中科院大连化学物理所物理吸附储氢材料研究取得新进展
储氢材料的研究进展

储氢材料的研究进展一、本文概述随着全球能源结构的转型和可持续发展目标的日益紧迫,氢能作为一种清洁、高效的能源形式,正受到越来越多的关注。
而储氢材料作为氢能利用的关键环节,其性能的提升和技术的突破对于氢能的大规模应用具有决定性的影响。
本文旨在全面综述储氢材料的研究进展,通过对不同类型储氢材料的性能特点、应用领域以及发展趋势进行深入探讨,以期为氢能领域的科研人员和技术人员提供有益的参考和启示。
本文将首先介绍储氢材料的研究背景和重要意义,然后从物理储氢材料、化学储氢材料和复合储氢材料三个方面,分别阐述各类储氢材料的最新研究成果和进展。
在此基础上,本文将重点分析储氢材料的性能评价指标,如储氢密度、吸放氢动力学、循环稳定性等,并探讨影响这些性能指标的关键因素。
本文将展望储氢材料的发展趋势和未来研究方向,以期为推动氢能领域的技术创新和产业发展贡献一份力量。
二、储氢材料的分类储氢材料,作为能量储存和转换的重要媒介,在氢能源的应用中扮演着关键角色。
根据其储氢机制和材料特性,储氢材料大致可分为物理吸附储氢材料、化学氢化物储氢材料、金属有机骨架储氢材料以及纳米储氢材料等几大类。
物理吸附储氢材料:这类材料主要通过物理吸附作用储存氢气,如活性炭、碳纳米管、石墨烯等。
这些材料具有高的比表面积和良好的吸附性能,能够有效地吸附并储存氢气。
然而,其储氢密度相对较低,且受温度和压力影响较大。
化学氢化物储氢材料:这类材料通过化学反应将氢气转化为氢化物来储存氢,如金属氢化物(如NaAlHMgH2等)和氨硼烷等。
这类材料具有较高的储氢密度,但储氢和释氢过程通常需要较高的温度和压力,且可能伴随有副反应的发生。
金属有机骨架储氢材料:金属有机骨架(MOFs)是一种新型的多孔材料,具有高的比表面积和孔体积,以及可调的孔径和化学性质。
MOFs材料通过物理吸附或化学吸附的方式储存氢气,具有较高的储氢密度和良好的可逆性。
纳米储氢材料:纳米储氢材料主要包括纳米金属颗粒、纳米碳材料等。
纳米材料在储氢材料中的应用研究

纳米材料在储氢材料中的应用研究随着全球能源危机的日益严重,寻找新型的清洁可再生能源已成为全球人民的共同关注点。
其中,氢能源作为一种绿色、高效的能源形式,备受关注。
然而,氢能源的储存和运输一直是限制其广泛应用的主要难点之一。
传统的气体和液态氢储存方式在储存密度、安全性和可靠性等方面存在诸多问题。
近年来,纳米材料在储氢材料中扮演着越来越重要的角色,被认为是一种重要的氢储存方法。
本文将介绍纳米材料在储氢材料中的应用研究进展。
一、氢能源储存问题氢能源具有高效、清洁、环保等多种优点,是未来燃料的主要候选者之一。
然而,氢能源的储存和运输是目前亟需解决的问题。
传统的气体和液态氢储存方式存在容器体积大、储存密度低、易燃等诸多问题,因此被认为不是可持续的氢储存方法。
而化学吸附和物理吸附则是目前可行的氢储存方案之一。
二、纳米材料储氢原理纳米材料储存氢气的原理主要是物理吸附和化学吸附。
在物理吸附中,氢分子在纳米材料表面被吸附;而在化学吸附中,氢分子与纳米材料中的原子强烈相互作用,形成氢化物。
纳米材料的储氢密度与其表面积有关。
表面积越大,储氢量就越大。
因此,采用纳米材料作为储氢材料可以增加储氢密度,在保持储氢安全的前提下实现高效的储氢。
三、纳米材料在储氢中的应用研究1.金属有机骨架储氢金属有机骨架是一种由金属离子和有机配体组成的三维网状结构。
研究发现,金属有机骨架具有良好的储氢性能。
例如,Mg(OH)-BTB(BTB为2,3,6,7,10,11-三苯基二氮并[1,2-b:4,5-b']二嘧啶的缩写)材料具有较高的氢吸附容量和吸附热,是一种理想的氢储存材料。
