§3.2 周期信号的频谱和功率谱
第3章连续信号与系统的频域分析

2013年8月13日8时10分
3.0 引言
LTI系统的特性完全可以由其单位冲激响应
来表征,通过对LTI系统单位冲激响应的研究就可
分析LTI系统的特性。
连续时间信号分解为一系列完备正交信号集, 再根据线性叠加原理求解系统的零状态响应。
9
2013年8月13日8时10分
3.1信号的正交分解
3.1.1 矢量的正交分解 1 、正交矢量(2维空间)
3.1.2 信号的正交分解 2、正交函数的两个重要定理 定理2:若 则:
f (t ) c1 g1 (t ) cr gr (t ) cn gn (t ) ci gi (t )
i 1
n
t2
t1
f (t ) dt ci gi (t ) dt
t2 i 1 t1
完备正交函 数集
1,cos t,cos 2t,,sin t,sin 2t,
17
2013年8月13日8时10分
3.2 周期信号的连续时间傅立叶级数
一般地,若 即有:
则有:
f ( t ) 在区间(-∞,+
∞)内,每隔周期T重复,
f (t ) f (t kT )
T 2 T 2
V1 V2 0
V1 V3 0
V2 V3 0
11
2013年8月13日8时10分
3.1信号的正交分解
3.1.1 矢量的正交分解 3 、正交矢量(n维空间)
c3 V3 V3 o V2 c2 V2 V1
V cV1 crVr cnVn 1
V c1 V1
cr
V cos r Vr
3.7 连续信号的抽样定理
连续周期信号的频域分析

三、周期信号的频谱及其特点
3. 频谱的特性
(3) 信号的有效带宽
0~2 / 这段频率范围称为周期矩形脉冲信号的 有效频带宽度,即 2π B
信号的有效带宽与信号时域的持续时间成反比。 即 越大,其B越小;反之, 越小,其B 越大。
三、周期信号的频谱及其特点
3. 频谱的特性
(3) 信号的有效带宽 物理意义:在信号的有效带宽内,集中了信 号绝大部分谐波分量。若信号丢失有效带宽以 外的谐波成分,不会对信号产生明显影响。
n=—4 4
1 T /2 2 P T / 2 f (t )dt 0.2 T 包含在有效带宽(0 ~ 2 / )内的各谐波平均功率为
2 2 C0
2 | Cn | 2 0.1806
n=1
4
P 0.1806 1 90% P 0.200
例3 试求周期矩形脉冲信号在其有效带宽(0~2 /t)内
频谱的特性频谱的特性信号的有效带宽信号的有效带宽这段频率范围称为周期矩形脉冲信号的有效频带宽度有效频带宽度即信号的有效带宽与信号时域的持续时间信号的有效带宽与信号时域的持续时间成反比
连续周期信号的频域分析
周期信号的傅里叶级数展开 傅里叶级数的基本性质 周期信号的频谱及其特点 周期信号的功率谱
三、周期信号的频谱及其特点
三、周期信号的频谱及其特点
4. 相位谱的作用
幅频不变,零相位
幅频为常数,相位不变
四、周期信号的功率谱
帕什瓦尔(Parseval)功率守恒定理
2 1 T P 2T f (t ) dt Cn T 2 n 2
物理意义:任意周期信号的平均功率等于信号所 包含的直流、基波以及各次谐波的平均功率之和。
信号与系统第三章

1
2 t0 T1
2 t0 T1
2
[ T1
t0
f (t) cos n 1tdt
j T1
t0
f (t) sin n 1tdt]
1 t0 T1
T1 t0 f (t)[cos n 1t j sin n 1t]dt
1 t0 T1 f (t)
T1 t0
2e jn 1t dt
2
1 t0
T1
