欧拉定理
数论欧拉定理

数论欧拉定理
数论欧拉定理是数学中的一个重要定理,它描述了模幂运算的一些特性。
具体地说,欧拉定理说明,如果a和n是互质的正整数,则a的欧拉函数值φ(n)满足以下公式:
a^φ(n) ≡ 1 (mod n)
其中,φ(n)表示小于n且与n互质的正整数的个数(也就是欧
拉函数)。
这个公式可以被看作是模幂运算的一个特殊情况,因为它告诉我们,如果a和n是互质的,则a的φ(n)次幂与1模n同余。
这个定
理在密码学中有广泛的应用,例如RSA加密算法就是基于欧拉定理的。
欧拉定理的证明是基于费马小定理的推广,而费马小定理是用于判断一个数是否为质数的一个重要工具。
欧拉定理的证明比费马小定理的证明要复杂一些,但它也是一个非常优美的证明,涉及到群论和数学分析等多个领域的知识。
总之,数论欧拉定理是一个非常重要的定理,它不仅有着深刻的理论意义,而且还有着广泛的应用价值。
- 1 -。
欧拉的定理

欧拉定理是数学中的一个重要定理,得名于瑞士数学家莱昂哈德·欧拉。
在数论中,欧拉定理是关于同余的性质,也称为费马-欧拉定理或欧拉函数定理。
复数中的欧拉定理也称为欧拉公式,被认为是数学世界中最美妙的定理之一。
具体来说,对于任何自然数n和实数x,有φ(n)=n(1−1/2+1/3−1/4+1/5−...+(-1)^(r)(r+1)/r),其中φ(n)表示欧拉函数,即小于n且与n互质的正整数的个数。
这个公式可以用来计算φ(n)的值。
此外,在平面几何中,欧拉定理表述的是给定一个简单多边形的顶点数和边数时,其内部点的数目等于边数和顶点数之差加二再除以二。
这个定理可以用于计算多边形的内角和、外角和等。
此外,还有多面体欧拉定理,它表述的是在任意一个凸多面体中,顶点数、棱边数和面数之间存在一个恒定的关系,即顶点数-棱边数+面数=2。
这个定理可以用于计算多面体的各种性质,如外角和、内角和等。
在组合数学中,欧拉定理可以用于求解一些组合问题,例如计算组合数的性质和公式。
在图论中,欧拉定理可以用于求解图的边数和顶点数之间的恒定关系。
此外,欧拉定理还可以用于求解一些物理问题,例如弹性力学和流体动力学中的问题。
在经济学中,欧拉定理可以用于求解一些最优化的数学问题,例如最优价格设置和资源分配等问题。
此外,欧拉定理还有一些有趣的延申和推广。
例如,在复数域中,欧拉定理可以推广为欧拉公式,即e^(ix) = cos(x) + i*sin(x),其中i是虚数单位。
这个公式可以用于求解一些复数问题,例如求解复数函数的积分和微分等。
另外,欧拉定理还可以推广到一些更复杂的数学结构和物理现象中,例如量子力学和相对论中的时空结构。
在这些领域中,欧拉定理的一些性质和结论可以用于描述和解释一些非常抽象和复杂的现象和规律。
总之,欧拉定理是一个非常重要的数学定理,具有广泛的应用价值,同时也有很多有趣的延申和推广。
无论是在数学还是物理等领域中,欧拉定理都是一个重要的工具,可以帮助我们求解一些复杂的问题和探索一些抽象的规律。
欧拉定理微观经济学