2.纳米孔道材料储氢生物学家正在对许多纳米孔道材料开展深入研究。
目前,已开发出许多独特的纳米孔道材料,例如碳纤维、氧化锆等。
这些材料具有很高的表面积和孔体积,因此可以容纳大量的氢分子。
研究发现,一些材料,如MIL-101材料,可实现高达5.5 wt%的氢储存容量。
储氢材料的研究进展

氢的储存技术是开发利用氢能的关键性技术,如何有效地对氢进行储存,并且在使用时能够方便地释放出来,是该项技术研究的焦点。以上介绍的每一种储氢材料都有或多或少的缺点,制约其长足的发展。比如说,储氢合金虽是主要应用的储氢材料,但大多数储氢合金的自重大,寿命也是个问题,自重低的镁合金很难常温储放氢,大规模应用仍然有困难。碳纳米管储氢材料受到广泛关注,但基础研究不够,能否实用化还是个问题,目前的研究重点是提高室温、常压下氢的吸附量,在吸附机理、吸附剂的合成和吸附剂的净化等方面取得突破性进展。另一思路是制备新型的复合储氢材料,大部分储氢材料的性能都有加合的特点,而单一的储氢材料的性质也较多地为人们所认识。所以,复合储氢材料是未来储氢材料制备的一个走向。
有机物储氢的特点是:(1)储氢量大,苯和甲苯的理论储氢质量分数分别为7.19 %和6.18 %,比传统的金属氢化物、高压压缩的储氢量大得多;(2)储氢剂和氢载体的性质与汽油相似,储存、运输、维护保养安全方便,特别是储存设施的简便是传统储氢技术难以比拟的;(3)可多次循环使用,寿命长达20年;(4)加氢反应放出大量热可供利用。Touzani和Klvana等[16,17]系统地研究了MCH的脱氢反应,并对偶联于氢燃机上的脱氢反应进行了数值模拟。瑞士在研究随车脱氢,为汽车提供燃料的技术方面开展了一系列研发工作[35,36]。Parmaliana等[18]利用商品化的载Pt蜂窝状催化剂研究了苯/环己烷的加氢和脱氢反应,250℃~350℃,常压下,加氢效果最好。Cacciola等[19]论证了用环己烷和甲基环己烷作氢载体的储氢和输氢的可行性。我国的有机液体氢化物储氢技术,1994年石油大学进富[20]对利用Ni - Al2O3催化剂的甲苯气相加氢反应及其动力学进行了研究,取得了一定的进展。2003年,顾仁敖等[21]用共焦拉曼光谱研究了苯在光滑铂电极表面的电化学还原行为,表明苯可直接还原生成环己烷。
氢储存材料的开发与应用

氢储存材料的开发与应用随着全球能源危机的加剧以及对环境保护的需求日益增加,氢能作为一种清洁、高效的能源形式备受关注。
然而,由于氢气在常温下具有极低的密度和极高的爆炸性,有效、安全地储存氢气一直是人们关注的焦点。
因此,氢储存材料的开发与应用成为了当前研究的热点之一。
一、氢储存材料的分类目前,氢储存材料主要可以分为物理吸附、化学吸附和物理储存三大类。
1. 物理吸附式储氢材料物理吸附式储氢材料是指通过氢与材料表面之间的凡得瓦尔斯力进行相互作用以实现储氢的方式。
常见的物理吸附式储氢材料包括杂化材料、金属有机骨架材料(MOFs)等。
这类材料具有储氢速率快、循环性能稳定的特点,但氢气的储存密度较低。
2. 化学吸附式储氢材料化学吸附式储氢材料是指氢气通过与材料之间的化学键形成化学复合物进行储氢。
典型的化学吸附式储氢材料包括金属氢化物和金属氨基醇化物。
这类材料具有较高的储氢密度,但储氢和释放氢的反应过程需要较高的温度和压力条件。
3. 物理储存式储氢材料物理储存式储氢材料指的是通过在固态或液态中存储氢气,如金属氢化物和液态有机化合物等。
这类材料具有较高的储氢密度,但在储氢和释放氢过程中需要严格的温度和压力控制。
