水电站压力钢管结构计算书

合集下载

水利压力涵内衬钢管稳定和结构计算

水利压力涵内衬钢管稳定和结构计算
0.143
,
该成果表 明 ,各 工 况下管壁应力 (不 计刚性环作用 )均 满足 允许应力条件
最不利 工况为施 工 灌浆管周无介质 的工 况 ,相 反在外水渗透 时 ,由 于有水泥砂 浆约束 ,管 壁 应 力 很小 。
四、稳定计算 稳定计算 主 要是受外压 的稳定 ,这 里是外渗水压 。
1、
管顶外荷载
1.0×
=0.928(单
2314(1-o.32)
0.o833
位折算 为
cm,
kg/cm2)
/=0,928×
16× 2,l× 1o6×
=859
在外渗 水压
冖 作 尸 ,Py实 际与 Px相 等 ,为 安全 计算 。
昃 考碡 Px=o.5Py
D= Δ 62×
p9? =0.47c″ 6× 0.928(l+862/9)
三、强度计算
a、
荷载 组合 (1),荷 载简 图如下 图
|1

q °
|5
重 自
灌 压 浆 力
(1)灌 浆侧 压力作用下特 征点弯矩 M1(最 大 ),表 ⒉39公 式
帕 =兰
s=号
± 2:::|L£ [了
TⅡ
÷亓 歹豆
+恧
:呈
早 ;f;+
l-1.2sin2' 5+0.82S
孚 钅 焉
;号;夸;亏 :÷
g口
(即
'=30b
厂 =0,7× 21舾 /〃′
× G,155十
1.155cos300)=31・
68IA「 /昭
2=31,68盱
α
二 、荷载 组合
(1)施 工工况 组合 :荷 载

某水电站压力管道结构设

某水电站压力管道结构设

水电站课程设计任务及指导书一、设计题目某水电站压力管道结构设计二、课程设计的目的巩固加深所学的理论知识,培养学生运用理论知识和技术资料,分析、解决实际问题的能力。

三、课程设计的时间1周(2014年6月30日~7月4日)四、基本资料某水电站地面压力管道布置型式如图所示。

已知设计流量Q设=12.6m3/s,末跨中心断面的计算水头(包括水击压力)为56.25m,支座断面的计算水头为49.08m,伸缩节断面的计算水头为7.89m,支承环间距16m,计算段上下镇墩间距64m,钢管轴线与水平面倾角为44°,伸缩节距上镇墩2m,伸缩节内止水填料长度b=30cm,填料与管壁摩擦系数为0.3,支承环的摩擦系数为0.1,钢管采用A3钢。

下镇墩的上游端管中心的计算水头为63.4m,镇墩下游端和下游伸缩节中心计算水头近似相等,取为66.1m,镇墩下游端伸缩节的水平钢管长度为5.0m ,管内流速为5m/s,镇墩为混凝土结构。

五、设计任务1.初拟压力钢管内径及确定管壁计算厚度和结构厚度;2.确定刚性环间距;3.按正常运行情况基本荷载组合工况,对最后一跨的二个断面进行结构分析;六、设计步骤及指导1. 利用经验公式及经济流速初步确定压力管道的内径;2.确定压力管道厚度(全长采用一个厚度),要求确定管壁计算厚度和结构厚度;3. 设计压力管道的刚性环的间距(1) 校核光滑管的稳定性;(2) 设计刚性环的间距;4. 对最后一跨的二个断面进行结构分析(1) 受力分析:按正常运行情况的基本组合计算不同断面径向力、法向力和轴向力;(2) 应力计算及强度校核;(3) 抗外压稳定分析(包括管壁和支承环抗外压稳定分析) ;七、设计成果1.计算说明书一份;2. 写一份800字左右的总结。

八、参考资料1.压力钢管设计规范 2.水电站设计参考资料课程名称人数课程性质考核方式周学时起止周教师姓名合班意见教室场地标识水电站课程设计54实践考查 1 19-19 孔鲁志11水利水电工程2班博雅楼1334、1332多媒体教室5711水利水电工程1班。