f (t)e
jn 1t dt
1768年生于法国 1807年提出“任何周
期信号都可用正弦函 数级数表示”
拉格朗日,拉普拉斯 反对发表
1822年首次发表在 “热的分析理论”
一书中
一、频域分析
从本章开始由时域转入变换域分析,首先讨 论傅里叶变换。傅里叶变换是在傅里叶级数正交 函数展开的基础上发展而产生的,这方面的问题 也称为傅里叶分析(频域分析)。将信号进行正 交分解,即分解为三角函数或复指数函数的组合。
t0 T1 t0
f (t)e jn1tdt
n 0,1, 2,3 。
Fn
1 t0
T1
f (t)e
jn 1t dt
T1 t0
n 0, 1, 2, 3 。
为了积分方便,通常取积分区间为:0
~
T1或
T1 2
~
T1 2
推导完毕
f (t)
n
Fne jn 1t F0
Fne jn 1t
n1
1
Fne jn 1t
n
(形式一) f (t) a0 an cos(n1t) bn sin(n1t) n1
傅氏级数展开实质就是确定展开式中各分量系数
确定系数:
f (t) a0 an cos(n1t) bn sin(n1t) n1
第四章周期信号傅里叶级数

f(t)1.5 S(anπ)conπ st()
n1 2
2
t
f (t) = f1(t) f2(t)
-4 -3 -2 -1
1 2 34
f 2 (t )
1
-4 -3 -2 -1 1 2 3 4
t
f2(t)0.5n 1S(an2π)con2 π st()
t
说明:某些信号波形经上下或左右平移 后,才呈现出某种对称特性,也有某些 信号波形可以由我们熟悉的基本信号的 波形进行简单的计算得到。因此,我们 可以利用傅里叶性质简化傅里叶级数的 计算。教材P147例3.6、例3.7
n 1
C 0
C nejn0t C nejn0t
C nejn0t和 C nejn0t共 轭
n1
C02 ReC(nejn0t )
n1
令
Cn
an
jbn 2
由于C0是实的,所以b0=0,故
C0
a0 2
由此可以推出:
三角形式傅立叶级数
连续时间周期信号三角形式傅立叶级数为:
f(t)a 2 0n 1anco n0 stn 1b nsinn0t
1(t e j n 0 t 00 e j n 0 td tt e j n 0 t 1 1 e j n 0 td )t
2 jn 0
1 1
00
(n1)2 (cons1)
0
2
T
例2 试计算图示周期三角脉冲信号的傅里叶级数 展开式。
f (t)
-2 1 0 2
t
解: 该周期信号f (t)显然满足狄里赫勒的三个条件,Cn存在
n ()
Cn
1
n1
n1
1
例1 周期矩形脉冲信号的频谱图
《周期信号的频谱》PPT课件

n
n0
• 例:
试求周期矩形脉冲信号在其有效带宽内谐波分量所具有的平 均功率占整个信号平均功率的百分比。其中A=1,T=1/4, =1/20。
fT (t)
A
T
T
t
2
2
• 解: 周期矩形脉冲的傅立叶复系数为:
Fn
A
T
S
a(n1)=A
2T
sinn(1)
2
n1
2
将A=1,T=1/4,=1/20,代入:
F n 0 . 2 S ( n 1 a / 4 ) 0 0 . 2 S ( n / a 5 )
信号的平均功率为:P1 T/2 f2(t)dt0.2
T T/2
包含在有效带宽内的各谐波平均功率为:
有效带宽为: 0~2(rad/s) 0~40(ra/sd)
1 8
在带宽范围内有基波、二次、三次、四次谐波分量:
T(t) (tnT)
n
δT(t)
n=0, 1, 2, ….