二、氢储存材料的开发与应用是实现氢能经济的关键环节。
近年来,人们针对各类氢储存材料进行了广泛的研究与应用探索。
首先,物理吸附式储氢材料得到了广泛研究和应用。
特别是杂化材料和金属有机骨架材料(MOFs)在储氢领域取得了重大突破。
这些材料具有高度可调性、良好的可再生性和较高的储氢容量,可以应用于氢气储集、运输和使用等方面。
其次,化学吸附式储氢材料也取得了一定的进展。
研究人员通过改变金属氢化物和金属氨基醇化物的化学配方和结构,以及调控温度和压力条件,提高了储氢密度和反应速率。
这类材料在汽车和电池等领域的氢能应用中具有广阔的发展前景。
此外,物理储存式储氢材料也逐渐受到关注。
金属氢化物和液态有机化合物等材料具有较高的储氢密度和可逆性。
储氢材料的原理解析与研究进展

氢是一种清洁的可再生能源。
储氢材料作为一种可逆的氢元素存储材料,在现代及未来的应用十分广泛。
对于储氢材料性质的研究,将会更好地推动我国相关研究领域的进步。
随着近年来我国经济的不断发展,能源消耗也在大幅度增加,化石能源储量减少,并产生一系列的环境问题,所以寻找一种安全可靠的绿色清洁能源是必然趋势,而氢元素一直是能源系列中的“宠儿”。
由于氢能是一种可循环利用的清洁能源,将在我国能源转换中扮演重要角色。
近年来,氢能产业从行业圈内逐渐走向大众视野,被认为是具有发展潜力的新型产业。
目前唯一存在的应用问题是氢能源的存储技术问题,为了解决这一问题,储氢材料正式问世,利用金属络合物储存氢能,其质量百分密度较高且具有一定的可逆性,实现了储氢材料的正式应用,而此类材料的具体应用也可以更好地推动相关领域的发展。
氢能的储存方式分析氢能是目前发现的能源体系中储量丰富且无公害的清洁能源,是理想化石燃料替代品,而且氢能在燃烧后的生成物只有水,对我国实现“碳达峰”“碳中和”等目标具有重要意义。
在氢能的应用体系中,氢能的存储制约了氢能走向实用化和规模化。
为了解决这一问题,诞生了储氢材料理念。
目前,有3种主要的储氢方式,分别为高压气态储氢、低温液态储氢和固态储氢。
1高压气态储氢高压气态储氢是目前应用广泛、相对成熟的储氢技术,即通过压力将氢气液化至气瓶中加以储存。
该技术的优点在于,其充装释放氢气速度快,技术成熟及成本低。
而其缺点在于:一是对储氢压力容器的耐高压要求较高,商用气瓶设计压力达到20 MPa,一般充压力至15 MPa;二是其体积储氢密度不高,其体积储氢密度一般在18~40 g/L;三是在氢气压缩过程中能耗较大,且存在氢气泄漏和容器爆破等安全隐患问题。
2低温液体储氢为了解决高压气体储氢体积储氢密度低的问题,人们提出了液态储氢的概念,低温液态储氢将氢气冷却至-253℃,液化储存于低温绝热液氢罐中,储氢密度可达70.6 kg/m3,体积密度为气态时的845倍。
物理吸附储氢材料的研究进展

物理吸附储氢材料的研究进展一、本文概述随着全球能源需求的持续增长和对可再生能源技术的日益关注,氢能被认为是一种具有巨大潜力的清洁能源。
然而,氢能的广泛应用受限于其储存和运输的挑战。
物理吸附储氢作为一种安全、高效的储氢技术,近年来引起了广泛的研究兴趣。
本文旨在概述物理吸附储氢材料的研究进展,重点讨论不同材料的吸附性能、储氢容量以及实际应用前景。
我们将首先介绍物理吸附储氢的基本原理和优势,包括其相对于其他储氢技术的独特之处。
接着,我们将综述各类物理吸附储氢材料,如活性炭、金属有机框架(MOFs)、碳纳米管等,并详细分析它们的储氢性能、影响因素以及潜在的应用领域。
我们还将讨论目前研究中面临的挑战,如提高储氢密度、优化吸附动力学以及材料的成本问题等。
我们将展望物理吸附储氢材料的未来发展趋势,包括新型材料的开发、复合材料的研究以及储氢技术的集成等。