水电站引水压力钢管水锤升压的计算

水电站引水压力钢管水锤升压的计算

水电站引水压力钢管水锤升压的简略计算〇说明:有压管路的锤击是由于流体的速度、动量变化引起的,流体的可压缩性和管路材料的弹性是锤击压强得以升降和传播的根源。

设水电站引水压力钢管与阀门系统示意图如下,根据儒柯夫斯基锤击波和锤击压强理论,对该系统的水锤计算如下。

设阀门的关闭时间为Ts,锤击波在管路中往复传递一次历时为T。

则:当Ts<T时(即从进口到阀门的减压传递尚未到达阀门处,而阀门已经完全关闭),将产生完全锤击(直接锤击);当Ts≥T时为间接锤击。

直接锤击情况下水锤增压△p=ρ×C×Vo;间接锤击水锤增压△p’=ρ×C×V o×T/Ts。

式中:ρ为管路介质密度,C为锤击波传播速度,V o为流体初速。

二、计算锤击波的第一相长T:T=2×L÷C式中L为管路长度,此处取L=750m,C为锤击波速度,以最大的C计算将得到最短的T以最大的C计算将得到最短的T短=2×750÷1114.48=1.35秒以最小的C计算将得到最长的T长=2×750÷1073.59=1.40秒可以看出,当阀门关闭时间Ts=8秒时,Ts大于T,管道内产生的锤击波为间接水锤。

管路越长,T越大,T/Ts越大,水锤升压也越大。

三、计算管路流速根据标书:DN1000管道设计流量3.5m ³/s ,换成流速Vo=Q/(πr 2)=3.5÷(3.14159×0.52)=4.456m/s DN1200管道设计流量4.65m ³/s ,换成流速V o=Q/(πr 2)=4.65÷(3.14159×0.62)=4.11m/s 四、按间接水锤公式计算,水锤增压△p=ρ×C ×Vo ×T/Ts =1000×1114.48×4.456×1.35÷8=838033 Pa ≈83.8 m 水柱 △p=ρ×C ×Vo ×T/Ts =1000×1073.59×4.11×1.40÷8=772179 Pa ≈77.2 m 水柱五、根据阀门设计手册给出的水锤升压简易计算公式 公式来源:《阀门设计手册》P451,2000.4年版,杨源泉主编《阀门设计》P238,1975年版,沈阳阀门研究所关闭阀门水锤升压计算公式为△p=0.004Q/At 单位Kgf/cm 2此公式经单位换算同等变换后,等效于△p=144*V o/t ,单位m 水柱 在本例中,V o=4.456(4.11)m/s,关阀时间8s ,计算得 △p=144*4.456(4.11)= 80.21(73.98)m 水柱。