欧拉定理微观经济学欧拉定理是微观经济学中的一项重要理论,它描述了市场经济中供求关系的平衡状态。
本文将从不同角度解析欧拉定理在微观经济学中的应用和意义。
我们来了解一下欧拉定理的定义。
欧拉定理,也称为欧拉条件,是经济学中的一项基本原理,它描述了消费者在最优决策下的行为。
根据欧拉定理,消费者在选择最优消费组合时会遵循以下条件:当消费者的满足程度最大化时,其边际效用与商品价格之比相等。
欧拉定理的应用范围非常广泛,尤其在供求分析、市场均衡和福利经济学等领域中起到了重要作用。
下面我们将分别从这些方面来探讨欧拉定理的应用。
欧拉定理在供求分析中的应用。
供求关系是市场经济中的基本关系,欧拉定理可以帮助我们理解供求关系的平衡状态。
根据欧拉定理,供给曲线和需求曲线的交点就是市场均衡点,也就是市场上商品的价格和数量达到了供求平衡。
如果价格高于市场均衡价格,供给量将超过需求量,市场将出现供大于求的情况;反之,如果价格低于市场均衡价格,需求量将超过供给量,市场将出现供不应求的情况。
通过欧拉定理,我们可以更好地理解供求关系的形成和变化。
欧拉定理在市场均衡分析中的应用。
市场均衡是指市场上商品的价格和数量达到了供求平衡的状态。
根据欧拉定理,市场均衡点是指在特定价格下,消费者的边际效用与商品的边际成本相等。
当价格高于市场均衡价格时,消费者的边际效用大于商品的边际成本,消费者会减少购买,从而推动价格下降;反之,当价格低于市场均衡价格时,消费者的边际效用小于商品的边际成本,消费者会增加购买,从而推动价格上升。
通过欧拉定理,我们可以更好地理解市场均衡的形成和调整。
欧拉定理在福利经济学中的应用。
福利经济学研究的是如何实现社会福利的最大化。
根据欧拉定理,当消费者的满足程度最大化时,其边际效用与商品价格之比相等。
因此,通过分析消费者的边际效用曲线和供给曲线,我们可以判断市场是否达到了最优状态。
如果市场上商品价格和数量无法使消费者的边际效用最大化,那么市场就存在福利损失。
欧拉公式的几种形式

欧拉公式的几种形式复变函数中,e^(ix)=(cos x+isin x)称为欧拉公式,e是自然对数的底,i是虚数单位。
拓扑学中,在任何一个规则球面地图上,用 R记区域个数,V记顶点个数,E记边界个数,则 R+ V- E= 2,这就是欧拉定理,它于一六四零年由 Descartes首先给出证明,后来Euler(欧拉 )于一七五二年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理。
欧拉公式的三种形式为:分式、复变函数论、三角形。
1、分式里的欧拉公式:a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b),当r=0,1时式子的值为0,当r=2时值为1,当r=3时值为a+b+c。
2、复变函数论里的欧拉公式:e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。
它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2。
这两个也叫做欧拉公式。
将e^ix=cosx+isinx中的x取作∏就得到:e^i∏+1=0。
这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。
数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。
3、三角形中的欧拉公式:设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr。
数论 欧拉定理