-3T -2T -T 0 T 2T 3T t
系数:
F n
1 T
T 2
T 2
f (t )e jn1t d t
1
T 2
( t ) e d jn 1t t
T
T 2
1 T
则 : f (t )
F e jn1t n
n
T (t )
An、n 均为 n1 的复函数,
分别组成 f(t) 的第 n 次谐波分量的振幅和相位。
振幅频谱
频谱图
相位频谱
以振幅为纵坐标所画出的谱线图 以ω为横坐标
以相位为纵坐标所得到的谱线图
• 试画振幅谱和相位谱
矩形波
第3章 频谱分析

jn1t
n 1
F jn e
1
jn1t
式(3-9)又可写为
f t
F jn e
1
jn1t
F e
n
jn1t
(3-10)
第 3章
连续时间系统的频域分析
式(3-10)称为周期信号f(t)的指数形式傅立叶级数展开式, 其中F(jnω1)为傅立叶系数, 简写为Fn, 又称为频谱函数。 由于 Fn为复数, 所以式(3-10)又称为复系数形式傅立叶级数展开式。 傅立叶系数Fn为
(n=0, 1, 2, 3, …) 4 T /2 bn f t sin n1tdt T 0
an 0
第 3章
连续时间系统的频域分析
(3) 奇谐函数。 若周期信号f(t)波形沿时间轴平移半个周 期后与原波形相对于时间轴镜像对称, 即满足
T f t f t 2
bn 0
故
1 2 sinn π/ 4 f t a0 an cos n1t cos n1t 2 n π n 1 n 1
因此
1 a0 2
an
2 sinn π/ 4 nπ
第 3章
连续时间系统的频域分析
即 a0=0.5 a1=0.45 a2≈0.32 a3=0.15
1807年, 傅立叶以他惊人的洞察力大胆断言: 任何周期函数都
可以用收敛的正弦级数表示。 他的关于把信号分解为正弦分 量的思想对后来的自然科学等领域产生了巨大的影响。
周期信号是定义在(-∞, ∞)区间内, 每隔一定时间T按相
同规律重复变化的信号。 图3-1所示是实际的周期性非正弦信号, 它们一般表示为
第3章功率谱估计和信号频率估计方法

第3章功率谱估计和信号频率估计方法在信号处理和通信系统设计中,功率谱估计和信号频率估计是非常重要的技术。
功率谱估计可以用来研究信号的频域特性和频率分量的强度分布,信号频率估计可以用来确定信号的频率成分。
本章将介绍功率谱估计和信号频率估计的常用方法。
3.1功率谱估计功率谱是描述信号功率随频率变化的函数。
常用的功率谱估计方法有非参数法和参数法。
非参数法是一类基于信号的样本序列进行计算的方法,不依赖于对信号的概率模型的先验假设。
常见的非参数法有周期图法、半周期图法等。
周期图法是一种基于时域序列的离散傅里叶变换的方法。
它将信号分成多个时段,对每个时段进行傅里叶变换,然后求得功率谱密度。
周期图法具有快速计算和较好的频率分辨能力的特点,适用于信号周期性较强的情况。
半周期图法是周期图法的一种改进方法。
它首先将信号分成两个连续的时段,计算各自的功率谱密度,然后取两个时段的平均值作为最终的功率谱估计。
半周期图法减少了周期图法中窗函数的影响,提高了估计的准确性。
参数法是一种基于对信号进行参数建模的方法。
常见的参数法有自回归(AR)模型、线性预测(ARMA)模型等。
自回归模型是一种用于描述信号随机过程的自回归线性滤波模型。
它通过自回归系数描述信号当前样本值与过去样本值的线性关系。
自回归模型估计功率谱的方法主要有Burg方法、 Yule-Walker方法等。
自回归模型具有较好的频率分辨能力和较高的准确性,适用于信号具有较长时间相关性的情况。
线性预测模型是将信号分解成预测误差和线性组合的方式。
它通过选择适当的线性预测滤波器系数来最小化预测误差的均方差,从而得到功率谱的估计。
线性预测模型估计功率谱的方法主要有Levinson-Durbin算法和Burg算法等。
线性预测模型具有较好的频率分辨能力和较高的估计准确性,适用于信号具有较强的谱峰特性的情况。
3.2信号频率估计信号频率估计是通过对信号进行时域分析来确定信号的频率成分。
关于功率谱和频谱的区别

(1)信号通常分为两类:能量信号和功率信号;