紧水滩水电站枢纽布置及钢管应力设计计算书

紧水滩水电站枢纽布置及钢管应力设计计算书

目录目录 (1)第一章机组选型 (4)1.1 特征水位 (4)1.1.1 Hmax可能出现情况 (4)1.1.2 Hmin可能出现情况 (5)H的计算 (6)1.1.3 av1.2 水轮机的选择 (6)1.2.1 HL220工作参数确定 (6)1.2.2 HL200工作参数确定 (9)第二章发电机选型及主要尺寸 (11)2.1 主要尺寸估算(单位:mm) (11)2.2 外形尺寸(单位:cm) (11)2.2.1 平面尺寸 (11)2.2.2 轴向尺寸 (11)第三章金属蜗壳尺寸 (12)第四章尾水管尺寸 (13)第五章调速器及油压装置选择与尺寸 (13)5.1 调速功计算:水轮机的调速功 (13)5.2 接力器选择 (14)5.2.1 接力器直径ds (14)5.2.2 最大行程 (14)5.2.3 接力器容积计算 (14)5.3 油压装置选择 (14)第六章大坝基本剖面拟定及稳定与应力校核 (15)6.1 坝高的确定 (15)6.1.1 坝顶上游防浪墙顶应超出静水位的高度△h (15)6.1.1 坝顶高程 (16)6.2 挡水建筑物-混凝土重力坝 (17)6.2.1 基本剖面 (17)6.2.2 实用剖面 (17)6.2.3 稳定计算 (18)6.3 泄水建筑物-混凝土溢流坝 (26)6.3.1 单宽流量q (27)6.3.2 溢流前缘总净宽L (27)6.3.3 孔数n (27)6.3.4 每孔净宽b (27)6.3.5 堰顶高程 (28)6.3.6 实用剖面设计 (29)6.3.7 冲坑挑距 (32)6.3.8 稳定计算 (33)第七章起重设备选择与尺寸 (36)第八章厂房轮廓尺寸估算 (37)8.1 主厂房长度确定 (37)8.1.1 机组段长度 (37)8.1.2 装配场长度 (37)8.2 主厂房宽度确定 (38)8.3 主厂房顶高程确定 (38)8.3.1 水轮机安装高程 (38)8.3.2 尾水管底板高程 (38)8.3.3 厂房基础开挖高程 (39)8.3.4 水轮机层地面高程4 (39)8.3.5 定子安装高程 (39)8.3.6 发电机层地面高程(定子埋入式) (39)8.3.7 装配场地面高程 (39)8.3.8 吊车轨道高程 (39)8.3.9 主厂房顶高程 (40)专题压力钢管应力计算 (40)第一章 机组选型1.1 特征水位20万KW 属中型电站,A =8.31,N =9.81QH η=AQH ,考虑2%水头损失1.1.1 Hmax 可能出现情况1.1.1.1 校核洪水位(H=292.0m ),三台机组全发电r N =20/98%=20.41万kw由泄Q =12900 s m 3 查获下游水位2H =219.4 m毛Hmax =292.0-219.4=72.6 m 净Hmax =72.6×0.98=71.15 m1.1.1.2 设计洪水位(1H =290.0m ),四台机组全发电r N =20.41万kw由泄Q =10080s m 3 查获下游水位2H =217.0m毛Hmax =291.0-217.0=73.0 m 净Hmax =73.0×0.98=71.15m1.1.1.3 正常蓄水位(284.0m ),一台机组发电r N =5/98%=5.1万kw假定1Q =80s m 3 查获下游水位2H =202.0m毛H =284-202.0=82 m 净H =82×0.98=80.36 mN=AQ 净H =8.31×80×80.36=5.34万kw假定1Q =100s m 3 查获下游水位2H =202.3m毛H =284-202.3=81.7m 净H =81.7×0.98=80.01 m N=AQ 净H =8.31×100×80.01×0.98=6.65万kw假定1Q =240s m 3 查获下游水位2H =203 m毛H =284-203=81 m 净H =81×0.98=79.38 m N=AQ 净H =8.31×200×79.38=15.83万kw 作N ~Q 曲线,查得 N=5万kw 时,Q=76 s m 3 所以 max H 净=N/(8.31Q )=5/(8.31×76)=79.17 m综上选取max H =79.17 m1.1.2 Hmin 可能出现情况设计低水位(264.0m ),四台机组全发电 r N =20/98%=20.41万kw 当1Q =240s m 3 查获下游水位2H =203 m毛H =263-203=60 m 净H =61×0.98=59.78 m N=AQ 净H =8.31×240×59.78=11.91万kw当1Q =300s m 3 查获下游水位2H =203.2m毛H =264-203.2=60.8m 净H =60.8×0.98=59.58 m N=AQ 净H =8.31×300×59.58=14.85万kw当1Q =450 s m 3 查获下游水位2H =203.8 m毛H =264-203.8=60.2 m 净H =60.2×0.98=59.0 m N=AQ 净H =8.31×450×59.0=22.1万kw作N ~Q 曲线,查得 N=20.41万kw 时,Q=409 s m 3,所以 下H =203.6 m 故min H =263-203.6=60.4 s m 3 综上选取min H = 60.4m1.1.3 av H 的计算av H =max H /2+min H /2=(79.17+60.4)/2=69.79m 设计水头H r =0.95×H av =0.95×69.79=66.3m 水电站水头变化范围为60.4—79.17由工作水头范围查表得:选用HL220水轮机或HL200水轮机1.2 水轮机的选择1.2.1 HL220工作参数确定1.2.1.1 转轮直径D1查表得限制工况Q 1/m =1.15 m 3/s ,ηm =89.0% 初设Q 1/ =1.15m 3/s ,ηm =91.7% Nr =60000/96%=62500 kw ,Hr =73.76 mD 1==3.05 m取相邻较大值D 1=3.3 m1.2.1.2 转速n查表得HL220型在最优工况下单位转速为:n 10/m =70.0r/min 设n 10/= n 10/m =70.0r/min ∵ Hav =69.79m n 10/=70.0r/min D 1=3.3m ∴取相邻值n =187.5r/min P =16对1.2.1.3 效率修正查表得HL220型在最优工况下的模型最高效率ηmmax=91%模型转轮直径 D 1m =0.46m∴ηmax =1-(1-ηmmax )×(D 1m /D 1)1/5=93.9% △η=93.9%-91%=2.9%考虑制造工艺上的差异在△η值中减去一个修正值ε=1.0 % ∴ △η=1.9% ∴ηmax=ηmmax+△η=91%+1.9%=92.9%η=ηm +△η=89.0%+2.9%=91.9% 与假定值相同 ∴ △n 10// n 10/m =(ηmax/ηmmax)1/2-1=1.04%<3%∴ n 、Q 1/可不加修正1.2.1.4 工作范围检验在选定1D =3.3m n=187.5r/min 后,水轮机的'max 1Q 及各特征水头相对的'1n 即可以计算出来。