通过本文的综述,我们希望能够为物理吸附储氢材料的研究提供全面的参考,推动氢能技术的发展和应用。
二、物理吸附储氢技术的基本原理物理吸附储氢技术是一种基于吸附剂表面与氢气分子之间的物理相互作用来实现氢气储存的方法。
这种技术利用吸附剂的多孔性和高比表面积,通过分子间作用力(如范德华力)将氢气分子吸附在吸附剂的表面上,从而实现氢气的储存。
物理吸附储氢技术的核心在于吸附剂的选择和设计。
理想的吸附剂应具备以下特性:高比表面积,以提供足够的吸附位点;适宜的孔径分布,以便有效地吸附氢气分子;良好的吸附动力学性能,确保氢气分子能快速吸附和解吸;以及良好的化学稳定性和热稳定性,以确保储氢过程的安全性和持久性。
在物理吸附储氢过程中,氢气分子与吸附剂之间的相互作用是物理的,不涉及化学键的形成和断裂,因此吸附过程是可逆的。
这意味着在适当的条件下,氢气分子可以从吸附剂表面解吸出来,供后续使用。
这种可逆性使得物理吸附储氢技术具有较高的灵活性和可控性。
然而,物理吸附储氢技术也面临一些挑战。
由于吸附过程是基于分子间作用力,因此吸附能较低,导致储氢密度相对较低。
我国吸附储氢材料研究取得进展

3 结 论
以堇青 石 为基 体制 备 的不 同 O 助 剂含 量 的 , N 基 整体式 催化剂 ,催 化剂 表征结果 表 明 L 2, i aO 助 剂 的 添 加 促 进 了 N 物 种 在 催 化 剂 表 面 的 分 散 性 i
[ 叶季蕾 , 华超 , 2 】 段 刘鹏 翔 , . 等 【 杂 的 N -l 3 于 丑掺 i a_ 用 . 0
2 0
天然 气化 工
21 0 0年 第 3 卷 5
剂 活性 中心 的接触 面 积 。从 上述 的 X S结 果 可知 , P
有 最佳 的 甲烷水 蒸气 催化 重整 性 能 ,在 80C 0  ̄ 的反
在L a添加 的 N 及整 体 式催 化剂 , i 反应 物 甲烷 的 C — H键 更容 易发 生 极化 , 而 活化 甲烷 , 也是 L 从 这 a改
N 元 素浓 度 降低 ,这 点 可 以从 催 化剂 的 XP i s结果
看 出 , 催 化剂 表 面 , 多 的 L 元 素覆 盖 了 N 原 在 过 a i
子 ,这 使得 反应 物 不 能充 分与 活性 中心 相 接触 , 从 而 降低 了催化 剂的催 化性 能 。
m taerfr n i 0 【.A p a l , 0 7 3 6 e n o gwt C 2] pl t 2 0 , 1 h e mi h J C aA
体式 催化 剂 的催 化性 能有所 下降 。
参 考 文 献
[】 P m e , i i , o z M V M, . uyo i 1 o p oF Nc oN N S uaM e S d f h t t N
a d P aa y t s p o td o ・ 2 n r p l d i n t tl s u p r n AI a d Z O2 p i n c s e 03 a e
新型储氢材料设计研究获新进展

该 研 究 的联 合 作 者 、纽 约 大 钻 石 表 面 的 小 凹 坑 会 在 短 短 几 秒 能 源 的 开 发 已迫 在 眉 睫 。 在 众 多 t
学 化 学 系 主 任 麦 克 ・ 德 表 示 , 钟 内 消 失 。 钻 石 质 量 损 失 的 速 度 新 能 源 中 ,氢 能被 视 作 连接 化 石 沃
和 6个 H 。 研 究 人 员 提 出 C 富
新 型储 氢材 料 设 计
研 究 获 新进 展
