理想抽样:
单边x(t) = x(t)u(t)
抽样间隔
对上式取双边拉氏变换,得到
交换运算次序, 并利用冲激函数的 抽样性,得到抽样信号的拉氏变换为
令e sT = z 或 则有
相函数
—— z为复数变量(∵s = + jΩ)
T=1(归一化)
原函数
单边z变换
8.2 z变换定义、典型序列的z变换
一、 Z变换的定
2. 双边Z变换
Z变换的收敛域为
分若
,则收敛域为Z平面内圆心在原点、
析 外半径为 、内半径为 的一个圆环区域;否
则无收敛域,Z变换不存在。
同一个双边Z变换的表达式,其收敛域不同,也可能
! 对应于两个不同的序列。双边Z变换式必须注明其收
敛域,否则可能无法确定其对应的时间序列。
自习:P49,(8-17)和(8-18)两式
自习P62,例8-6 相加后零极点抵消,收敛域扩大,由|z|>a→全平面收敛
二、移位性(重要!重点右移位) 1、双边z变换 若 x(n) ←→ X(z) x(n - m) ←→ z -mX(z) 则 x(n + m) ←→ z mX(z)
2、单边z变换
自习P64,例8-8
① x(n)为双边序列,其单边z变换为
第8章 z变换离散时间系 统的z变换分析
2020年4月22日星期三
8.1 引言
一、 离散时间信号与系统的变换域分析
z变换 X(z)
z = e jω 有条件
序列的傅里叶变换X(e jω)
利用z变换求解离散系统的响应 利用离散系统函数H(z)分析系统 分析序列的频率特性 分析离散系统的频率响应特性
二、 抽样信号xs(t)的拉氏变换→z变换
例 s = 2,
例题 解
求x(n) = ?

∴ 见P60~61,表8-2、8-3、8-4(逆z变换表) 作业:P103,8-5 (1)(2)
8.5 z变换的基本性质
一、线性
若 x(n) ←→ X(z) y(n) ←→ Y(z)
Rx1 < |z| < Rx2 Ry1 < |z| < Ry2
则 ax(n) + by(n) ←→ aX(z) + bY(z) max(Rx1,Ry1) < |z| < min(Rx2,Ry2)
8.3 z变换的收敛域(ROC )
1. 单边z变换 其幂级数收敛的条件可表示为:
(绝对可和条件)

解 根据Z变换定义,有
z变换存在的充要条件
只有当
,即
(圆外区域)
该无穷级数绝对收敛。即级数收敛的充要条件:
收敛条件
根据等比级数的求和公式,有
! 单边z变换的收敛域总是z平面内以原点为圆心
的一个圆的圆外区域。一般不注其收敛域。
相关文档
最新文档