水电站(压力钢管分岔管结构设计专题)计算书(doc 78页)

水电站(压力钢管分岔管结构设计专题)计算书(doc 78页)

目录目录 (1)第1章枢纽布置、挡水及泄水建筑物 (3)1.1混凝土非溢流坝 (3)1.1.1 剖面设计 (3)1.1.2 稳定与应力校核 (6)1.2 混凝土溢流坝 (24)1.2.1 溢流坝孔口尺寸的确定 (24)1.2.2 溢流坝堰顶高程的确定 (25)1.2.3 闸门的选择 (26)1.2.4 溢流坝剖面 (27)1.2.5 溢流坝稳定验算 (28)1.2.6 溢流坝的结构布置 (35)1.2.7 消能与防冲 (35)第2章水电站厂房 (37)2.1 水轮机的选择 (37)2.1.1 特征水头的选择 (37)2.1.2 水轮机型号选择 (39)2.1.3 水轮机安装高程 (44)2.2 厂房内部结构 (44)2.2.1 电机外形尺寸估算 (44)2.2.2 发电机重量估算 (46)2.2.3 水轮机蜗壳及尾水管 (46)2.2.4 调速系统,调速设备选择 (48)2.2.5 水轮机阀门及其附件 (49)2.2.6 起重机设备选择 (50)2.3 主厂房尺寸及布置 (50)2.3.1 长度 (50)2.3.2 宽度 (51)2.3.3 厂房各层高程确定 (51)第3章引水建筑物 (54)3.1 细部构造 (54)3.1.1 隧洞洞径 (54)3.1.2 隧洞进口段 (54)3.2 调压室 (56)3.2.1 设置调压室的条件 (56)3.2.2 压力管道设计 (57)3.2.3 计算托马断面 (57)3.2.4 计算最高涌波引水道水头损失 (61)3.2.5 计算最低涌波引水道水头损失 (65)3.2.6 调压室方案比较 (66)第四章岔管专题设计 (72)4.1结构设计 (72)4.1.1 管壁厚度的计算 (72)4.1.2 岔管体形设计 (73)4.1.3 肋板计算 (75)第1章 枢纽布置、挡水及泄水建筑物1.1混凝土非溢流坝1.1.1剖面设计1.1.1.1基本剖面 1.1.1.1.1坝高的确定(1)按基本组合(正常情况)计算:m H 235.5112123.5m =∇-∇=-=设计底220gD 9.81220042.63v 22.5⨯== 由(1)得5%h 1.057m = 由(2)得m L 10.92m =由《水工建筑物》表2—12 查得5%mh 1.95h = m h 0.542m ∴= 1%mh 2.42h = 1%h 2.420.542 1.31m ∴=⨯= 221%m z m m h 2H 1.312123.5h cth cth 0.49m L L 10.9210.92πππ⨯π⨯∴===大坝级别1级 正常情况c h 0.7m =1%z c h 2h h h 2 1.310.490.7 3.81m ∆=++=⨯++=设坝顶高程=设计洪水位+h ∆设235.5 3.81239.31m =+= (2)按特殊组合(校核情况)计算:m H 238112126m =∇-∇=-=校核底220gD 9.81222597.01v 15⨯== 由(1)得5%h 0.64m = 由(2)得m L 7.30m =由《水工建筑物》表2—12 查得5%mh 1.95h = m h 0.328m ∴= 1%mh 2.42h = 1%h 2.420.3280.79m ∴=⨯= 221%m z m m h 2H 0.792126h cth cth 0.27m L L 7.37.3πππ⨯π⨯∴===大坝级别1级 非正常情况c h 0.5m =1%z c h 2h h h 20.790.270.5 2.35m ∆=++=⨯++=设坝顶高程=校核洪水位+h ∆校238 2.35240.35m =+= 综上:坝顶高程取为240.35 m 。