随 着 全 球 经 济 外 一 端 能 够 形 i 成 稳 定 的 s+ p p s2新 型 结 构 ,其 吸 附 H 的 结 合 能 为 05 / 2 . e H。 2V 以 上 研 究 结 果 为 基 于 一 维 碳
米德伦说 : “ 这是 一 项 非 常 合 能 与 碳链 的类 型有 关 .呈 现 明
学 的 研 究 人 员 发 现 ,地 球 上 最 坚 实用 的发 现 ,我 们 正在 研 究 如 何 显 的奇 偶振 荡 性 质 。利 用 过 渡态
硬 的天 然 物质 钻 石并 非 人 们想 象 利 用 这 一发 现 。如 果我 们 能 够 在 理 论 计 算 r 吸 附 在 链 端 的 路 径 r i
Re e c r n幽 s ar h T e
合成 拥有 纳 米 孔 的 晶体 .就像 广 质 都 有 光 照 导 致 的 蒸 发 现 象 . 观 能 源 需 求 与 日俱 增 , 同 时 ,传 统
为 人 知 的 由 非 有 机 物 组 成 的 分 子 察 到 钻 石 也 有 这 种 现 象 还 是 第 一 的 煤 炭 、石 油 和 天 然 气 等 化 石 燃
A g 2 1 u 01 .
L
纳米 材料 设计 高 质量 密度 的储 氢 计 算 机 的能 力 ,能 根 据 m R A 说 ,他 们开 发 出一 种 制作 有 机半 iN 媒 介 提供 了一 种 新思 路 。相 关 结 ( 小分子 R A) N 、蛋 白质 、小分 子 导体单 晶薄 膜 的新技术 。 T 果 发 表 在 《 理 化 学 化 学 物 理 》 如 A P等 同 时 探 测 多 种 疾 病 指 物
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6期介万奇等:多元多相合金凝固理论模型的研究进展
[45]Q i n R S,W all ach E R.A Phase2Fiel d M odel Coup led w it h a
Th er m odyna m ic Database[J].Acta M a te riali a,2003,51:
6199-6210.
[46]BÊttger B,E i ken J,Stei nbach I.Phase F i el d Si m u lati on of
Equ i axed Soli d ification i n Techn i calA lloys[J].Acta Ma te rialia,
2006,54:2697-2704.
[47]N estl er B,G arcke H,Stinner B.M u ltico m pon en tA lloy Soli d i2
fication:Phase2Fiel d M odeli ng and S i m u lati ons[J].Phy s ical Re vie w E,2005,71:041609.[48]A ntonova N,F irstov S A,M i racle D B.I n vesti gati on of Phase
Equ ilibri a i n the T i-A l-Si-N b Syste m at Low Nb Con tents [J].Act a Ma teria li a,2003,51:3095-3107.
[49]H i m e m i ya T,Um eda T.Three2Ph ase P l an ar Eu tecti c Growth
M ode l s for a T ern ary E utectic Syste m[J].M ateri a ls T rans a c2
ti ons,J I M,1999,40(7):665-674.