(2)一般来讲,能量信号其傅氏变换收敛(即存在),而功率信号傅氏变换通常不收敛,当然,若信号存在周期性,可引入特殊数学函数(Delta)表征傅氏变换的这种非收敛性;(3)信号是信息的搭载工具,而信息与随机性紧密相关,所以实际信号多为随机信号,这类信号的特点是状态随机性随时间无限延伸,其样本能量无限。
换句话说,随机信号(样本)大多属于功率信号而非能量信号,它并不存在傅氏变换,亦即不存在频谱;
(4)若撇开搭载信息的有用与否,随机信号又称随机过程,很多噪声属于特殊的随机过程,它们的某些统计特性具有平稳性,其均值和自相关函数具有平稳性。
对于这样的随机过程,自相关函数蜕化为一维确定函数,前人证明该确定相关函数存在傅氏变换;
(5)能量信号频谱通常既含有幅度也含有相位信息;幅度谱的平方(二次量纲)又叫能量谱(密度),它描述了信号能量的频域分布;功率信号的功率谱(密度)描述了信号功率随频率的分布特点(密度:单位频率上的功率),业已证明,平稳信号功率谱密度恰好是其自相关函数的傅氏变换。
对于非平稳信号,其自相关函数的时间平均(对时间积分,随时变性消失而再次退变成一维函数)与功率谱密度仍是傅氏变换对;
(6)实际中我们获得的往往仅仅是信号的一段支撑,此时即使信号为功率信号,截断之后其傅氏变换收敛,但此变换结果严格来讲不属于任何“谱”(进一步分析可知它是样本真实频谱的平滑:卷积谱);
(7)对于(6)中所述变换若取其幅度平方,可作为平稳信号功率谱(密度)的近似,是为经典的“周期图法”;
(8)FFT是DFT的快速实现,DFT是DTFT的频域采样,DTFT是FT的频域延拓。
人们不得已才利用DFT近似完成本属于FT的任务。
若仅提FFT,是非常不专业的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不变,T增大,谱线间隔
1
2 T
减小,谱线逐渐密集,幅度
A T
பைடு நூலகம்
减
小
当 T
1 0
A 0 T
非周期信号连续频谱
非周期信号 n1 连续频率
2.当T不变, 减小时
T不变
1
2 间隔不变
T
A 振幅为0的谐波频率
T
2
,
4
,......
信号与系统
练习:周期信号的频谱描绘
不改变 不改变 不改变
Fn
2 T
2
f (t)dt
T
2 A
2
Adt
2
T
信号与系统
练习:周期信号的频谱描绘
a 2 nT
T
2 T
2
f (t) cos n1tdt
2A sin n n T
2 A
T
sin n
T
n
2A Sa(n )
T
T
T
f (t)
A
T
2 A
T
n 1
Sa( n
T
)
cos(n1t )
A 2A
TT
S a(
立叶展开式并画出其频谱图。
1
解: f(t) 在一个周期内可写为如下形式
Tt
f (t) 2 t T t T
T
22
f(t) 是奇函数,故 an 0
信号与系统
4
bn T
T 2 0
f (t) sin n1tdt
4 T
T 2 0
2t T
sin
n1tdt
(1
2
T
)
An &n 2
2
T
8 T2
(
2
将A=1,T=0.25s, τ=0.05s,ω0 =2 π /T=8 π代入得
信号总平均功率为
Fn
1 Sa n0
5 40
T
1
P 1
2
f 2 (t)dt 1
2
40
f 2 (t)dt 4 12 dt 0.2000
T T
T
1
2
2
40
信号与系统
三、周期信号的功率谱
在有限带宽 0 ~ 2 内有直流分量、基本分量和四个谐波分量。
n
0
51 61
相位频谱图
101
tg b
1
n
a n
n
0
an > 0
an 0
A A e F n
n
j N 2
2A Sa( n1 )
nT
2
n
0
Sa( n1 ) 0 即
2
Fn>0
Sa( n1 ) 0 即
2
Fn<0
信号与系统
练习:周期信号的频谱描绘
第四步:讨论频谱结构与 、T 的关系
1.当
1 T
2 T
f (t) Fne jn0t dt
n
2
2
T
n
Fn
1 T
2 T
f (t)e-jn0t dt
Fn Fn
n
n
Fn 2
T
2
即
P 1 2 T T
f (t) 2 dt
Fn 2
n
2
称为周期信号的帕什瓦尔(Parseval)定理。表明周期信号的
平均功率等于各个复指数信号分量的平均功率之和,即总平均
有限带宽内信号各个分量的平均功率之和为
4
P' F02 2 Fn 2 n1