压力管道强度计算书

压力管道强度计算书

强度计算书工程名称:XXXXXXXXXX 项目号:XXXX版次:0设计单位:XXXXXXXXXX项目负责:设计:校核:审核:工业及热力管道壁厚计算书1直管壁厚校核1.1计算公式:根据《工业金属管道设计规范》(GB50316-2000)(2008年版)6.2中规定,当直管计算厚度t s 小于管子外径D o 的1/6时,承受内压直管的计算厚度不应小于式(1)计算的值。

设计厚度t sd 应按式(2)计算。

[]()PYE PD t j tos +=σ2 (1)C t t s sd += (2)21C C C += (3)式中 s t —直管计算厚度(mm );P —设计压力(MPa ); o D —管子外径(mm );[]t σ—在设计温度下材料的许用应力(MPa );j E —焊接接头系数;sd t —直管设计厚度(mm );C —厚度附加量之和(mm ); 1C —厚度减薄附加量(mm ) 2C —腐蚀或腐蚀附加量(mm )Y—计算系数式中设计温度为常温,一般取100℃,[]tσ根据《工业金属管道设计规范》(GB50316-2000)(2008年版)附录A金属管道材料的许用应力表A.0.1进行选取,故20#为130MPa,S30408为137MPa。

E取值是根据《压力管道规范-工业管道第2部分:材料》j(GB/T20801.2-2006)表A.3,故20#和S30408的取值都为1。

Y根据《工业金属管道设计规范》(GB50316-2000)(2008年版)表6.2.1进行选取,故20#和S30408的取值都为0.4。

1.2管道计算厚度1.3厚度附加量(1).C1厚度减薄附加量(mm),取钢管允许厚度负偏差。

根据《流体输送用不锈钢无缝钢管》(GB/T14976-2012)规定:热轧(挤、扩)钢管壁厚<15mm时,普通级允许厚度负偏差(12.5%δ)高级允许厚度负偏差(12.5%δ);热轧(挤、扩)钢管壁厚≥15mm时,普通级允许厚度负偏差(15%δ)高级允许厚度负偏差(12.5%δ);冷拔(轧)钢管壁厚≤3mm时,普通级允许厚度负偏差(14%δ)高级允许厚度负偏差(10%δ);冷拔(轧)钢管壁厚>3mm时,普通级允许厚度负偏差(10%δ)高级允许厚度负偏差(10%δ)。

水电站压力钢管及弯管展开计算

水电站压力钢管及弯管展开计算

式中: a——单元管节正截面的圆心角;
(16-25)——Page472,《手册》
D——管内径与管壁厚度(计入锈蚀)之和,即平均直径,mm ; b——单元管节最短母线长的半值,mm ;
弯管展开曲线计算
单元管节半边展开曲线坐标按下式计算:
(16-24)——Page472,《手册》
ρ——弯管转弯半径管节中间正截面距离,mm ;
k——相邻单元管节的管轴偏角。

úû
ù
êëé--+==£©£¨£©£¨D a D b y a D x r p
2cos 1118022
2
D k tg
b +
=
r
)
2
(2D
k tg b -=r
一、 弯管一
弯管展开曲线计算:
已知条件有: 弯管转角θ=15。