[50]H i m em i ya T.Growth M od el s of Two2Phase E utecti c Cell i n a
Ternary Eu tecti c Syste m:a Phas e Sel ecti on M ap[J].M ateri a ls T ran s a ction s,J I M,1999,40(7):675-684.
BEPCII超导备用腔高功率耦合器测试达到400k W连续波功率日前,由中科院高能物理研究所(以下简称高能所)自主研制的BEPCII500MH z超导备用腔高功率耦合器借助日本KEK高频测试台顺利通过了高功率老练测试,功率达到了连续波420k W以上,位于国际同类设备先进水平。
老练测试结果表明,高功率耦合传输稳定,高功率下高频性能和热负载承受性能良好,真空特性良好。
这表明经过反复摸索和研究,高能所加速器中心高频科研人员和参研人员已掌握了高功率输入耦合器的设计和研制技术,并形成了比较成熟的工艺路线。
这也标志着高能所在大型超导加速器高功率输入耦合器自主研制上的道路上又迈上了一个新的台阶。
众所周知,像B EPCII这样的高亮度大流强加速器随着束流流强的不断提高,高频功率的需求将不断攀升,相应地要求输入耦合器的耦合功率能力随之提升。
输入耦合器的高功率耦合能力是大流强加速器束流流强提高的制约因素之一,因此输入耦合器愈来愈成为高功率射频微波领域的核心部件之一,世界上许多大型加速器实验室投入了相当多精力对其进行性能研究和设备研制。
高功率耦合器的研制技术颇具挑战性。
目前,世界上只有极少数加速器实验室研制的高功率耦合器达到了连续波400k W以上。
高能所研制成功的连续波400k W功率耦合器可用于替代昂贵的同类进口设备,用于BEPCII超导高频系统运行备份和超导备用腔(均仅要求输入功率达到140k W),摸索和凝炼而成的技术路线及工艺流程也可应用于其它类型的大流强加速器的功率输入耦合器,为其自主研制奠定了重要基础。
(摘自中国科学院网站)
中科院大连化学物理所物理吸附储氢材料研究取得新进展氢能源作为一种零污染、可再生能源日益受到重视,并成为洁净能源研究领域的国际前沿课题和热点。
储氢问题是氢能源领域的一项重要课题。
目前储氢研究包括化学储氢和物理储氢两个领域。
物理吸附利用微孔材料物理吸附氢分子,因其在特定条件下对氢气具有良好、可逆的热力学吸附、脱附性能而受到广泛研究。
提高材料对氢气的吸附作用使氢分子更容易、更牢固地吸附在微孔材料的表面或孔腔中,已成为进一步提高微孔材料储氢量的一条重要途径。
最近,中科院大连化学物理研究所邓伟侨所在的研究组及合作者使用锂离子掺杂技术,提高微孔共轭聚合物对氢气的吸附焓从而提高材料的储氢量。
理论模拟发现,锂离子在共轭体系上对氢气有增强的吸附作用,可以使氢分子更牢固地吸附在微孔材料中。
实验上,通过催化聚合1,3,5-三乙炔苯制备较大比表面积的三维微孔共轭聚合物(C MP)作为吸附载体,其网络结构中的碱性活性基团碳碳叁键吸附锂离子。
锂离子有效提高了材料对氢分子的吸附焓。
研究表明,当锂离子的掺杂比例在015%(质量分数,下同)时,材料储氢能力最强,对氢气的吸附焓为811kJ/mol。
该材料在77K 和011MPa条件下,储氢量高达611%,刷新了同等条件下的物理吸附储氢的纪录,远远高于碳纳米材料(310%)和金属框架化合物(215%)。
该研究工作以通讯形式刊登在近期的5德国应用化学6(Ange w.Che m.I n.t Ed.)(2010,49:3330-3333. DO I:10.1002/a n ie.200906936),并被选为热点文章。
(摘自中国科学院网站)
11。