(1)2 5
2 52
[Sa 2
(
5
)
Sa
2
(
2
5
)
Sa
2
( 3
5
)
Sa
2
(
4
5
)]
0.1806
P' 0.1806 0.904 90.4% P 0.2000
信号与系统
课程小结
主要知识点:
➢ 周期信号的频谱 ①单边谱:幅度谱,相位谱 ②双边谱:幅度谱,相位谱 ③单边谱vs.双边谱的关联
n1
2
) co s(n1t)
n1
第二步:展成指数形式傅立叶级数
f(t)
F e 1 nT
2
A
2
jn1tdt A Sa( n1 )
T
2
1
f
(t
)
S
(t)
sin t
t
e f (t) A Sa( n1 ) jn1t
T n
2
4 3 2 0
2 3 4 t
信号与系统
练习:周期信号的频谱描绘
第三步:频谱分析
c os n1t
2 T
4
4
8 sin n
n2 2
2
8 2n2
n1
(1) 2
n为奇数
0
n为偶数
信号与系统
f
(t)
8
2
(1)n1
n2 j1
1 n2
sin
2n
T
t
j 1,2,
An &n
8
2
31 0 11
-8 9 2
8
25 2
51
信号与系统
一、周期信号的单边频谱
例:有一偶谐函数,其波形如
图所示,求其傅立叶展开式并画
号的有效频带宽度或带宽,即矩形脉冲的频带宽度为
Bf
1
或
B
2
信号与系统
总结:周期信号的频谱特点
周期信号频谱的特点:
(1) 离散性——谱线是离散的而不是连续的,因此称为离散频谱; (2) 谐波性——谱线所在频率轴上的位置是基本频率的整数倍;
(3) 收敛性——谱线幅度随 n 而衰减到零。各频谱的高度
信号与系统
§ 3.2 周期信号的频谱 和功率谱
信号与系统
基本概念:周期信号的频谱
1.周期信号的频谱 为了能既方便又明白地表示一个信号中包含有哪些频率分量,各 分量所占的比重怎样,就采用了称为频谱图的表示方法。
在傅立叶分析中,把各个分量的幅度 Fn 或 An 随频率或角频率 n0
的变化称为信号的幅度谱。
bn 4 T
T 2 0
f (t) sin n1tdt
(1
2
T
)
4 T
[
T 4 0
4t T
sin
n1tdt
T
2 T
4
(2
4t T
)
s
in
n1tdt
T
]
16 T2
[(
t
n1
c os n1t
1
(n1 ) 2
sin
n1t)
4 0
T
T
(
t
n1
c os n1t
1
(n1 ) 2
sin
n1t)
2 T
]
4
Tn1
Sa( ) 0 2
信号与系统
练习:周期信号的频谱描绘
计算第一个振幅为零的谐波次数n
令
n1
2
将 1
2
T
代入得
即 n T 5 (取 1 )
T5
n2
2T
A
2 A
n
T
2
1 2131 41 51
幅度频谱图
1
4
4
3
2
Sa(t) sin t t
抽样函数
2 3 4
信号与系统
练习:周期信号的频谱描绘
An
an 2 bn 2 an
2A Sa( n1 ) 2A Sa( n )
T
2
T
T
Fn
A
T
Sa( n1
2
)
A
T
Sa( n
T
)
An
与 T 之比值有关,取
1
T5
An
当
与 Fn 包络线均为 Sa( n1 )
, 2 ,...... n
2 时
2
n1 为离散频率
Sa( ) 0 2
即 2 , 4 ,...... 2n
而把各个分量的相位 n 或 n 随频率或角频率 n0 的变化
称为信号的相位谱。
幅度谱和相位谱通称为信号的频谱。 三角形式的傅立叶级数频率为非负的,对应的频谱一般称为单边谱, 指数形式的傅立叶级数频率为整个实轴,所以称为双边谱。
信号与系统
一、周期信号的单边频谱
f (t)
例:有一奇函数,其波形如图所示,求其傅
2 4t T t T
1
f (t)
T
4
2
4t T tT
T
4
4
T 2
TT
T
42
t
2 4t T
T t T
2
4
an 2 T
T
2 T
2
f
(t) cosn1tdt
2 T
[
T
4 T
(2
2
4t T
)
c
os
n1tdt
T 4 T 4
4t T
cosn1tdt
T
2 T
4
(2
4 T
t
)
c
osn1tdt]
0
信号与系统
f (t) E
出其频谱图。
0 TT T
42
t
解
an 2 ( T
T
4 0
E
c
osn1tdt
3T
4 T