,管内径D 0=1810mm ,壁厚δ=18mm 。

本弯管设计为3个单元管节;则,每个单元管节间偏角k=15/3=5。


二、弯管二
已知条件有:弯管转角θ=60。

,管内径D0=1810mm,壁厚δ=18mm。

本弯管设计为8个单元管节;则,每个单元管节间偏角k=60/8=7.5。

,。

水电站压力管镇、支墩计算软件

水电站压力管镇、支墩计算软件
1.23 1.22
5.53 4.66 9.38
32.38 1.48
1.23 1.99 11.47
1.23 1.22
(二)、运行条件下作用在镇墩上的基 本荷载
(1)钢管自重的轴向分力A‫׳‬1= (KN)
(2)镇墩上、下游端内水压力A3 上游端A‫׳‬3= (KN) 下游端A‫״‬3= (KN) (3)伸缩节管端水压力A5 上游伸缩节A‫׳‬5= (KN) 下游伸缩节A‫״‬5= (KN)
管壁厚的稳定条件
计算管壁厚(公式1)δ= (mm)
计算管壁厚(公式2)δ= (mm) 计算管壁厚δ(公式3)= (mm) 管壁厚度稳定条件= (mm)
管壁最小厚度 膜应力区
镇墩上游管轴倾角α1(度)= 镇墩下游管轴倾角α2(度)=
平均直径Dm= (m) 实际单位长管重qs= 单位长管中水重qw=
(KN) (KN)
(4)温度变化时,伸缩节止水盘根对管壁摩 擦力A6
上游伸缩节A‫׳‬6= (KN) 下游伸缩节A‫״‬6= (KN) (5)温度变化时,支墩对管壁摩擦 力A7 上游方向A7= (KN) 几个支墩的总阻力ΣA‫׳‬7= (KN) (6)镇墩中弯管水流离心力A8=
(KN)
(7)镇墩前、后钢管对镇墩的法向 力
镇墩前半跨管的法向力Q‫=׳‬
镇墩后管段长的法向力Q‫=״‬ (三)、检修条件下作用在镇墩上的基 本荷载 (1)钢管自重的轴向分力A1‫=׳‬ (KN)
(2)关闭阀门或闷头上的水压力A2( 下镇 墩)
(3)温度变化时,伸缩节止水盘根对管壁摩 擦力A6
上游伸缩节A‫׳‬6= (KN) 下游伸缩节A‫״‬6= (KN) (4)温度变化时,支墩对管壁摩擦 力A7 上游方向A‫׳‬7= (KN) (5)镇墩前、后钢管对镇墩的法向 力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑤ 轴向力的合力∑A
计算公式: A A1 A5 A6 A7
轴向力合力∑A计算表
A1
A5
A6
A7
∑A(N)
1831
-197
1086
63500
66220
4.1.2 跨中管壁断面应力计算
(1)径向内水压力P在管壁中产生的环向应力σθ1
计算公式:
1
Pr t
1
r H
coscosrDFra bibliotek2400
45.000°
180° 0.0000098 500
400
45.000°
σr(N/mm2) -0.002 -0.005 -0.008
4.1.3 跨中管壁断面各计算点应力条件复核
复核公式:
2
2 x
2 r
x
r
x r
式中:
1 x x1 x2
相应计算工况的允许应力:[σ]=0.55σs= 129.250N/mm²
1831
② 套筒式伸缩节端部的内水压力A5
计算公式:
A5
4
D12 D2 2 P
P H w
式中:
伸缩节端部管道中心内水压力……………………………H´= 500mm
伸缩节内套管外径…………………………………………D1= 768mm
伸缩节内套管内径…………………………………………D2= 800mm
φ[σ] 122.7875 122.7875 122.7875
4500
4.926
15674
(3)轴向力∑A ① 钢管自重轴向分力A1
计算公式: A1 qs L3 sin
式中:
A1 qs L3 sin
伸缩节至计算截面处的钢管长度…………………………L3= 1500mm
钢管自重轴向分力A1计算表
α
qs
L3
A1(N)
45.000°
1.726
1500
则: P H w 0.005N/mm²
(2)垂直管轴方向的力(法向力)
① 钢管自重分力Qs
计算公式: Qs q s L c os (每跨钢管自重) qs 1.25 Dt s (单位管长钢管自重,考虑刚性环等附件的附加重量约为钢管自重的25%)
钢管自重分力Qs计算表
D
t
γs
α
L
qs(N/mm)
1 设计依据及参考资料
水电站压力钢管结构计算书(明管)
(1)设计依据:《水电站压力钢管设计规范》(SL281—2003)
(2)参考资料:《水电站建筑物》(王树人 董毓新主编)、《水电站》(成都水力发电学校主编)
2 设计基本资料
设计引用流量……………………………………………… Q= 3.860m³/s 钢材的弹性模量…………………………………………… E= 206000N/mm² 钢材的泊松比………………………………………………μ= 0.3 钢材的重度……………………………………………… γs= 0.0000785N/mm³ 水的重度………………………………………………… γw= 0.0000098N/mm³ 钢管内径…………………………………………………… D= 800mm 钢管轴线倾角………………………………………………α= 45.000° 镇墩间距……………………………………………………L1= 27600mm 支墩间距…………………………………………………… L= 4500mm 加径环间距………………………………………………… l= 2000mm 伸缩节与上镇墩的距离……………………………………L2= 2000mm 伸缩节止水盘根沿管轴向长度……………………………b1= 300mm 伸缩节止水填料与钢管的摩擦系数…………………… μ1= 0.3 支座对管壁的摩擦系数…………………………………… f= 0.5 焊缝系数…………………………………………………… φ 0.95 =
式中:θ为计算点半径与管中心铅垂线的夹角:θ=0°为管顶点;θ=90°为管水平轴线处;θ=180°
为管底处。
跨中环向应力σθ1计算表
θ
D
r
P
t
H
α
σθ1(N/mm2)