数论欧拉定理欧拉定理(euler theorem),也称费马-欧拉定理或欧拉函数定理,是一个关于同余的性质,得名于瑞士数学家莱昂哈德·欧拉。
该定理被认为是数学世界中最美妙的定理之一,在西方经济学中又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。
欧拉定理指出:如果产品市场和要素市场都是完全竞争的,而且厂商生产的规模报酬不变,那么在市场均衡的条件下,所有生产要素实际所取得的报酬总量正好等于社会所生产的总产品。
该定理又叫做边际生产力分配理论,还被称为产品分配净尽定理。
如上所述,要素的价格是由于要素的市场供给和市场需求共同决定。
在完全竞争的条件下,厂商和消费者都被动地接受市场形成的价格。
定理推论在完全竞争的条件下,厂商使用要素的原则是:要素的边际产品价值等于要素价格。
即:p*mpl=w (1)p*mpk=r (2)由式1和2只须:mpl=w/p (3)mpk=r/p(4p为产品的价格,w/p和r/p分别表示了劳动和资本的实际报酬。
因为在完全竞争的条件下,单位劳动、单位资本的实际报酬分别等于劳动、资本的边际产量。
假定整个社会的劳动总量和资本总量为l和k,而社会总产品为q,由在市场均衡的条件下,所有生产要素实际所取得的报酬总量正好等于社会所生产的总产品,得:q=l*mpl+k*mpk(5)式5称为欧拉分配定理。
它是由于该定理的证明使用了数学上的欧拉定理而得名。
定理证明假设生产函数为:q=f(l.k)(即q为齐次生产函数),定义人均资本k=k/l方法1:根据齐次生产函数中相同类型的生产函数展开分类探讨(1)线性齐次生产函数n=1,规模报酬维持不变,因此存有:q/l=f(l/l,k/l)=f(1,k)=g(k)k为人均资本,q/l为人均产量,人均产量就是人均资本k的函数。
让q对l和k求偏导数,有:由上面两式,即可得欧拉分配定理:(2)非线性齐次生产函数1.当n〉1时,规模报酬递减,如果按照边际生产力分配,则产品比较分配给各个生产要素,即为:2.当n\uc1时,规模报酬递减,如果按边际生产力进行分配,则产品在分配给各个生产要素之后还有剩余,即:方法2:设立一个通常的齐次生产函数q=f(l,k)为n齐次(即n任一的齐次生产函数,既可以就是线性的,也可以就是非线性的),则存有:q=l *g(k)将该函数对k,对l谋略偏导数,得:综合上述两式,有:当n=1时,规模报酬维持不变,该式即为欧拉分配定理当n〉1时,规模报酬递增,故有:当n\uc1时,规模报酬递增,故存有:实例在技术经济学中,欧拉定理属一次齐次函数的一个关键性质,它就是说道一次齐次函数的数值都可以则表示为各自变量和因变量对适当自变量一阶偏导的乘积之和。
欧拉定理

在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。
在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。
欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。
欧拉定理实际上是费马小定理的推广。
此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2,即V-E+F=2)。
西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。
另有欧拉公式。
欧拉定理指出:如果产品市场和要素市场.都是完全竞争的,而且厂商生产的规模报酬不变,那么在市场均衡的条件下,所有生产要素实际所取得的报酬总量正好等于社会所生产的总产品。
该定理又叫做边际生产力分配理论,还被称为产品分配净尽定理。
如上所述,要素的价格是由于要素的市场供给和市场需求共同决定。
在完全竞争的条件下,厂商和消费者都被动地接受市场形成的价格。
定理内容在数论中,欧拉定理(也称费马-欧拉定理)是一个关于同余的性质。
欧拉定理表明,若n,a为正整数,且n,a互素,(a,n) = 1,则a^φ(n) ≡ 1 (mod n)相关。
费马小定理:a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)证明这个定理非常简单,由于p是质数,所以有φ(p) = p-1,代入欧拉定理即可证明。
推论:对于任意正整数a,有a^p ≡ a (mod p),因为a能被p整除时结论显然成立。
折叠应用首先看一个基本的例子。
令a= 3,n =5,这两个数是互素的。
比5小的正整数中与5互素的数有1、2、3和4,所以φ(5)=4(详情见[欧拉函数])。
计算:a^{φ(n)} = 3^4=81,而81= 80 + 1 Ξ 1 (mod 5)。
与定理结果相符。
这个定理可以用来简化幂的模运算。
比如计算7^{222}的个位数,实际是求7^{222}被10除的余数。
欧拉定理

欧拉定理在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。
在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。
欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。
欧拉定理实际上是费马小定理的推广。
此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。
西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。
另有欧拉公式。
生平简介莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。
彼得堡科学院为了整理他的著作,整整用了47年。
欧拉著作惊人的高产并不是偶然的。
他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。
即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。
当他写出了计算天王星轨道的计算要领后离开了人世。
欧拉永远是我们可敬的老师。
欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。
欧拉写的数学教材在当时一直被当作标准教程。
19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过"研究欧拉的著作永远是了解数学的最好方法"。
欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等,至今沿用。
平面几何欧拉定理

平面几何欧拉定理
欧拉定理是由拉斯维加斯的数学家莱布尼茨·欧拉在18世纪1736年提出的一个真理,它描述了许多相关特性的圆周多边形,以及两个
重要想法:
第一,它将其边界的数量与角的数量建立了联系。
比如,三角形
有三个边和三个角;五角形有五个边和五个角;等等。
欧拉定理指出,任何拥有V角与E边的平面几何形状,它们之间的关系是F+V-E=2,其中F是形状的内部区域数量,V是顶点的数量,E是边界的数量。
换句
话说,任何有限的平面几何形状的边界数量肯定是角数量减去它的内
部面数量的两倍。
第二,欧拉定理告诉我们,一个平面几何形状,其内部面数量、
角数量以及边界数量必定会满足关系F+V-E=2;对于任何它们之间的值,都将满足这个关系。
欧拉定理在很多方面都有使用,尤其是在几何学,概率学,和拓
扑学中。
它同时也被用来实现图算法,可绘制算法和图的遍历算法。
几何专家同时也用欧拉定理来建立的一系列的定理,如努尔定理、迪
卡尔-傅立叶定理等等。
欧拉定理给我们提供了积极的联系,以及发掘更加深入的几何真
理的引导。
它的实用性的特征,使其成为理解几何学的最基本原理之一,历经几十年甚至百年的证明,欧拉定理仍然受到许多学者的喜爱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。
在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。
欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。
欧拉定理实际上是费马小定理的推广。
此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。
西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。
另有欧拉公式。
欧拉1707年4月15日生于瑞士,1783年9月18日卒于俄国圣彼得堡,他简直是个超级猛人,他的一生真的是战斗的一生。
欧拉从19岁开始发表论文,直到76岁,共写下了886本书籍和论文,其中在世时发表了700多篇论文。
彼得堡学院为了整理他的著作,整整用了47年。
小奥许多知识点和欧拉有关,除了我们接下来要聊的欧拉定理和欧拉函数,还有一笔画问题也和欧拉解决的哥尼斯堡七桥问题有关。
对这类问题的讨论研究,引导了图论和拓扑学的发展。
好,我们还是言归正传。
欧拉函数与欧拉定理
在开始欧拉定理之前我们先看一个小问题,透过这小问题来了解什么是欧拉函数。
小于n且与n互质的自然数有多少个?或者我们把n具体到100,
那么问题就是小于100且与100互质的自然数有多少个?这就是欧拉函数要解决的问题。
欧拉函数用φ表示;
φ(100) = 100 x (1-1/2) x (1-1/5)
先将100分解质因数100 = 2^2 x 5^2
所有和100互质的数一定不含约数2或5
在1~100中,每2个数中有1个是2的倍数,100 x(1-1/2)把所有2的倍数去掉。
剩下的数中,每5个有一个是5的倍数,所以乘以(1-1/5)将剩下的含有约数5的数也去掉
最后有100 x (1-1/2) x (1-1/5)=40个数小于100且与100互质
欧拉函数就是这样,再来看欧拉定理:
若n, a为正整数,且n,a互质,则:
a^φ(n)≡1(mod n)
意思很明白,若n, a为正整数,且n,a互质,那么a的φ(n)次方模n恰好余1。
欧拉定理与费马小定理的关系,当n为质数p时,显然φ(p) = p-1 欧拉定理变为a^φ(p) = a^(p-1)≡1(mod p),这就是费马小定理。
所以费马小定理是欧拉定理在n为质数的特殊情况。
欧拉定理或者费马小定理揭示了一个现象,就是同余的周期性。
而这个这个周期恰是欧拉函数的值(但不一定是最小周期),我们通过两个题目来进一步了解一下欧拉定理吧。
6^83 + 8^83除以49的余数是多少?
φ(49)=49 x (1-1/7) = 42
6^83 + 8^83
≡6^(2x42-1) + 8^(2x42-1)
≡-8 -6
≡35(mod 49)
6^83 + 8^83除以49的余数是35。
3^2019的末两位数字是?
φ(100)=100x(1-1/2)x(1-1/5)=40 3^2019
≡3^(40x50+19)
≡3^19(mod 100)
因为φ(4)=2
3^19 ≡3^(2x9+1)
≡3 mod(4)
因为φ(25)=20
3^19 ≡3^(20-1)
≡-8
≡17 mod(25)
则3^19 ≡67(mod 100)。