800
400
0.005
7
500
45.000°
0.122
90°
800
400
0.005
7
500
45.000°
0.28
180°
钢管管壁厚度t初估计算表
γw
H
D
σs
φ
[σ]
t(mm)
0.0000098
500
800
325
0.95
178.75
0
取计算管壁厚度t= 8mm
再考虑2mm的锈蚀裕量,管壁结构厚度初定t= 7mm
(2)复核管壁结构厚度是否满足考虑制造工艺、安装、运输等要求,保证必须的刚度的最小厚度要求:
计算公式:
跨中断面应力条件复核计算成果表
部位
θ
σθ=σθ1
σx1
σx2
σx
σr
管顶点

0.122
-3.764 -2.707 -6.471 -0.002
管水平轴线 90°
0.28
-3.764
0
-3.764 -0.005
管底点
180°
0.438
-3.764
2.707
-1.057 -0.008
σ 6.532 3.909 1.329
cos
M
1 10 (qs
qw )L2
cos
跨中轴向应力σx2计算表
θ
qs
qw
L
α
M
r

1.726
4.926
4500
45.000° 9524940
400
90°
1.726
4.926
4500
45.000° 9524940
400
180°
1.726
4.926
4500
45.000° 9524940
400
t
σx2(N/mm2)
3 初估管壁厚度t
(1)根据末跨的主要荷载(内水压力)并考虑将钢材的允许应力降低15%,按锅炉公式初估管壁厚度t:
计算公式:
t
2
w HD
1 0.15
0.55 s
式中:
钢管管壁钢材屈服点…………………………………… σs= 325.000N/mm²
末跨跨中截面管道中心内水压力………………………… H= 500mm
套筒式伸缩节端部的内水压力A5计算表
D1
D2
γw

P´(N/mm2)
768
800 0.0000098 500
0.005
A5(N) -197
③ 温升时套筒式伸缩节止水填料的摩擦力A6
计算公式: A6 D1b11P
温升时套筒式伸缩节止水填料的摩擦力A6计算表
D1
b1
μ1

768
300
0.3
0.005
Qs(N)
800
7
0.0000785 45.000°
4500
1.726
5492
② 钢管中水重分力Qw
计算公式: Q w qw L co s (每跨管内水重) qw 0.25D 2 w (单位管长管内水重)
钢管中水重分力Qw计算表
D
γw
α
L
qw(N/mm)
Qw(N)
800
0.0000098 45.000°
A6(N) 1086
④ 温升时支座对钢管的摩擦力A7
计算公式: A7 qL f cos nqs qw Lf cos
式中:
计算截面以上支座的个数………………………………… n= 6个
温升时支座对钢管的摩擦力A7计算表
n
qs
qw
L
f
α
A7(N)
6
1.726
4.926
4500
0.5
45.000° 63500
t D /800 4
则t应满足: t≥ 5.0mm
实际选用管壁厚度 t=
7mm
,满足要求。
4 钢管应力分析 4.1 跨中管壁断面应力分析
4.1.1 荷载计算 (1)径向内水压力P
计算公式: P H w
式中: 计算截面管道中心内水压力……………………………… H= 500mm
7
-2.707
7
0
7
2.707
(4)内水压力P在管壁产生的径向应力σr
计算公式: r P w (H r cos cos )
r P w (H r cos cos )
跨中径向应力σr计算表
θ
γw
H
r
α
0° 0.0000098 500
400
45.000°
90° 0.0000098 500
800
400
0.005
7
500
45.000°
0.438
(2)轴向力∑A在横断面上产生的轴向应力σx1(以拉力为+)
计算公式:
A
x1 2rt
跨中轴向应力σx1计算表
∑A
r
t
66220
400
7
σx1(N/mm2) -3.764
(3)法向力在横断面上产生的轴向应力σx2
计算公式:
x2
M r 2t
相关文档
最新文档